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Outage Capacity Optimization for Free-Space
Optical Links With Pointing Errors
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Abstract—We investigate the performance and design of
free-space optical (FSO) communication links over slow fading
channels from an information theory perspective. A statistical
model for the optical intensity fluctuation at the receiver due
to the combined effects of atmospheric turbulence and pointing
errors is derived. Unlike earlier work, our model considers the
effect of beam width, detector size, and jitter variance explicitly.
Expressions for the outage probability are derived for a variety
of atmospheric conditions. For given weather and misalignment
conditions, the beam width is optimized to maximize the channel
capacity subject to outage. Large gains in achievable rate are
realized versus using a nominal beam width. In light fog, by
optimizing the beam width, the achievable rate is increased by
80% over the nominal beam width at an outage probability of
10−5. Well-known error control codes are then applied to the
channel and shown to realize much of the achievable gains.

Index Terms—Atmospheric turbulence, beam misalignment,
free-space optical (FSO) communications, optical channel capac-
ity, outage probability, pointing errors.

I. INTRODUCTION

F REE-SPACE optical (FSO) systems are an exciting tech-
nology that establish point-to-point communication links

through the atmosphere. They provide high security, low cost,
low power, and high rates due to the unregulated bandwidth [1].
Such links are suitable for 1–2 Gb/s rates over distances in the
range of 1–5 km. Optical signal propagation in free space is
affected by atmospheric turbulence and pointing errors, which
fade the signal at the receiver and deteriorate the link perfor-
mance. In this paper, we investigate the design and performance
of slow-fading FSO channels corrupted by these impairments
from an information theory perspective and demonstrate that
optimizing the beam width results in large gains in channel
capacity.

Atmospheric turbulence causes fluctuations in both the in-
tensity and the phase of the received signal due to variations
in the refractive index along the propagation path [2]. Many
statistical models have been proposed to describe this fluc-
tuation in both weak and strong fading regimes [3], [4]. In
addition, misalignment between the transmitter and receiver
due to building sway causes pointing errors that limit the

Manuscript received November 24, 2006; revised March 13, 2007. This
work was presented in part at the 2006 IEEE Laser and Electro-Optics Society
Annual Meeting, Montreal, QC, Canada, October 29–November 2, 2006.

The authors are with the Department of Electrical and Computer En-
gineering, McMaster University, Hamilton, ON L8S 4K1, Canada (e-mail:
farid@grads.ece.mcmaster.ca; hranilovic@mcmaster.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2007.899174

performance of FSO links. The impact of pointing error (jitter)
has been widely investigated for intersatellite space-based FSO
links [5]–[7] which operate over ranges of many thousands of
kilometers. In these links, the assumption of negligible detector
aperture size with respect to the beam width at the receiver
is made due to the large distances. The effect of pointing
error and atmospheric turbulence has also been considered in
terrestrial links of shorter range. Modeling the combined impact
of turbulence and jitter, as well as the impact of the bit error
rate (BER) of communication systems, has been considered
[8], [9]; however, in all cases, the detector size is assumed to
be negligible compared to the beam width at the receiver, and
only uncoded transmission is considered. Optimization of the
beam width in FSO systems to minimize BER has also been
investigated using the small detector model [10]; however, a
formal design procedure for jointly designing beam width and
coding was not presented. Recently, information and coding
theory have been applied to FSO channels. The ergodic [11]
and outage capacities [12] for a Poisson noise model and a
Gaussian noise model [13] have been derived in the absence of
misalignment errors. The performance of detection techniques
[14], bounds on the pairwise error probability for a variety of
coding schemes [15], [16], and low-complexity codes [11] have
been considered for FSO channels. However, code rate design
and joint optimization with the beam width for a finite detector
aperture and pointing jitter has not been considered.

