20TH BIENNIAL SYMPOSIUM ON COMMUNICATIONS, QUEEN’S UNIVERISITY, KINGSTON, ON, CANADA, MAY 28-31, 2000. 1

A Signal Space Model for Intensity
Modulated Channels

Steve Hranilovic and Frank R. Kschischang
Department of Electrical and Computer Engineering
University of Toronto
Email: {steve,frank}@comm.utoronto.ca

Abstract— We present a signal space model which incor-
porates explicitly the non-negativity constraint of intensity
modulated channels. A basis function which is constant in
the symbol interval is defined for every intensity signalling
set with the result that coordinate values in this direction
quantify the average optical power of the symbol. Using this
structure, the model defines bounding regions, containing
the set of transmittable signal points, and shaping regions
which select a subset of transmittable points. Constella-
tions can then be formed through the intersection of these
regions with an appropriate lattice. A general expression
for the optical power gain over a baseline is presented and
shown to be separable into terms depending on lattice pack-
ing density and on the geometry of the region. The optimal
shaping region is found to be a region defined by placing
an upper bound on the coordinate values in the basis di-
rection which sets the symbol average optical power. Using
the geometric symmetries which arise from this model, an
expression for the shaping gain using the optimal shaping
region is developed. An asymptotic shaping gain of 1.33 dB
is calculated in the case of an N-fold Cartesian product of
the baseline constellation shaped using the optimal region.
The bounding regions of 3-dimensional QAM, AB-QAM and
PAM intensity signalling schemes are also presented.

I. INTRODUCTION

Currently, two-level (on-off) modulation techniques pre-
vail in optical channels. In order to achieve higher data
rates, wireless optical links have begun to turn towards the
use of bandwidth efficient multilevel modulation schemes.
Indeed, the use of multilevel modulation techniques in fibre
optical channels may be necessary to meet future high data
rate requirements.

Due to the physical constraint that all intensity modu-
lated signals be non-negative, a general signal space model
cannot be applied directly to determine the performance
of modulation schemes. This paper presents a signal space
model particularly suited to the constraints imposed by
the optical intensity physical layer. This model satisfies
intuition about the the design of signal constellations for
the channel and effectively separates optical and electrical
power measures.

Section IT provides a brief introduction to the optical in-
tensity channel and the constraints it imposes on signals
that may be transmitted. A signal space model for the
intensity channel is presented in Section III. Section IV
presents a formal definition for lattice codes in the sig-
nal space model. Using these codes, Section V presents
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Fig. 1. Basic channel structure of an optical intensity channel.

a framework for the comparison of intensity modulation
schemes. Expressions for the gain are given in the gen-
eral case, and for the case of optimal shaping for average
optical power. The asymptotic gain in a specific exam-
ple is computed using the derived expressions. Section VI
presents some examples of modulation schemes in the pro-
posed model. The paper concludes with a brief review and
suggestions for future work.

II. THE OPTICAL INTENSITY CHANNEL

Figure 1 depicts the basic structure of an optical inten-
sity channel. The transmitter constructs signals in the elec-
trical domain which represent the symbol to be transmit-
ted. The signal is converted to optical form, and launched
into a medium, here indicated as a fibre optical cable. Af-
ter propagating through the channel, the signal is received
and converted to electrical form. Detection occurs at the
receiver in the electrical domain.

Technological limitations of the optoelectronics allow for
only the intensity of the optical signal to be modulated
and detected. The phase and amplitude of the underly-
ing optical carrier are not modified directly, but rather the
optical power transmitted is modulated. As a result, the
optical intensity signal transmitted, I(¢), must satisfy the
constraint

(V¢ € R) I(t) > 0. 1)

Since I(t) is an optical power signal, the average optical
power transmitted, P, can be computed as

2)

This is in marked contrast to conventional channels in
which the power transmitted depends on the square of
transmitted signal.
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III. A SIGNAL SPACE MODEL

