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Abstract

This paper considers the capacity of two-dimensional optical intensity channels in
which transmit images are constrained to be binary-level. Examples of such links exist
in holographic storage, page-oriented memories, optical interconnects, two-dimensional
barcodes, as well as MIMO wireless optical links. Data are transmitted by sending a
series of time-varying binary-level optical intensity images from transmitter to receiver.
Strict spatial alignment between transmitter and receiver is not required nor is inde-
pendence among the spatial channels assumed. Our approach combines spatial discrete
multitone modulation developed for spatially frequency selective channels with halfton-
ing to produce a binary-level output image. Data is modulated in spatial frequency
domain as dictated by a water pouring spectrum over the optical transfer function as
well as channel and quantization noise. A binary-level output image is produced by
exploiting the excess spatial bandwidth available at the transmitter to shape quan-
tization noise out of band. We present a general mathematical framework in which
such systems can be analyzed and designed. In a pixelated wireless optical channel
application, halftoning achieves 99.8% of the capacity of an equivalent unconstrained
continuous amplitude channel using 1 megapixel arrays.

Index Terms: two-dimensional wireless optical channels, wireless infrared communica-
tions, optical intensity modulation, halftoning, holographic storage, page-oriented memories,
optical interconnects, two-dimensional barcodes, MIMO wireless optical links, pixelated op-
tical channels.
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1 Introduction

Information is transmitted through optical intensity channels by modulating the instanta-

neous intensity of an optical source. For two-dimensional (2D) optical channels, the trans-

mitted signal is a 2D intensity image and, as a result, must have non-negative amplitudes.

Moreover, the average transmitted power is given by the average image amplitude rather

than the average square amplitude as in conventional electrical channels. As a result of

these amplitude constraints, the direct application of conventional signalling theory is sel-

dom efficient.

Such 2D optical intensity channels have been used in a variety of applications such as

holographic data storage [1–3], page-oriented optical recording [4, 5], 2D barcodes [6, 7], and

multiple-input/multiple-output (MIMO) wireless optical communications [8–11]. A major

practical problem of many of these applications is the requirement of strict alignment be-

tween the transmitter and the receiver in order to avoid inter-channel interference [1, 2, 12].

Such a system is termed “pixel matched”, i.e. each receive pixel images a single transmit

pixel. Another practical limitation is the constraint on the average and peak optical power

transmitted which is particularly important in applications where the optical signal can

interfere with humans, as the case with MIMO wireless optical communications [8].

Recently, a signalling technique, which provides high spectral efficiencies without the

need for strict spatial alignment, has been introduced for 2D intensity channels [13, 14].

The only requirement is that the transmitter array is in the field-of-view of the receiver.

Inter-channel interference is in fact, modelled and exploited at the transmitter and receiver

through the use of spatio-temporal coding. The channel considered in [13, 14] is a class of

MIMO wireless optical channels, and is termed pixelated wireless optical channel. In this

previous work, the transmitter array is assumed to be able to generate multiple (e.g., 256)

intensity levels. Additionally, the non-negativity constraint of the generated image is not

considered explicitly, rather, amplitudes are clipped to ensure that the constraints are met.

In this paper, we extend the earlier work on pixelated wireless optical channel to the

general case of 2D optical intensity channels by considering transmitter arrays, i.e., spatial
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light modulators (SLMs), in which each pixel is able to output a binary-level intensity,

i.e., on or off. Such transmitters are far simpler than those previously assumed and can

be operated at very high frame rates. The non-negativity constraint is treated explicitly

through the design of modified halftoning algorithms. Thus, excess degrees of freedom in

spatial frequency domain are exploited to provide binary-level output images which satisfy

all amplitude constraints while maintaining the relaxation of the strict spatial alignment.

In Sec. 2, a brief introduction on 2D optical intensity channels is presented along with a

channel model. Binary-level signalling over these channels is discussed in Sec. 3 along with

an analysis for quantization noise and capacity of such links. A numerical example based on

a measured pixelated wireless optical channel is presented in Sec. 4. The paper concludes in

Sec. 5 with some directions for future work.

2 2D Optical Intensity Channels

2.1 Channel Model

The transmitter is an SLM consisting of a 2D array of pixels, while the receiver consists

of a 2D array of photodiode pixels. The receiver samples the spatial distribution of the

optical intensity wavefront incident on its surface. Examples of imaging-type receivers are

arrays of photodiodes, charge coupled device (CCD) cameras, and CMOS imagers. Several

such arrays have been constructed for free-space and indoor wireless optical communications

[15, 16], as well for high-speed imaging applications with rates near 10 kframes/s for arrays

of over 105 pixels [17].