This paper presents a formal method to jointly design the
beam width and code rate for FSO channels impaired by turbu-
lence and misalignment induced fading. For given atmospheric
and misalignment fading statistics, the channel is engineered by
selecting a beam width which maximizes the outage capacity.
Unlike previous work, a statistical model for FSO links is
derived which models the fading due to atmospheric turbulence
and pointing errors considering beam width, pointing error
variance, and detector size. Since the channel state varies on the
order of millions of symbol intervals, we adopt a slow fading
channel model and derive expressions for the outage probability
for weak and strong turbulence conditions. A key novelty of this
paper is that, unlike previous work, combined consideration of
beam width optimization and capacity is used to design FSO
systems. For a given outage probability or, equivalently, chan-
nel availability, the beam width which maximizes the achiev-
able rate for ON–OFF keying (OOK) is selected. It is shown
that by selecting the optimum beam width versus a nominal one
used in a commercial system gives large increases in achievable
rates. Well-known error control codes with appropriate rates
and complexity are then applied to the channel and shown to
realize a large portion of the promised gains.
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Fig. 1. Block diagram of an FSO link.

A brief description of FSO systems is given in Section II,
followed by a discussion on outage capacity. Section III reviews
statistical models for the atmospheric turbulence and presents a
novel statistical model for pointing errors. The probability of
outage is derived in both weak and strong fading regimes, and
design criteria are presented in Section IV. Design examples for
two weather conditions are presented in Section V. This paper
concludes in Section VI with some directions for future work.

II. SYSTEM MODEL AND DEFINITIONS

A block diagram of an FSO communication link is presented
in Fig. 1. The transmitter modulates data onto the instantaneous
intensity of an optical beam. In this paper, we consider intensity
modulated direct detection channels using OOK modulation,
which is widely employed in practical systems. The received
photocurrent signal is related to the incident optical power by
the detector responsivity R. It is assumed that the receiver
integrates the photocurrent for each bit period and removes
any constant bias due to background illumination. The received
signal y suffers from a fluctuation in signal intensity due to
atmospheric turbulence and misalignment, as well as additive
noise, and can be well modeled as [14]

y = h R x+ n (1)

where x is the transmitted intensity, h is the channel state, y
is the resulting electrical signal, and n is signal-independent
additive white Gaussian noise with variance σ2

n.
The channel state h models the random attenuation of the

propagation channel. In our model, h arises due to three factors:
path loss h�, geometric spread and pointing errors hp, and
atmospheric turbulence ha. The channel state can be formu-
lated as

h = h� hp ha. (2)

Note that h� is deterministic, and hp and ha are random with
distributions discussed in Section III. Since the time scales
of these fading processes (≈10−3−10−2 s [14]) are far larger
than the bit interval (≈10−9 s), h is considered to be constant
over a large number of transmitted bits. Notice that the use
of interleaving to allow for averaging over a large number of
fading states is impractical in this channel. This block fading
channel is often termed a slow fading or nonergodic channel
[17] in which an h is chosen from the random ensemble
according to distribution fh(h) and fixed over a long block
of bits.

The transmitted signal is taken as symbols drawn equiproba-
bly from an OOK constellation such that x ∈ {0, 2Pt}, and Pt
is the average transmitted optical power. The received electrical

signal-to-noise ratio (SNR) for OOK signaling and a slow
fading channel is defined as

SNR(h) =
2P 2

t R2 h2

σ2
n

(3)

and is random due to the influence of h.

A. FSO Channel Capacity and Outage Probability

Channel capacity is the maximum achievable data rate that
can be reliably communicated between the transmitter and the
receiver [18]. In this paper, we restrict our attention to the prac-
tical case of equiprobable binary OOK alphabets, and capacity
refers to the maximum rate using this source distribution.