Let {z1(t), z2(t),...,zm(t)}, t € [0,Ts], be an intensity
signalling set. Define ¢;(t), for ¢ = 1,2,...,. N, N < M
and t € [0,Ts], as a set of real-valued, orthonormal basis
functions such that

N
=3 wibe(t), (3)
k=1

where &; = (2,1, %i2,..., ;) is the vector of coordinates
of z;(t) with respect to the given basis. The constellation
of the intensity signalling scheme can then be written as
the collection of such vectors or Q = {#,%s,...,Zp}-

The non-negativity constraint in (1) implies that z;(t) >
0 for every i. Thus, the average amplitude value of the
signals transmitted is always non-negative. Without loss
of generality, it is possible to set the function

61(t) = \/TI rect({) (4)

1 : 0<t<T,
rect(t) = { 0 otherwise

as a basis function for every intensity modulation scheme.
This basis function contains the average amplitude of each
symbol, and as a result represents the average optical power
of each symbol. Due to the orthogonality of the other basis

functions,
Ts
/ ¢i(t)dt = { VT
o 0

In this manner, the average optical power requirement is
represented in a single dimension. The average optical
power of an intensity signalling set can then be computed
as

where,

?

1=1
1>1

Pz;Ti,1, (5)
"L

where pz, is the probability of transmitting #;. Note that
average optical power of the signalling scheme is not com-
pletely described by the geometry of the constellation but
also depends on the symbol period. This is due to the fact
that the in (4), ¢1(t) is set to have unit electrical energy.
As a result, the average amplitude and hence average opti-
cal power depends on the signalling interval. This scaling
is appropriate since detection of the signal is performed in
electrical domain where the orthonormal basis defined is
appropriate. Section V discusses the implications of this
dependence.

IV. DEFINITION OF LATTICE CODES

We define the bounding region of the modulation scheme
as the set of all points in the signal space which describe
pulses satisfying (1), or formally

T= {('Ul,'UQ,...,UN) eRN: (\7’t S ]R),Z’Ut(bz(t) > 0} .

i=1

It is clear that 0 € Y and that the set is determined solely
by the choice of basis functions for the signal space. This
set is convex since for bl, by € T, aby + (1- a)bz e T, for
0 < a <1, describes a non-negative signal.

Additionally, the bounding region exhibits a great deal
of structure when observed from points of equal average
optical power. Define the set,

TT = {(’Ul,’Uz,...,

as the set of all signal points which require a fixed aver-
age optical power of r/y/T;. Take two such sets, T, and
T, for u,v > 0 and K = v/u. The set KT, is a set of
pulses with average optical power v//T;, so KT, C T,.
Similarly, K'Y, C Y, which implies that Y, C KY,.
Therefore, T, = KY,. This implies that the Y, are di-
rectly similar regions with dimensions which scale linearly
as the coordinate value in the ¢; dimension. Therefore it
is only necessary to look at a single Y,. to characterise the
entire set.

The bounding region is unbounded in the ¢; direction,
since by adding arbitrary average optical power any coor-
dinate value in the other N — 1 dimensions is allowed. In
other words, Y is a generalised cone. By definition, a fi-
nite region O is formed through the intersection of Y with
a shaping region denoted ¥. The set ¥ is independent of
the basis functions or actual shape of Y, so long as the
resulting O is a finite region.

An N-dimensional constellation, or lattice code, can be
constructed through the intersection of an N-dimensional
lattice and the finite region ©. Thus, the constellation
under consideration can be formed as

QA T, %) = ANTNT
ANe.

uN) €Y v =r,r e RT}

V. SHAPING AND CODING GAIN
A. Constellation Figure of Merit, Gain

In conventional channels, the constellation figure of merit
(CFM) is a popular measure of the energy efficiency of a
signalling scheme [1]. An analogous measure for optical
intensity channels which quantifies the optical power effi-
ciency of the scheme is [2, 3]

dmin(Q)

CFM(9) = —575 Q) (6)

where dmin () is the minimum Euclidean distance between
constellation points and P(fQ) is the average optical power.
The CFM in (6) is invariant to scaling of the constellation,
however, it is not unitless since the average symbol ampli-
tude (i.e., P) depends on Ty while dy;, is independent of
the symbol interval.