We assume that imaging optics are employed, and that the optical axes of the transmitter

and the receiver are aligned such that the receive image r(n1, n2) is an orthographic projection

of the transmit image x(n1, n2), where (n1, n2) are continuous spatial coordinates. According

to scalar diffraction theory, the impact of the imaging system as well as the shape of transmit

and receive pixels can be well modelled as a spatial low pass filter. This low pass filter is

characterized by its point-spread function (PSF) [18]. That is, the PSF is the optical impulse
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response of the system which is modelled as a linear space-invariant system. Therefore, the

channel model can be written as

r(n1, n2) = x(n1, n2)⊗ h(n1, n2) + z(n1, n2), (1)

where h(n1, n2) is the channel PSF, z(n1, n2) is the channel noise, and ⊗ is 2D linear convo-

lution. The channel model in (1) is a generalization of a previous model used in holographic

data storage [3] and 2D optical recording [4], where the channel was modelled as a finite-

extent 2D linear filter that represents the optical blur, or the 2D inter-symbol interference.

The same model was used in wireless optical communication applications as well [13, 14].

Two channel amplitude constraints are imposed on x(n1, n2): (i) a non-negativity con-

straint, x(n1, n2) ≥ 0, that stems from the fact that the transmitted signal is an optical

intensity signal, and (ii) E{x(n1, n2)} ≤ P , where P is the average optical power, and E is

the expectation operator.

2.2 Spatial Discrete Multitone Modulation

Discrete multitone (DMT) is a modulation scheme developed for frequency selective channels.

Spatial discrete multitone (SDMT) modulation is the generalization of DMT to 2D spatial

frequency [14]. An appealing advantage to 2D intensity channels is that SDMT is insensitive

to the receiver sampling phase, and hence, strict alignment between the transmitter and

receiver is not necessary.

Let the transmit image be N1 × N2 pixels and let X be the discrete Fourier transform

(DFT) of the transmit image. The complex data to be transmitted are loaded in the complex

frequency bins X(k1, k2). Hermitian symmetry X(k1, k2) = X∗(N1 − k1, N2 − k2) must be

satisfied in order to guarantee real transmit images. According to this model, the transmit

images are periodic in space. The receive image is equal to the linear convolution of the

transmit image and the channel PSF. By appending a cyclic extension [14, 19] around the

image, whose size is at least half the channel memory, the periodicity assumption of the DFT
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is satisfied and equalization is a complex multiplication per spatial frequency bin. In this

case, the channel model (1) can be simplified in discrete spatial frequency domain (k1, k2) as

R(k1, k2) = X(k1, k2)H(k1, k2) + Z(k1, k2) (2)

where R(k1, k2), X(k1, k2), H(k1, k2), and Z(k1, k2) are the DFTs of the receive image,

transmit image, PSF, and channel additive Gaussian noise respectively. Thus, the channel

can be considered as a number of parallel Gaussian channels in spatial frequency domain,

and the aggregate capacity, in the absence of amplitude constraints, is maximized by a water

pouring algorithm over the spatial frequency channels [14].

Due to the non-negativity amplitude constraint of the spatial intensity domain, pouring

power to the spatial frequency channels is not straight forward, and does not necessarily

maximize the capacity [13, 14]. The complexity of this technique is increased since it requires

an SLM capable of outputting a continuous range of intensities with a high dynamic range,

as is noted in electrical DMT systems.

3 Binary-Level 2D Optical Channels

In an effort to reduce the complexity of the transmitter, we confine our consideration to

SLMs with binary-level output. Binary-level signalling over the 2D optical wireless channel

simplifies not only the SLM design but also ensures that the channel non-negativity constraint

can be easily met since dark/bright pixels are only transmitted over the channel.

Two popular examples of such binary-level SLMs include digital micro-mirror devices

(DMD) and arrays of vertical-cavity surface-emitting lasers (VCSELs). Commercial DMD

can operate at switching speeds of nearly 10 kHz with array sizes of 2048×1152 mirrors [20].