The channel capacity of time-varying fading channels de-
pends on the information available at the transmitter and/or
receiver about the channel (channel state information, CSI, and
distribution). For the nonergodic slow-fading channels consid-
ered here, we assume that the receiver has perfect knowledge
of h and that the transmitter sends information at a rate of R0

bits/channel use. The instantaneous capacity corresponding to
a channel state h = h′ for binary OOK signal is given by

C (SNR(h′)) =
∫ ∑

x

fy|x(y|x)px(x) log2
fy|x(y|x)
fy(y)

dy

where

x ∈{0, 2Pt}
px(x = 0) = px(x = 2Pt) = 0.5

fy|x(y|x) =N (h′ R x, σ2
n)

fy(y) =
∑
x

px(x)fy|x(y|x)

and N (µ, σ2
n) denotes a Gaussian distribution with mean µ and

variance σ2
n. Note that SNR is random and depends on the

channel state h via (3). Since the channel is random and fixed
for a long period of time, there is finite probability that C is not
sufficient to support R0. This event is termed an outage [17],
and in this case, the transmitted codewords cannot be reliably
decoded at the receiver. An appropriate measure of the capacity
in this case is the outage probability at rate R0, which is
defined as

Pout(R0) = Prob (C(SNR(h)) < R0).

Equivalently, since C(·) is monotonically increasing in SNR

Pout(R0) = Prob
(
SNR(h) < C−1(R0)

)
. (4)

For these slow-fading FSO channels, there is a tradeoff be-
tween R0 and Pout, which is a critical issue in design. In
order to quantify this tradeoff, in the following sections, the
distribution of h due to atmospheric turbulence and pointing
errors is derived, and Pout is computed for a variety of weather
conditions.
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III. OPTICAL CHANNEL FADING MODEL

A. Atmospheric Statistical Models

Many statistical models for the intensity fluctuation through
FSO channels have been proposed over the last two decades
[3], [4], [19]. For weak turbulence, the intensity fluctuation
probability density function (pdf) is modeled as a log-normal
distribution, which has been validated through experimental
measurements [2], [4], [14]. The log-amplitude of the optical
intensity has a Gaussian pdf with log-amplitude variance σ2

X

given by [2]

σ2
X = 0.30545 k

7/6 C2
n(L) z

11/6 ≈ σ2
R

4

where C2
n(L) is the index of refraction structure parameter at

altitude L (assumed to be constant along the propagation path),
k = 2π/λ is the optical wavenumber, z is the propagation
distance, and σ2

R is the Rytov variance defined as [2], [14]

σ2
R = 1.23 C

2
n k7/6 z11/6.

Note that σ2
R can be measured directly from atmospheric para-

meters. The intensity distribution is given by

fha(ha) =
1

2ha

√
2πσ2

X

exp

((
lnha + 2σ2

X

)2
8σ2

X

)
. (5)

The log-normal distribution cannot characterize scintillation
effects in strong turbulence regimes [4], [20]. In a recent
approach to FSO channel modeling [3], [4], a Gamma–Gamma
distribution was used to model atmospheric fading. In this case,
the pdf of ha is given as

fha(ha) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
(ha)

(α+β)
2 −1Kα−β

(
2
√

αβha

)
(6)

where Kα−β(·) is the modified Bessel function of the second
kind, and 1/β and 1/α are the variances of the small and
large scale eddies, respectively [4]. It was shown that the
Gamma–Gamma pdf is in close agreement with measurements
under a variety of turbulence conditions [3], [4].

B. Atmospheric Attenuation

The attenuation of laser power through the atmosphere is
described by the exponential Beers–Lambert Law as

h�(z) =
P (z)
P (0)

= exp(−σz)

where h�(z) is the loss over a propagation path of length z,
P (z) is the laser power at distance z, and σ is the attenuation
coefficient [21]. The attenuation h� is considered as a fixed
scaling factor during a long period of time, and no randomness
exists in its behavior. It depends on the size and distribution of
the scattering particles and the wavelength utilized. It can be
expressed in terms of the visibility, which can be measured di-
rectly from the atmosphere [22], [23]. There is a strong inverse
correlation between the turbulence strength and attenuation. For

Fig. 2. Detector and beam footprint with misalignment on the detector plane.

example, strong turbulence is highly unlikely to occur during a
fog event [24].

C. Pointing Error

In line-of-sight FSO communication links, pointing accuracy
is an important issue in determining link performance and
reliability. However, wind loads and thermal expansions result
in random building sways, which, in turn, cause pointing errors
and signal fading at the receiver [8]. In this section, we derive
a new statistical model for pointing error loss due to misalign-
ment, which considers detector aperture size, beam width, and
jitter variance.