The CFM can be used to determine the optical power
gain of one scheme versus another. Consider two optical
intensity constellations, ; and Q5, which transmit on an
additive white Gaussian noise channel !. The probability

IThe noise distribution approaches a Gaussian distribution in the

case of high intensity optical transmission. This case is almost always
true for wireless optical networks, for example.
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of a symbol error can be approximated by the relation

Pe,i ~ NZQ(CFM, . P,/QU)
where o2 is the variance of the noise source, P; is the
average optical power of ;, N; is the error coefficient,
CFM; is the constellation figure of merit for 2; and

Q() 2 (1/v2r) [ exp(—u?/2)du. Further, assume that
the schemes are operating at the same symbol error rate.
If Pe_,i1 is the P/o required to achieve a symbol error rate
of p, then the optical power gain (G,) of ; with respect
to €5 is given by the ratio of Py/P; or

GP = Pe_,21 Pe_,ll
= (CFM,)/(CFMy) x [Q ™' (p/N2)/Q ™' (p/N1)]-

The asymptotic optical power gain of 21 over 5, as p — 0,
can be shown to be [4],

p—0

which is independent of the error coefficients.

In order to have a fair comparison, the spectral proper-
ties of the two schemes in question must also be taken into
account. Define the bandwidth efficiency, n, of a modula-
tion scheme as

UZW

where R is the bit rate in bits/second and W is the frac-
tional power bandwidth of the power spectrum in Hertz.
The fraction of in-band to out-of-band power can be
thought of as determining the amount of distortion intro-
duced by a bandlimited channel. If we let Kk = TsW, where
T, is the symbol period and k is a constant for the given
pulse shapes used, the bandwidth efficiency takes the form

_ log, |2
K

(7)

which is independent of T. Since the average optical power
in (5) depends directly on the symbol interval, fixing band-
width efficiencies of the two schemes is not sufficient to en-
sure a fair comparison. Rather, W and R are set to be
identical in both schemes under comparison.

B. Baseline Constellation

Define Qg = {0, dmin, 2dmin, - --, (M — 1)dmin} as the
baseline constellation with basis function ¢ (t) as defined
in (4). This is commonly referred to as a PAM (pulse-
amplitude modulated) constellation. The baseline CFM is

thus
2

FMg = ——/Tho,
CfMo =1 =1V e

where Tyq is the symbol time defined for the baseline con-
stellation.

In N dimensions, the constellation Qg is formed through
the N-fold Cartesian product of Qg with itself. The in-
crease in the number of dimensions does not vary the
minimum distance properties of the constellation, so,

dmin(Qg ) = dmin(Qg). Since the distribution of ampli-
tude values in each component of the N-dimensional con-
stellation is identical to the 1-D case and the bandwidth
of the two cases is identical, P(Q}) = P(Qg). Hence,
CFM(Q%) = CFM(Qg), and there is no asymptotic opti-
cal power gain.

The asymptotic optical power gain of other schemes over
this baseline can then be computed as
CFM(Q)

CFMg,
|Q®| 1 dmin (Q)

2 JTe P(O)

assuming |Qg| is large so that (|Qg| — 1) = |Qg|. For cor-
rect comparison as is Section V-A, we define kg = TsqWe.

GOQ) =

(8)

C. Optical Power Gain

Insight into the factors which govern the gain in (8) can
be achieved through the application of the continuous ap-
prozimation. This approximation allows for the replace-
ment of discrete sums of a a function evaluated at every
Z € Q by a normalised integral of the function over the
region © [4]. This permits (8) to be re-cast in terms of the
lattice properties and the region geometry.