A 540-element array with 1080 VCSELs has been produced for optical interconnect in which

each pixel can be modulated in excess of 200 Mbps [21]. An integrated solid-state array of

transceivers has been designed to operate at 155 Mbps per pixel, where arrays of resonant

cavity light-emitting diodes are bonded to arrays of CMOS driver circuits [22].
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The high frame rates permit many channel uses per second, while the large number

of pixels gives many spatial degrees of freedom. Since the PSF of the channel is typically

spatially low pass, it is not possible to transmit data in high spatial frequency modes as these

modes are effectively filtered by the channel. The high-frequency modes are termed the out-

of-band region, while the low-frequency modes which carry independent data are termed the

in-band region. In this section, we propose a method that utilizes these out-of-band spatial

modes to satisfy the channel non-negativity constraint by producing binary-level output

images while achieving high communication rates that approach the rates of unconstrained

continuous SLM transmission.

3.1 Digital Image Halftoning

In image processing, digital image halftoning is defined as the process of converting a

continuous-tone image to a binary-level one which is perceptually close to the original con-

tinuous image [23, 24]. The perceptual quality of the image is dominated by the low spatial

frequency region since the human visual system is more sensitive to this region of the spec-

trum. Therefore, the power spectral density (PSD) of the quantization noise is shaped to

the high spatial frequency region where the human visual system is not sensitive.

Error diffusion halftoning is the most popular halftoning algorithm first proposed empir-

ically by Floyd and Steinberg in 1975 [25]. Later, Anastassiou defined a rigorous unifying

framework linking ∆Σ modulation and error diffusion halftoning [26]. He showed that the

error diffusion algorithm is the extension of ∆Σ modulation to two dimensions and that both

algorithms are oversampled analog-to-digital converters that rely on the spectral shaping of

quantization noise. The error diffusion system used in this work is surrounded by a dashed

box in Fig. 1. The error diffusion feedback filter j(n1, n2) was chosen empirically by Floyd,

however, others have presented more rigorous designs based on classical filter theory [27].

An all-optical implementation of the error diffusion algorithm has been described in [28],

where all pixel quantization decisions are computed in parallel.

In 2D optical intensity channels, the perceptual quality of the transmitted images is not
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Figure 1: Halftoned SDMT over 2D optical intensity channels.

of concern. Instead, the goal is to design a series of images which maximize the rate at

which reliable communication can take place over the channel. Since the channel PSF is

analogous to the low-pass human visual system, data are modulated into spatial frequency

bins where the channel attenuation is low. Halftoning is then used to produce a binary-level

transmit image in which the quantization noise is shaped to the out-of-band frequency bins

that are heavily attenuated by the channel PSF. This high frequency quantization noise will

be filtered out by the channel and the received image will be a continuous-tone image which

carries the transmitted data along with some residual quantization noise.

In Fig. 1, let q be the quantizer error, and q̃ = y − x be the closed loop quantization

noise, where x and y are the input continuous-tone image and the output halftoned image

respectively. The analysis of this error diffusion system is not straightforward because the

binary-level quantizer is a highly nonlinear element. A conventional assumption is to linearize

the quantizer by assuming that the quantizer error q is white with variance σ2
q and signal

independent [29], [30, Chapter 14]. Once linearized, the following PSD of the quantization

noise q̃ can be easily deduced

Φq̃(k1, k2) = Φq(k1, k2) |1− J(k1, k2)|2

= N1N2 σ2
q |1− J(k1, k2)|2, (3)

where Φq(k1, k2) = N1N2 σ2
q is the PSD of the quantizer error, and J(k1, k2) is the DFT of
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the feedback filter. That is, the power of the quantizer error is shaped by the noise power

shaping function |1− J(k1, k2)|2.
In order to shape the quantizer error power to the out-of-band region, the error diffusion

feedback filter J(k1, k2) is chosen to be a unity DC-gain filter such that the noise power

shaping function |1− J(k1, k2)|2 will have a null at DC. The total quantization noise power,

in all complex frequency bins, after noise shaping is given by:

∑

k1,k2

Φq̃ = N1N2σ
2
q

∑

k1,k2

[1− J(k1, k2)]
∗[1− J(k1, k2)]

= (N1N2)
2σ2

q

(
1 + Ej − 2j(0, 0)

)
, (4)

where

Ej =
∑
n1,n2

|j(n1, n2)|2

is the feedback filter energy, and the fact that
∑

J(k1, k2) = N1N2 j(0, 0) is used.