For a Gaussian beam, the normalized spatial distribution of
the transmitted intensity at distance z from the transmitter is
given by [25]

Ibeam(ρ; z) =
2

πw2
z

exp
(
−2‖ρ‖

2

w2
z

)
(7)

where ρ is the radial vector from the beam center, and wz is
the beam waist (radius calculated at e−2) at distance z. The
beam waist wz of a Gaussian beam propagating in atmospheric
turbulence can be approximated as [26]

wz ≈ wo

[
1 + ε

(
λz

πw2
o

)2
] 1

2

where wo is the beam waist at z = 0, ε = (1 + 2w2
o/ρ

2
o(z)),

and ρo(z) = (0.55C2
nk

2z)−3/5 is the coherence length.
Consider a circular detection aperture of radius a and a

Gaussian beam profile at the receiver Ibeam, as shown in Fig. 2.
The attenuation due to geometric spread with pointing error r
is expressed as

hp(r; z) =
∫
A

Ibeam(ρ − r; z)dρ

where hp(·) represents the fraction of the power collected by
the detector, and A is the detector area. When a pointing error
of r is present, hp is a function of the radial displacement and
angle. Due to the symmetry of the beam shape and the detector
area, the resultant hp(r; z) depends only on the radial distance
r = ‖r‖. Therefore, without loss of generality, we can assume
that the radial distance is located along the x′-axis. The fraction
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TABLE I
NMSE BETWEEN EXACT AND APPROXIMATE hp EXPRESSIONS

of the collected power at a receiver of radius a in the transverse
plane of the incident wave can be expressed as

hp(r; z) =

a∫
−a

ζ∫
−ζ

2
πw2

z

exp
(
−2(x

′ − r)2 + y′2

w2
z

)
dy′dx′ (8)

where ζ =
√
a2 − x′2. As shown in the Appendix, this integra-

tion can be approximated as the Gaussian form

hp(r; z) ≈ A0 exp

(
− 2r

2

w2
zeq

)
(9)

where v = (
√
πa)/(

√
2wz), and

A0 = [erf(v)]
2 , w2

zeq
= w2

z

√
πerf(v)

2 v exp(−v2)
.

Notice that A0 is the fraction of the collected power at r = 0,
and wzeq is the equivalent beam width. The normalized mean-
squared error (NMSE) between the exact and the approximate
expressions for hp is given in Table I for different values of
wz/a. The proposed approximation is in good agreement with
the exact value when wz/a > 6, i.e., NMSE < 10−3. Fig. 6 in
the Appendix plots (8) and (9) versus r for various wz/a values
to show their close agreement.

In order to relate this paper to previous work where it is
assumed that wz � a, consider the limiting expression for hp

as wz/a → ∞, which results in

lim
wz/a→∞

hp(r; z) = πa2Ibeam(r; z)

which is the multiplication of the sampled Gaussian beam at
point r and the detector area, as used in previous work.

Consider independent identical Gaussian distributions for the
elevation and the horizontal displacement (sway), as was done
in previous work [8]. The radial displacement r at the receiver
is modeled by a Rayleigh distribution

fr(r) =
r

σ2
s

exp
(
− r2

2σ2
s

)
, r > 0 (10)

where σ2
s is the jitter variance at the receiver. Combining (9)

and (10), the probability distribution of hp can be expressed as

fhp(hp) =
γ2

Aγ
2

0

hγ
2−1

p , 0 ≤ hp ≤ A0 (11)

where γ = wzeq/2σs is the ratio between the equivalent beam
radius at the receiver and the pointing error displacement stan-
dard deviation at the receiver. Note that it is possible to consider
other distributions for the jitter, and the proposed expression for
hp is a general frame work for channel modeling.