Using this approximation, the average optical power in
(5) for the case of equiprobable signalling is a function of
the region © and takes the form

11 B
P(O) ~ / T @ )

where V(-) evaluates to the volume of the region. Simi-
larly, || can be approximated by summing the constant 1
at each constellation point which through the continuous
approximation gives

V(0)

V(A)

Substituting these approximations, along with the fact

that dpin(Q) = dpin (A), into (8) yields

(10)

where P'(0©) = /T;P(0). Say k = T;W for the modula-
tion scheme under consideration. Since the bandwidth ef-
ficiency is the same between the schemes, from (7), |Qg| =
|Q# where v = k/kg. Similarly, since the bandwidth is
also set to be the same between schemes, Ts/Tsq = v.
Applying these facts and re-arranging (10) gives a general
expression for power gain

dmin(A) V7V (Y, ¥)v
V(A 2 P(T,9)°
—_— —

G(2(A, T, ¥)) ~ (11)

Ye (A) Vs (T,\Il)

The coding gain, v.(A), is a function of the lattice used.
This term is a measure of the packing density of the lattice.
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The shaping gain, vs(T,¥) is a measure of the gain in
optical power of implementing a constellation of shape ©
with respect to the baseline constellation geometry.

D. Specific Bound on Shaping Gain

The coding gain is determined by the choice of lattice.
High density lattices are known which provide good cod-
ing gain as dimension increases, at the penalty of higher
implementation cost.

Shaping gain is determined by the choice of bounding
region (i.e., basis functions) and the shaping region. For
a given Y, the optimum shaping region which maximises
shaping gain is

\IJOPt = {(¢17¢2>- . 7¢N) € RN :0< wl < ¢1max}- (12)

This assertion can be justified by noting that all points with
equal components in the ¢; dimension, have the same aver-
age optical power. For a given volume and Y, the optimal
shaping region can be formed by successively connecting
points of the smallest possible average optical energy un-
til the volume is achieved. Clearly, the region in (12) will
result.

Suppose that we form the region ©@ = T N Yy, It is
possible to exploit the symmetries of T to determine ex-
pressions for V (T, ¥,pe) and P(T, ¥ope) in (11). In Section
IV, it was shown that the Y, are directly similar and scale
linearly in 7. As aresult, the volume of each of the Y, must
scale as rV 1 for an N dimensional signal space. Formally,

V(Y,) =V (¥)rN ! (13)
where V(Y1) is the volume of the set of points Y;. The
volume of T N ¥4y can then be computed simply as

f01/11max V('rr)dr which evaluates to

1

V(T: ‘I’Opt) = NV(Tl)w{Ynax'

(14)

Exploiting the symmetry of the region in the ¢; dimen-
sion, the average optical power expression in (9) can be
computed as an integral over the ¢, direction only. Noting
that dV (Y, ®¥opt) = dV (Y, )dr and substituting (13) and
(14) into (9) gives

Vimex ] N
r
0 \/st V(Tl )¢{¥nax

which simplifies to

P(Y, W) = (V(X)rNDdr

1 N

P(Y,Typy) = ————
(7 opt) \/TSN'{'l

"plmax- (15)
The expression for the shaping gain in the case of general
bounding region Y and optimal shaping region W,p (for
power efficiency) is computed by substituting (14) and (15)
into (11) to yield
N—l/)
1max

N

75(T7 lIlopt) = V(Tl) (16)

N ((N 1)
2\ NvH

The asymptotic gain as N — oo can be determined in
the specific case where the basis functions are chosen to
correspond to an N-fold Cartesian product of the baseline
case in Section V-B. Denote the resulting N-dimensional
bounding region as Tg and the set Tqg as the (N — 1)-
dimensional set of all signals with average amplitude value
1/4/NTsg. It is helpful to consider the coordinate values
of each of the N constituent constellations to determine the
form of YTi4. Due to the average amplitude requirement,
the largest amplitude value for any of the N constituent
symbols is \/N/Tsq. Let the vectors ¥;, i+ = 1,2,..., N,
be the N points in Y1 at which this maximum occurs
corresponding to the case when a single sub-constellation
has a non-zero amplitude value. It is clear that ||7; —@;||> =
2N for every i # j. Define the set A as a regular (N — 1)-
simplex with IV vertices ¥, or formally

