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3.3 More on Sampling Theory
Relating the DTFT to the CTFT:

Recall from Lecture #2 that the impulse-train approximation 
xs(t) of a sampled continuous-time signal xc(t) has the 
Fourier transform:

where T is the sampling period, Ω is the continuous-time 
frequency in radians/s, and Ωs (= 2πfs) is the angular 
sampling frequency in radians/s.

Consequently, Xs(jΩ) consists of copies of Xc(jΩ) scaled by 
1/T and shifted by kΩs.



3

Recall from the derivation of the DTFT in Lecture #8:

It follows that:



4

Consequently:

or equivalently:

From these equations we can see that the DTFT X(ejω) is 
simply a frequency-scaled version of Xs(jΩ), with the 
frequency scaling specified by ω = ΩT.

This scaling can alternatively be viewed as a normalization of 
the frequency axis so that Ω = Ωs in Xs(jΩ) is normalized to 
ω = 2π radians in X(ejω).
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Resampling of discrete-time sequences:

Consider a discrete-time sequence x[n] obtained by sampling 
a continuous time sequence xc(t) with sampling period T, i.e.:

It is often necessary to change the sampling rate of a 
discrete-time signal, such that:

where T 0 ≠ T.
One approach: reconstruct the continuous-time signal and 
resample it with period T 0.
Problem: nonideal reconstruction filters, D/A converters and 
A/D converters.
Thus: need methods of changing the sampling rate that 
involve only discrete-time operations.
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Sampling rate reduction by an integer factor:

To avoid aliasing, the signal x[n] should be bandlimited to
ΩN < π/T radians/s (≡ ωN < π radians) ⇒

For the decimated signal, an M-times lower cutoff frequency 
Ωd,N < π/MT radians/s (≡ ωd,N < π/M radians) is required.
That is, aliasing can be avoided if:
– the original sampling rate was ≥M times the Nyquist rate, or
– the bandwidth of the sequence is reduced by a factor of M by a 

discrete-time filter before downsampling.

(Opppenheim
and Schafer)
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The DTFT of xd[n] = x[nM] = xc(nT
0) is:

Since T 0 = MT :

That is:
– X(ejω) consists of copies of Xc(jΩ) scaled by 1/T, and frequency 

scaled by 1/T and shifted by 2πk, and
– Xd(e

jω) consists of copies of X(ejω) scaled by 1/M, and frequency 
scaled by 1/M and shifted by 2πi.
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Downsampling example #1: (M = 2)

(Opppenheim
and Schafer)



9

Downsampling example #2: (M = 3)

(Opppenheim
and Schafer)



10

Increasing the sampling rate by an integer factor:

where n = 0, ±L, ±2L,…

or equivalently:

(Opppenheim
and Schafer)
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Viewing the upsampling operation in the frequency domain:

we observe that the Fourier transform at the output of the 
expander is a frequency-scaled version of the input, i.e., ω is 
replaced by ωL so that ω is now normalized by ω = ΩT 0.
As illustrated on the next slide, Xi(e

jω) can be obtained from 
Xe(e

jω) by correcting the amplitude scale from 1/T to 1/T 0

and by removing all the frequency-scaled images of Xc(jΩ)
except at integer multiples of 2π, via a discrete-time lowpass
filter.
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Upsampling example: (L = 2)

(Opppenheim
and Schafer)
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As was the case for the lowpass reconstruction filter in D/A 
conversion, this discrete-time lowpass filter can be viewed as 
an interpolator in the time domain, with the impulse response:

In practice, an ideal lowpass filter cannot be implemented 
exactly, but very good approximations can be designed.
In some cases, very simple interpolation processes are 
adequate, such as linear interpolation, which has the impulse 
response:

Linear interpolation is illustrated on the next slide.
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Linear interpolation example: (L = 5)

(Opppenheim
and Schafer)
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Changing the sampling rate by a noninteger factor:

It is possible to combine decimation and interpolation to 
change the sampling rate by a noninteger, rational factor 
L/M.

For example, if L = 101 and M = 100, then the sampling rate 
will be increased by a factor of 1.01.

(Opppenheim
and Schafer)
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