Therefore, the total quantization noise power increases with the filter energy Ej. However,

high values of Ej are not problematic as long as the noise is well shaped to the out-of-band

region that is attenuated by the channel PSF. The key point is to maximize the channel

capacity, defined in Sec. 3.2, and not to minimize the total quantization noise power.

3.2 Halftoned Spatial Discrete Multitone Modulation

The binary-level SDMT communication system based on halftoning is shown in Fig. 1. The

SDMT transmit image is formed as described in Sec. 2.2 and is the input of the error diffusion

system. A cyclic extension is added to the halftoned image and the frame is biased by a

constant bias of +1 to satisfy the non-negativity constraint. Finally the entire frame is

multiplied by Pt to scale the output levels to {0, 2Pt}. Since the input continuous SDMT

image x(n1, n2) is assumed to be zero mean, the output halftoned binary image y(n1, n2) is

also zero mean, and hence the average transmit optical power is equal to Pt.
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The received image, as given by (2), can be rewritten as

R(k1, k2) = Pt

[
X(k1, k2) + Q̃(k1, k2) + N1N2δ(k1, k2)

]
H(k1, k2) + Z(k1, k2) (5)

Dividing (5) by PtH(k1, k2) yields,

R(k1, k2)

PtH(k1, k2)
=

[
X(k1, k2) + N1N2δ(k1, k2)

]
+ Q̃(k1, k2) + Z̃(k1, k2)

where

Z̃(k1, k2) =
Z(k1, k2)

PtH(k1, k2)

is the effective channel Gaussian noise.

That is, the effective received image is equal to a DC-biased version of the transmit

image contaminated by two noise components: Q̃(k1, k2) and Z̃(k1, k2) whose PSDs are

Φq̃(k1, k2) and Φz̃(k1, k2) respectively. By further assuming that the quantizer error is Gaus-

sian, then Φq̃(k1, k2) + Φz̃(k1, k2) defines the Gaussian noise “bowl” over which the total

available electrical power is poured in order to maximize the aggregate channel capacity. If

Φq̃(k1, k2) >> Φz̃(k1, k2) in the in-band region, the quantization noise dominates and the

system is termed quantization noise-limited. On the other hand, if Φq̃(k1, k2) << Φz̃(k1, k2)

in the in-band region, the channel noise dominates and the system is then termed optical

power-limited.

Notice that the non-negativity constraint is no longer an issue while pouring power to

the bowl Φq̃(k1, k2) + Φz̃(k1, k2), as was the case in [13, 14], because the output image is a

binary one. Let Φx(k1, k2) be the electrical power allocated to the complex frequency bin

(k1, k2) such that the total frame electrical power is equal to 1
N1N2

∑
Φx(k1, k2) = σ2

x N1N2

for some fixed input electrical power σ2
x. Then, the aggregate system capacity C is given by

C =
1

2

N1−1∑

k1=0

N2−1∑

k2=0

log

(
1 +

Φx(k1, k2)

Φq̃(k1, k2) + Φz̃(k1, k2)

)
(6)

where Φx(k1, k2) is calculated by the water pouring algorithm to maximize the capacity C
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[31], and no power is poured to the DC-bin, i.e. Φx(0, 0) = 0, because a constant DC-level

of Pt is added to each frame.

Notice that the expression in (6) for the capacity is only valid under the aforementioned

assumptions of signal-independent, white, Gaussian quantizer error. The larger the total

input signal electrical power, the more likely this assumption is to fail. In Sec. 3.3, we

deduce an upper bound on the total input electrical power and feedback filter energy that

are necessary to ensure the consistency of the system model.

3.3 Linearized Analytical Model

Using the signal-independence and whiteness assumptions of the quantizer error, the variance

σ2
w of the input to the quantizer can be written as

σ2
w = σ2

x + σ2
q Ej, (7)

where σ2
x is the average electrical power of the input SDMT signal as shown in Fig. 1.