D. Channel Statistical Model

The probability distribution of h = h�hahp can be ex-
pressed as

fh(h;wz) =
∫

fh|ha(h|ha)fha(ha)dha (12)

where fh(h;wz) is a family of pdfs parameterized by the beam
width wz , and fh|ha(h|ha) is the conditional probability given
a turbulence state ha. Recall that h� is deterministic and acts
as a scaling factor. The resulting conditional distribution can be
expressed as

fh|ha(h|ha) =
1

hah�
fhp

(
h

hah�

)

=
γ2

Aγ
2

0 hah�

(
h

hah�

)γ2−1

, 0 ≤h ≤A0hah�.

(13)

Substituting (13) into (12) gives

fh(h;wz) =
γ2

(A0h�)γ
2 h

γ2−1

∞∫
h/A0h�

h−γ2

a fha(ha)dha. (14)

The channel state distribution fh(h;wz) can now be com-
puted by substituting proper models for atmospheric turbu-
lence, fha(ha) into (14). For weak turbulence (σ2

R < 0.3),
fha(ha) has a log-normal distribution (5). Substituting into (14)
gives

fh(h) =
γ2

(A0h�)γ
2 h

γ2−1

×
∞∫

h/A0h�

h−γ2

a

1
2ha

√
2πσ2

X

exp

((
lnha + 2σ2

X

)2
8σ2

X

)
dha.

Simplifying and defining µ = 2σ2
X(1 + 2γ

2) results in

fh(h;wz) =
γ2

2(A0h�)γ
2 h

γ2−1

×erfc

 ln

(
h

A0h�

)
+ µ

√
8σX


 e(2σ

2
Xγ

2(1+γ2)).

In a strong turbulence regime, fha is a Gamma–Gamma
distribution, and substituting (6) into (14) results in

fh(h;wz) =
2γ2(αβ)(α+β)/2

(A0h�)γ
2Γ(α)Γ(β)

hγ
2−1

×
∞∫

h/A0h�

h(α+β)/2−1−γ2

a Kα−β
(
2
√

αβ ha

)
dha.

(15)
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This integration can be expanded into a complex expression
of hypergeometric functions. However, these results are not
presented in this paper, and efficient numerical techniques are
utilized to compute this integral.

IV. OUTAGE AND DESIGN CRITERIA

In this section, we present design criteria based on the
derived statistical model of pointing and atmospheric fading
to optimize FSO link performance. In all cases, it is assumed
that the transmitter is operating at a fixed rate R0 ∈ [0, 1]
bits/channel use using OOK modulation with given Pt, R, σ2

n,
σ2
s , and weather conditions. Thus, channel optimization is done

only over the beam width.

A. Probability of Outage

The probability of outage for a slow-fading FSO system
under weak and strong turbulence conditions for binary OOK
signaling can be computed using fh(h). Combining (4) and (3),
the probability of outage at a given rate R0 can be expressed as
follows:

Pout(R0) = Prob
(
2P 2

t R2 h2

σ2
n

< C−1(R0)
)

.

Defining h0 =
√

C−1(R0)σ2
n/2P 2

t R
2 allows the above expres-

sion to be simplified as

Pout(R0) = Prob(h < h0). (16)

Therefore, the probability of outage is the cumulative density
function of h evaluated at h0 and is expressed as

Pout(R0;wz) =

h0∫
0

fh(h;wz)dh. (17)

Notice that Pout is parameterized by the choice of beam width
wz through the statistical model for fh(·) derived in (14).

Under weak turbulence conditions, a closed-form expression
for Pout(R0) as a function of Pt, σ2

n and σ2
X can be obtained

using the identity [27, Sec. 3.2]

∫
ebuerfc(au)du =

1
b

[
ebuerfc(au)− e

b2

4a2 erf
(

b

2a
− au

)]

to yield

Pout(R0;wz)

=
1
2

[
eγ

2ψ−2σ2
Xγ

4
erfc

(
ψ√
8σX

)
+ erfc

(
4σ2

Xγ2− ψ√
8σX

)]
(18)

where ψ = ln(h0/A0h�) + µ.
For the strong turbulence regime, fh(h) in (15) is substituted

into (17), and Pout(R0) is computed numerically.