A=
N N
{66RN 8= i,y ai=la; € [0,1]}.
=1 =1

From the definitions of _{1} and A, the average amplitude of
signal represented by ad € Ais1/4/NT,q. Therefore, A C
Y1g. The set of U; vectors is orthogonal since each attains
the maximum amplitude in a dis}éfoint time interval. So, it is
possible to write v € T1g as ) ;_; ;¥; for some §; € [0,1].
Since the average amplitude value of signal represented by
v is 1/4/NTsg, the relation simplifies to Zf\;1 Bi = 1 which
implies T1g C A. Therefore, T;g is a regular (N — 1)-
simplex, with sides of length v/2N. The volume of such a
region can be computed using symmetry arguments similar
to those in used in (14) to yield the expression,

N%
V(Tig) = —.
Noting that in the case of constellations formed from con-
stituent 1-D baseline constellations ¥ = N and substituting
into (16) gives the result,

1
1 /(N+1)V\Y
Ys(Ye; Yopt) = 3 (T) .
Using Stirling’s approximation, N! ~ (N/e)" for large N,
the asymptotic gain is found as
. e
Am vs(Te, Topt) = 5

This corresponds to the result reported in [3] which was
calculated for this one specific case from purely geometrical
considerations.

VI. EXAMPLE BOUNDING REGIONS

Figure 2 illustrates examples of two dimensional Y re-
gions for three intensity modulated signalling schemes.

The use of QAM signalling in optical systems is quite
rare, but it is included here for comparison purposes. The
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Fig. 2. Example cross-sections of bounding regions, Y1, for (a) QAM,
(b) AB-QAM (c) Q2 .

basis functions used in the example are

d2(t) = \/Tzcos(Zwt/Ts)
p3(t) = \/Tzsin(%t/Ts)_

The boundary of Y is circular as expected, since all QAM
signals with the same peak values have the same electrical
energy.

Adaptively-Biased QAM (AB-QAM) is a signalling
scheme originally envisioned for wireless optical commu-
nications [5, 2]. The basis functions for this scheme are
chosen to correspond to binary level waveforms where sign
changes occur according to a subset of the rows of a
Hadamard matrix. It is possible to show that this pulse
set maximises the set of allowed coordinate values in the
¢; direction (¢ > 1) for functions that have the same val-
ues for positive and negative extrema. The basis functions
used in the example in Figure 2 are

1 2
(bQ(t) = \/—T_Srect(t/Ts) — \/—T_s I'eCt(2t/Ts — ].)
1 2
¢3(t) = \/—T_Srect(t/Ts) — \/—T_s I'eCt(2t/Ts — 1/2)

Figure 2 also shows the region Y, for the case of N = 3.
The basis functions used for the example are

$2(t) = \/Tzsrect(t/Ts) - \/STS rect (375/1;73_1>
0 = 2; rect(3t/Ts —1) — \/g rect(3¢/T, — 2).

The region corresponds to a 2-D simplex (i.e., an equi-
lateral triangle) with sides of length /6, as discussed in
Section V-D.

VII. CONCLUSIONS

This paper has illustrated a modification to the tradi-
tional signal space model to incorporate the non-negativity
constraint of intensity modulated channels. The average
optical power per symbol is represented in one dimension
which allows for a geometric representation of the channel
constraints in the signal space model. The definition of a
bounding region, which arises due to the structure of the
basis functions, and a shaping region allows for the defi-
nition of a subset of points in the signal space in which
transmittable signals are possible. Constellations can then
be constructed by the appropriate distribution of points
within the defined regions.

The geometry of bounding regions was discussed and the
optimum shaping region was also presented. General ex-
pressions for the gain over a baseline constellation were
given, and shown to have separable coding and shaping
gains. An expression for the shaping gain arising from a
general bounding region and ¥,,; was presented, and the
asymptotic gain was calculated for the case of an optimally
shaped, N-fold Cartesian product of the baseline model.
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