The availability of some information about the statistical properties of the input SDMT

signal can further aid the estimation of the quantizer error power σ2
q . The amplitude of DMT

signals is known to closely approximate Gaussian distributed noise [32, Sec. 3.3]. Therefore,

from the Gaussianity assumption of the quantizer error, the input w to the quantizer is

Gaussian distributed as well, and the quantizer error power is given by

σ2
q =

∫ 0

−∞
fw(w)(−1− w)2dw +

∫ ∞

0

fw(w)(1− w)2dw

= 1 + σ2
w − 4σw/

√
2π, (8)

where fw(w) is a zero-mean Gaussian probability density function with variance σ2
w. Solving

(7) and (8) for σw,

σw =
−

√
2/π +

√
2/π + (1/Ej − 1)(1 + σ2

x/Ej)

1/Ej − 1
, (9)
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Therefore, σ2
q can be estimated from knowledge of σ2

x by using (8) and (9). For σw to be

real, the discriminant under the square root in (9) must be positive, and hence, the following

upper bound on σ2
x exists when Ej > 1,

σ2
x ≤ Ej

[
2

π(1− 1/Ej)
− 1

]
. (10)

Since σ2
x ≥ 0, then so too is the right hand side of (10). Hence, we have the following upper

bound on the feedback filter energy Ej

Ej ≤ π

π − 2
≈ 2.75. (11)

That is, for our model to be consistent with the assumptions made, the feedback filter energy

cannot exceed 2.75, and the input electrical power cannot exceed the bound in (10) when

Ej > 1.

4 Example: Pixelated Wireless Optical Channel

In this section, a specific example of a 2D optical communication channel, namely, the pixe-

lated wireless optical channel, is studied. The pixelated wireless optical channel is introduced

in [13, 14], where each transmitter element is assumed to be able to generate 256 intensity

levels. Additionally, the non-negativity constraint of the generated image was not considered

explicitly, rather, amplitudes are clipped to ensure non-negativity. In this section, halftoned

SDMT is applied to the channel measured in [13, 14], and the obtained channel capacity is

compared to the results of [13, 14]. In Sec. 4.1, the channel parameters are defined. The

error diffusion feedback filter is designed in Sec. 4.2, and numerical results and discussion

are presented in Sec. 4.3.
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4.1 Simulation Setup

In Sec. 3.1, it was assumed that the quantizer error is white and signal independent with

variance σ2
q . Similarly, it is assumed in our simulations that the channel noise is white,

Gaussian, and signal independent with variance σ2
z . Therefore the PSD of the effective noise

Z̃ is equal to

Φz̃(k1, k2) =
σ2

z N1N2

|PtH0H(k1, k2)|2 =
N1N2

|ρH(k1, k2)|2 , (12)

where H0 is the DC-gain of the unity DC-gain PSF, H(k1, k2), and

ρ = PtH0/σz. (13)

Substituting from (3) and (12) in (6), the capacity is equal to

C =
1

2

N1−1∑

k1=0

N2−1∑

k2=0

log

(
1 +

Φx(k1, k2)

N1N2σ2
q |1− J(k1, k2)|2 + N1N2/|ρH(k1, k2)|2

)
(14)

Notice that the system is quantization noise-limited if ρ >> 1/σq, and is optical power-

limited if ρ << 1/σq.

In our simulations, we have assumed that both the transmitter and receiver have the

same number of pixels and that spatial synchronization is achieved through appropriate

scaling of the imaging optics [14]. Therefore, the transmitter and receiver have the same

spatial Nyquist region. The transmitted image is required to be in the field-of-view of the

receiver, while strict alignment between the transmitter and receiver is not necessary. The

simulations are done for a square frame N1 = N2 = N , and a unity DC-gain Gaussian PSF,

H(k1, k2) = exp

(
− k2

1

2w2
h1

− k2
2

2w2
h2

)
, (15)

where wh1 and wh2 are measures of the PSF widths. In all simulations, the channel param-

eters are taken from a measured pixelated wireless optical channel [14], and the parameters

are presented in Table 1.
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N wh1 wh2 ρ

154 41.01 41.85 56.05

Table 1: Measured parameters of a pixelated wireless optical channel in [13, 14]. The mea-
sured ρ is a worst case, calculated at the highest noise variance measured in [13, 14].