TABLE II
WEATHER PARAMETERS

B. FSO Link Design Criteria

For a given FSO channel, the design of the communication
system requires the selection of a transmit beam divergence, as
well as a code rate. The fundamental design criterion followed
in this paper is to select the beam width wopt

z , which maximizes
the Shannon channel capacity subject to outage. Notice that
the BER is not a parameter in this criterion. A rate R0 is
termed achievable if there exists a family of codes of code
rate R0 which can realize any arbitrarily small probability
of error. Of course, practical fixed length codes will have a
nonzero probability of error; however, good finite length codes
approaching Shannon’s capacity have been found. Thus, our
goal is to first engineer the channel to have a high capacity
through optimizing wz and then to apply error-correcting codes
to approach these information-theoretic limits.

There exists a tradeoff between the achievable code rate
R0 and the corresponding probability of outage Pout(R0;wz)
formalized in (17). In fact, this tradeoff is parameterized by the
beam width wz through the statistical fading model in (14). For
a given R0, wz can be selected to minimize Pout. Alternatively,
for a required Pout to be satisfied by the system, the optimum
beam width is the one that maximizes the achievable code rate
R0 that can be transmitted reliably over the channel.

Even after beam optimization, however, not all pairs of
(Pout, R0) are achievable. In this paper, we define the un-
achievable region as the set of pairs (Pout, R0) for which it is
impossible to find reliable codes. The boundary of this region
quantifies the optimum tradeoff between Pout and R0 and can
be approached by utilizing the optimum beam widths and good
error-correcting codes. Note that wopt

z /a is in general different
for each point on the optimum tradeoff curve between Pout

and R0.
In the following section, examples of the application of this

information theory-based criterion to FSO channel design are
presented for different weather conditions.

V. EXAMPLES

A. Weather and System Parameters

The effect of weather conditions on optical link performance
can be characterized by two parameters: the index of refraction
structure parameter C2

n and h�. Experimental measurements
show that C2

n varies from 10−15 to 2× 10−13 as the turbu-
lence strength varies from weak to strong conditions, and the
attenuation factor is empirically expressed in terms of visibility
[22]. Table II summarizes different weather conditions and as-
sociated values for C2

n and visibility. The corresponding Rytov
variance σ2

R and h� for a propagation path of 1 km [22] are
also presented. Two cases are considered: clear weather where
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TABLE III
SYSTEM CONFIGURATION

σ2
R = 1, and light fog, where σ2

R = 0.1, which corresponds to
strong and weak turbulence, respectively.

The parameters of the system under investigation are pre-
sented in Table III [24], [28]. Typical values for receiver sen-
sitivity Sv and noise standard deviation σn are taken from a
commercial transimpedance amplifier [29]. The transmitter and
receiver optics efficiencies ηT and ηR are scaling factors for the
received optical power. The nominal values for the normalized
beam width and the normalized jitter standard deviation are
wz/a = 25 and σs/a = 3, respectively [28] and are presented
in Table III.

In all simulations, the normalized beam width is restricted to
the range wz/a = 5, . . . , 25 in discrete steps of ∆wz/a = 0.1.
For the system parameters in Table III, each step of∆wz/a cor-
responds to a change of approximately 0.01 mrad in transmitter
beam divergence half angle, which is well within the alignment
tolerance of a practical adaptive beam system. The optimum
beam width wopt

z was found for each case through an exhaustive
search over this discrete set.

B. Probability of Outage and Link Availability

In this section, wz is chosen to minimize Pout over Pt when
the transmitter is constrained to have a fixed code rate R0.
Qualitatively, beam width optimization balances the impact
of hp and ha factors on the probability of outage. Widening
the beam mitigates pointing errors at the expense of received
power while narrowing the beam limits the geometric loss but
increases the impact of misalignment.

