A Multilevel Modulation Scheme for High-Speed Wireless Infrared Communications

Steve Hranilovic
David A. Johns

Dept. of Electrical & Computer Engineering
University of Toronto
Toronto, Canada

ISCAS '99 - Orlando, Florida
Tuesday, June 1, 1999
Motivation

- A high data rate, short distance link is required to connect portable devices to:
 - backbone network, data storage, user interface peripherals, other portable devices ...

- Possible Solutions:
 - Mechanical connection
 - RF wireless link
 - Optical wireless link
Why Wireless Infrared?

- Advantages of Wireless IR links:
 - high data rate
 - unregulated bandwidth
 - lower cost
 - flexible interface
 - small form factor

- Constraint:
 - need to use inexpensive optical devices
LED emits incoherent light over a wide spectrum.

Photodiode is linear over a wide input range.
Experimental Link
Experimental Results

- **Results**
 - Bandwidth: 35 MHz
 - SFDR: 20 dB
Channel Constraints

◆ Physical channel constraints:
 • signals must remain non-negative
 • average output signal fixed for eye safety

◆ Practical channel limitations:
 • bandwidth of channel is limited
 – need bandwidth efficient modulation schemes for higher data rate transmission.
Conventional Optical Modulation Techniques

- Schemes based on pulse transmission
 - on-off keying
 - pulse position modulation (PPM)

- Well suited to optical fibre applications.
Pulse Amplitude Modulation (PAM)

- In each symbol interval, pulse assumes one of \(L \) non-negative levels.
 - non-negativity guaranteed.
 - average optical power set by symbol distribution.

![Diagram showing pulse amplitude modulation](image)
Quadrature PAM (QAM)

- Two L-PAM signals on quadrature carriers
 - fixed DC bias added to each symbol to ensure non-negative output
 - average optical power independent of data
Adaptively-Biased QAM (AB-QAM)

- L^2-QAM with square wave carriers
 - adaptive DC bias is added to each symbol to satisfy non-negativity constraint
 - average optical power set by data distribution
Example: 9-AB-QAM

Constellation

Time-Domain

- DC-bias
- In-phase
- Quadrature

- Points: (0.75, -0.75, 1.5), (0, 0.75, 0.75), (0.75, -0.75)

- Time: 0, Ts, 2Ts
AB-QAM Key Points

- Achieves an asymptotic 3dB optical SNR improvement over PAM by:
 - minimizing the amount of bias to optical signal
 - using information in symbol average:
 - SIGNAL SPACE DIVERSITY
Simulation Results

For \(L^2 = 49 \), BW fixed

Optical SNR (dB)

BER

- QAM
- PAM
- AB-QAM

Values:
- \(10^{-20} \)
- \(10^{-15} \)
- \(10^{-10} \)
- \(10^{-5} \)
- \(10^{0} \)

Optical SNR (dB)
Conclusions

- Multilevel modulation schemes are necessary for next generation, short distance, high-speed wireless infrared links.

- AB-QAM provides a 3dB optical SNR gain over PAM, while maintaining the same bandwidth efficiency.