All the measurements presented in Table 1 were done for a single receiver array with

N = 154 pixels. For a given imager size, increasing the value of N by a factor α implies a

corresponding decrease in the pixel area by a factor α2. This in turn results in (i) decreasing

the DC-gain of the PSF, i.e. H0, by α2, and (ii) decreasing the channel noise power, i.e. σ2
z ,

by α2. This can be attributed to the fact that both the average optical power collected by

the pixel and the pixel noise variance are proportional to the pixel area [33, 34]. Notice that

the PSF in (15) is the product of the transmitter pixel shape, the imaging optics transfer

function, and the receiver pixel shape [14]. In light of (13), ρ decreases by a factor of α, and

the following appropriate scaling of ρ is used during simulations

ρ
N

=
ρ154

α
= ρ154 ×

154

N
, (16)

where ρ
N

is the value of ρ when the imager is N ×N pixels, and ρ154 is the value of ρ when

the imager is 154× 154 pixels, given in Table 1. Notice that the effect of changing the pixel

area on the bandwidth of the PSF is negligible due to the very small pixel size.

4.2 Halftoning Design

In this example, the following form for the error diffusion feedback filter is proposed

j(n1, n2) =


 0 a

a 1− 2a


 ←→ J(k1, k2). (17)

This filter is symmetric, causal, has unity DC-gain, and is among the simplest feedback filters

that can be used for digital halftoning. The short length of the filter makes it faster and less

complex to implement in real time. Another attractive feature is that a single parameter, a,
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indexes the entire family of filters. In this case,

Ej =
∑

|j(n1, n2)|2 = 6a2 − 4a + 1. (18)

Substituting from (18) in the bound (11), a is restricted to the interval

−0.3 < a < 0.968, (19)

in order for our model to be consistent. Higher values of |a| can saturate the binary-level

quantizer and hence affects the stability of the error diffusion system in Fig. 1.

A cross-section for k1 = k2 through the noise power shaping function |1 − J(k1, k2)|2 is

plotted for different values of a in Fig. 2. It is straight forward to show that for a = 1/3, Ej

is minimized. Consequently, a = 1/3 minimizes the total quantization noise power, in (4).

From the figure it is also clear that maximizing a is desirable, within (19), in order to widen

the low quantization noise region around DC. Recall that the goal is to minimize the residual

quantization noise in the spatial frequency bins which carry data rather than minimizing the

total quantization noise power. Thus, a = 1/3 is not necessarily the best choice for J .

As the electrical power σ2
x increases, so too does the dynamic range of the input and the

likelihood of quantizer saturation and system instability. When a > 2/3, Ej > 1 and the

bound in (10) is necessary. In the simulation results that follow, σ2
x = 0.1 is used which

satisfies the upper bound (10) for all values of a considered.

An example of a continuous-tone image is shown in Fig. 3 for N = 512, along with

the corresponding halftoned image and their spectra. The complex data to be transmitted

are loaded to the low frequency bins of the continuous-tone image as implied by the water

pouring allocation. By comparing the spectra in Figs. 3(c) and 3(d), it is evident that the

data can be recovered from the low frequency region of the halftoned binary-level image. A

great majority of the quantization noise power is shaped to the out-of-band region, which is

indicated by the four high power corners of the halftoned image spectrum. In this case, the

system is optical power-limited as the effect of quantization noise is mild, and the shape of
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the in-band power allocation is dominated by the PSF.

A similar example is shown in Fig. 4 for N = 256. In this case, the system is quantization

noise-limited due to the reduced number of out-of-band spatial modes to which quantization

noise can be shaped. As a result, the shape of the in-band power allocation is dominated

by the quantization noise shaping function |1 − J(k1, k2)|2. Qualitatively, data can not be

fully recovered from the low frequency region of the spectrum of the halftoned image because

of the in-band quantization noise. As will be shown in Sec. 4.3, the reduction in capacity

resulting from reducing N from 512 to 256 is nearly 51.7%.

Notice that the capacity of the halftoned SDMT system, or any finite-level SDMT system,

is upper bounded by that of a continuous SDMT transmitter with the same σ2
x neglecting

the non-negativity amplitude constraints. This upper bound is given by (14) with σ2
q = 0.

4.3 Discussion

In this section, the capacity of the halftoned SDMT system is calculated for σ2
x = 0.1 and the

system parameters given in Table 1 by two different procedures: (i) by using our linearized

model to estimate σ2
q , as in (8), and (ii) by simulations, where Φq̃(k1, k2) is estimated by

averaging over 1000 randomly generated frames. Notice that the measured quantization noise

PSD, Φq̃(k1, k2), affects the water pouring bowl which in turn affects the power allocation

over the complex frequency bins which again impacts the quantization noise. As a result, the

iterative scenario shown in Fig. 5 is used during simulations to allow Φq̃(k1, k2) to converge

to the correct value for power allocation.