The probability of outage versus Pt for clear weather is
shown in Fig. 3 for a code rate R0 = 0.5 (bits/channel use)
and beam widths wz/a = 5, . . . , 25. The fading distribution for
strong turbulence in (15) is applied via numerical integration.
For a given Pt, the optimum beam width wopt

z is selected
to minimize Pout(0.5;wz). Notice that optimum beam width
increases slowly as a function of Pt. Intuitively, in this strong
turbulence regime, the sensitivity to misalignment fading is low,
and increases in Pt are used to combat atmospheric fading. A
link margin of ≈5-dB optical power is realized by optimiz-
ing the beam width when the system is designed to satisfy
Pout = 10−6.

Fig. 3. Probability of outage versus transmitted power for clear weather,
strong turbulence model (σ2

R = 1), σs/a = 3, and R0 = 0.5 bits/chan. use.

Fig. 4. Probability of outage versus transmitted power for light fog, weak
turbulence model (σ2

R = 0.1), σs/a = 3, and R0 = 0.5 bits/chan. use.

The probability of outage for the light fog case is computed
using the weak fading model (18) and is presented in Fig. 4.
The code rate is fixed at R0 = 0.5 (bits/channel use) and
wz/a varied from 5 to 25. From the figure, link margins of
3- and 2-dB optical are obtained at Pout = 10−3 and 10−4,
respectively. The behavior of this system is in contrast to
the strong fading case discussed earlier. The optimum beam
width changes rapidly with Pt, as shown in Fig. 4, where the
corresponding values for the optimum beam widths wopt

z /a
are presented. This increased sensitivity to misalignment fading
can be justified due to the weak fading and high attenuation in
this channel. Qualitatively, increases in Pt are traded off for
increases in the beam width to mitigate the impact of pointing
errors. Transmitters designed for these channels need to have
accurate control of their beam widths as significant gains can
be made with the proper selection of wz/a.
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Fig. 5. Probability of outage versus achievable rate for nominal and optimum
beam widths for light fog (σ2

R = 0.1), σs/a = 3 and Pt = 16 dBm. A variety
of (n, k) error control codes of rate k/n are applied to this channel, and the
performance presented at BER = 10−6. Hardware implemented Turbo1 codes
with R0 = {1/4, 1/3} and k = 8920 [30]. LDPC2 and Turbo2 with rate 1/2
and n = 104 [31]. Hardware implementation for LDPC3 with R0 = 1/2 and
k = 4096 [32]. LDPC4 [33] and LDPC5 of code rate 0.75 [34]. High-rate
Reed–Solomon codes RS6 with R0 = 0.874 and 0.937 [35]. LDPC7 with
k = 1024 [36].

C. Probability of Outage and Achievable Rates

In this section, the tradeoff between the Pout and the max-
imum achievable rate is analyzed for optimum and nominal
beam widths. The light fog case is considered, and Pt, σ2

s are
fixed to the nominal values in Table III. The Pout versus R0

tradeoff is governed by (18) and parameterized by the beam
width wz . For a given R0, wopt

z minimizes Pout(R0;wopt
z ).

Fig. 5 illustrates the tradeoff relation for optimum beam width
Pout(R0;wopt

z ) and fixed nominal beam width. Note that the
value of wopt

z varies for each point on the curve.
As discussed in Section IV-B, not all pairs (Pout, R0) are

achievable, resulting in an unachievable region. For pairs in
the unachievable region, reliable communication is not possi-
ble. Thus, the Pout(R0;wopt

z ) curve is the optimum tradeoff
between outage probability and achievable rate for the given
weather conditions. It is clear from Fig. 5 that for a given prob-
ability of outage, there is a significant gain in the achievable
rate when utilizing the optimum beam over the nominal beam.
For example, if the system is designed to meet Pout = 10−5,
then the maximum code rate that can be reliably transmitted
over this channel using the nominal beam width is R0 = 0.3,
while when utilizing the optimum beam, R0 = 0.54, which is
an increase of 80% in the achievable rate.

