COMP ENG 4TL4 – Digital Signal Processing

Homework Assignment #2

Submission deadline: 12 noon on Friday, October 17, 2003, in the designated drop box in CRL-101B (the CRL photocopying room).

1. The impulse response of an LTI system is shown in Fig. 1 below. Determine and carefully sketch the response of this system to the input x[n] = u[n-4]. (10 pts)

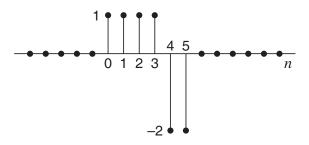


Figure 1: Impulse response h[n] for Problem #1.

- 2. Consider the composite system shown in Fig. 2 below.
 - a. Find the impulse response h[n] of the overall system.
 - b. Find the frequency response of the overall system. (Note: Tables of Fourier transform properties and Fourier transform pairs are given on the last page.)
 - c. Specify a difference equation that relates the output y[n] to the input x[n].
 - d. Is this system causal? Under what conditions would the system be stable? (40 pts)

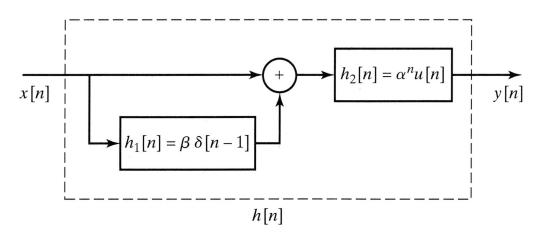


Figure 2: Composite system for Problem #2.

Continued on the next page!

- 3. A discrete-time sequence x[n] has the Fourier transform $X(e^{j\omega})$ shown below in Fig. 3.
 - a. If x[n] is downsampled by a factor M = 3 to produce the sequence $x_d[n]$, sketch and label (with specific frequencies, amplitudes, etc.) the Fourier transform of the downsampled sequence $X_d(e^{j\omega})$ if $\omega_H = \pi/2$.
 - b. What is the maximum value of ω_H that will avoid aliasing if M = 4? (20 pts)

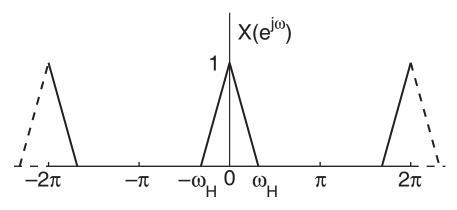


Figure 3: DTFT $X(e^{j\omega})$ for Problem #3.

- 4. A discrete-time speech waveform originally sampled at 16 kHz is to be added to a music track sampled at 44.1 kHz. The resampling system shown in Fig. 4 below is to be used to upsample the discrete-time speech sequence to 44.1 kHz.
 - a. What are the minimum values of L and M that can be used, under the constraint that they are both integers?
 - b. What gain and cutoff frequency are required for the discrete-time lowpass filter? (10 pts)

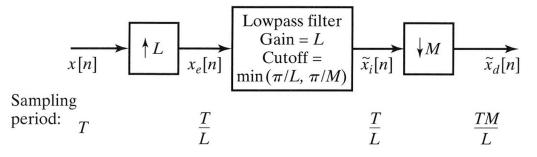


Figure 4: Resampling system for Problem #4.

5. An LTI system has the impulse response $h[n] = 4(-1/3)^n u[n]$. Use the Fourier transform to find the output of this system when the input is $x[n] = (1/2)^n u[n]$. (Note: Tables of Fourier transform properties and Fourier transform pairs are given on the last page.) (20 pts)

Continued on the next page!

Sequence x[n] y[n]	Fourier Transform $X(e^{j\omega})$ $Y(e^{j\omega})$
$1. \ ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. $nx[n]$	$j \frac{dX(e^{j\omega})}{d\omega}$
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$rac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j heta})Y(e^{j(\omega- heta)})d heta$
Parseval's theorem:	
8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

TABLE 2.2FOURIER TRANSFORM THEOREMS

TABLE 2.3FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. δ[n]	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1-ae^{-j\omega}}$
5. <i>u</i> [<i>n</i>]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^nu[n]$ ($ a < 1$)	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = egin{cases} 1, & \omega < \omega_c, \ 0, & \omega_c < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\omega} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$