The results obtained from our linearized analytical model are compared to simulations

in Fig. 6. It is evident that both model and simulations are in close agreement. Notice the

capacity increases with the number of pixels N2. This is due to the fact that the size of

the out-of-band region increases with N , and hence the quantization noise can be shaped

further from the data bearing region as in Figs. 3 and 4. However, the capacity saturates

to a limiting value as N increases. This is due to the fact that, although the number of

channels increases as N2, the signal-to-noise ratio (proportional to ρ2) decreases at the same
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Figure 3: An example continuous-tone image (a), corresponding halftoned image (b), and
their spectra (c), (d) for N = 512, a = 0.9, σ2

x = 0.1, wh1 and wh2 as given in Table 1, and ρ
as given by (16). This is an optical power-limited system.
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Figure 4: An example continuous-tone image (a), corresponding halftoned image (b), and
their spectra (c), (d) for N = 256, a = 0.9, σ2

x = 0.1, wh1 and wh2 as given in Table 1, and ρ
as given by (16). This is a quantization noise-limited system.
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Figure 5: Iterations used in simulations to evaluate Φq̃(k1, k2) and the power allocation.

rate as in (16). Additionally, larger values of a lead to high channel capacities. This is due

to the fact seen in Fig. 2, that larger a allows for lower residual quantization noise in the

band of interest. Notice however, as implied by (10), as a increases, σ2
x must decrease to

ensure stability of the halftoning modulator.

Fig. 6 compares the capacity of the halftoned SDMT system to an upper bound obtained

by employing a continuous unconstrained SDMT transmitter with the same σ2
x. The gap

between the capacities of the binary-level transmission and the continuous-amplitude trans-

mission diminishes as N increases. This gap approaches zero in the limit N → ∞ as the

in-band quantization noise also approaches zero on this limit. Thus, for a given PSF, increas-

ing the number of excess spatial degrees of freedom allows a binary-level SDMT transmitter

to approach the same capacity as the optical power-limited regime.

Fig. 6 also compares the capacity of the halftoned SDMT system to that of the exper-

imental 256-level SDMT system measured in [14] at N = 154. The coded rate achieved

in [14] is also indicated at the same value of N . The binary-level system with a = 0.9

achieves 57.37% of the capacity of the 256-level system for N = 154. Thus, for small N ,

quantization noise-limited channels benefit greatly from multi-level output. The capacity of

the continuous system is an upper bound for both the 256-level and the binary systems. At

higher values of N , the capacity of the binary system approaches the continuous-amplitude

upper bound. For instance, the binary system (a = 0.9) achieves approximately 92.6% of
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Figure 6: Capacity of the pixelated channel versus N = N1 = N2 with σ2
x = 0.1. Results of

the linearized analytical model in Sec. 3.3 are compared to those from simulations, and to
those of a continuous SDMT transmitter without non-negativity constraint. The capacity
estimate (4) and code rate (5) achieved in [14] using 256-level transmitter are also shown
at N = 154.
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the upper bound at N = 512, and nearly 99.8% at N = 1024. This suggests that employing

more than two quantization levels is not necessary as N gets large, because the system is

optical power-limited in this case, and quantization noise is effectively shaped out-of-band.

5 Conclusion

The capacity and data rates of point-to-point 2D optical intensity channels can be signifi-

cantly improved by using spatial degrees of freedom. In this work, we have considered the

design of these channels in which only binary-level optical intensity transmitters are used.

The approach proposed combines spatial discrete multitone modulation with halftoning ideas

from image processing. Using a simple error diffusion filter, we demonstrate that the capac-

ity of the channel using a binary-level transmitter approaches that when using a fictitious

continuous transmitter that is capable of transmitting positive and negative amplitudes. In

practice, the capacities reported here could be approached using spatio-temporal coding of

the data bins, as was done in [14] for a pixelated wireless optical channel. However, our

goal in this work was to demonstrate that the fundamental limits of pixelated channels with

binary-level transmission are significant and merit continued study.

Currently, a prototype binary-level pixelated channel is being constructed by the authors

using a DMD SLM with 1024×768 elements [20] and a mega-pixel CMOS imager. Addition-

ally, reduced complexity coding and decoding techniques for these channels are also being

explored to permit real-time operation. Potential applications of such intensity channels in-

clude holographic storage, page-oriented memories, optical interconnects, 2D barcodes, and

MIMO wireless optical links.
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