Although beam width optimization increases R0, these
achievable rates represent the maximum rates for which re-
liable communications is possible. Error control codes must
be applied to approach these R0 values with practical com-
plexity. Well-known error control codes with k bits per code
word and block length n are applied to the channel, and their
performance is plotted in Fig. 5. For the simulations, an outage
was defined as the event that the decoded BER > 10−6. The
SNR corresponding to BER = 10−6 was found for each code
through simulation and, via (3), the corresponding h0 was

computed. Substituting h0 and the wopt
z for the code rate R0 =

k/n into (18) gives the probability of outage. At low rates,
hardware-based Turbo codes for space communications [30],
as well as low-density parity-check (LDPC) [31] codes with
large n, approach the optimal Pout(R0;wopt

z ). At higher rates,
Reed–Solomon [35] and low-complexity LDPC codes for fiber
optical applications [33], [34], [36] can also be designed to
operate close to the Pout(R0;wopt

z ) curve. Of notable interest is
the performance using a hardware-implemented rate-1/2 LDPC
code [32]. From Fig. 5, the code achieves a Pout = 1.8× 10−5,
while the optimum rate is R0 = 0.575. Thus, this practical
code can realize approximately 87% of the maximum rate.
Significant gains in achievable rate are available by beam
optimization, and the optimal tradeoff between Pout and R0

derived here can be used as a design guide when selecting code
rates in practical FSO channels.

VI. CONCLUSION

This paper considers the design of FSO channels corrupted
by atmospheric turbulence and pointing errors from an informa-
tion theory perspective. New statistical models are presented
where beam width, pointing error, and detector size are con-
sidered. These models are used to derive fundamental limits
on outage probability and achievable rates for FSO channels.
In strong turbulence channels, a link margin gain of 5 dB is
obtained over a nominal beam width by optimizing the beam
width for a fixed code rate. For fixed transmitted power, using
the optimum beam width gives large gains in achievable rates.
At Pout = 10−5, the achievable rate in light fog is increased
by 80% through beam optimization. Error-correcting codes are
then applied, and a previously reported hardware implementa-
tion of an LDPC code can achieve 87% of the maximum rate at
Pout = 1.8× 10−5.

It has been demonstrated that optimization of the beam width
leads to significant increases in the channel capacity subject to
outage. Furthermore, most of the achievable rate can be realized
using realistic and practical error-correcting codes. Thus, this
paper is a design guide for FSO communication systems, which
allows for the optimization of channel capacity over a variety of
weather conditions and for the selection of code rate at a given
probability of outage.

APPENDIX

MISALIGNMENT FADING hp(r) APPROXIMATION

Consider approximating the integration in (8) by an integra-
tion over a square of equal area to the detector, i.e., with side
length

√
πa. It follows that (8) can be approximated as

hp(r) ≈
√
πa/2∫

−√
πa/2

√
2E√
πw2

z

exp
(
−2(x

′ − r)2

w2
z

)
dx′

where E=erf(
√
πa/

√
2wz), and erf(x) = (2/

√
π)
∫ x
0 e−u

2
du

is the error function. Expanding the exponential term into its
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Fig. 6. Exact and approximate values of hp(r) for different values of wz/a.

Taylor series, integrating and simplifying results in
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√
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wz
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π
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In addition, (A-1) can be rearranged with respect to , and
written in the compact form

hp(r) ≈
∞∑

�=0
even

A�

(√
2 r
wz

)�
(A-2)

where A�’s are given by

A� =
2E√
π
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Defining v = (
√
πa)/(

√
2wz) and simplifying gives

A0 = [erf(v)]
2 , A2 =

−2√
π
erf(v)

[
v exp(−v2)

]
.

Equating the first two terms of the Taylor expansion of a
Gaussian pulse to the same terms in (A-2) gives (9)

hp(r) ≈ A0 exp

(
− 2r

2

w2
zeq

)

where w2
zeq
= w2

zA0/|A2|. The exact (8) and the approximate
(9) expressions for hp(r) are plotted in Fig. 6 for a variety
of wz . Notice that they are in close agreement for wz/a > 6,
where NMSE < 10−3, as given in Table I.
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