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4.6 Analysis of LTI Systems using
z-Transforms

From the convolution property:

Interpretation of the transfer function:

LTI systemzn H(z)zn
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Properties of LTI systems according to ROCs:

Property 1: A discrete-time LTI system is causal iff the ROC 
of its transfer function H(z) is the exterior of a circle including 
infinity.

Proof: Follows from properties 4 and 5 of ROCs, since a 
causal h[n] must be a finite-sequence (FIR) or right-sided 
sequence (IIR) with N1 ≥ 0.

Property 2: A discrete-time LTI system is stable iff the ROC 
of its transfer function H(z) includes the unit circle |z| = 1.

Proof: Follows from property 2 of ROCs, since a stable LTI 
system will have an impulse response that is absolutely 
summable and consequently the DTFT of the impulse 
response must exist.
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Consequences of properties 1 and 2:

– An FIR linear time-invariant system is inherently stable, 
because finite-sequences always include the unit circle –
see property 4 of ROCs.

– The stability of an IIR linear time-invariant system is 
dependent on the position of its poles on the z-plane and 
the “sided-ness” of the impulse response:

– If the impulse response is right-sided then all the system poles 
must be inside the unit circle – see property 5 of ROCs.

– If the impulse response is left-sided then all the system poles
must be outside the unit circle – see property 6 of ROCs.

– If the impulse response is two-sided then there must be at least 
one system pole on each side of the unit circle – see property 7 of 
ROCs.
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Example: IIR, causal LTI system:
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Application of z-transforms to LCCD equations:

Laplace transforms have the remarkable property of 
converting continuous-time differential equations to algebraic 
equations.  For example:

assuming zero initial conditions.

From this equation we can easily obtain the system’s transfer 
function:
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Question: The corresponding equations for discrete-time 
systems are the LCCD equations and the corresponding 
transform is the z-transform.  What does the z-transform of an 
LCCD equation look like?

Example:

Using the time-shifting property of the z-transform gives:

The LCCD equation has been converted into an algebraic 
equation, from which we can easily obtain the system’s 
transfer function:



8

Recall the LCCD equation for ARMA processes:

Taking the z-transforms of both sides of the ARMA equation:

and using the time-shifting property, we obtain:
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Hence, the transfer function of an ARMA process is:

This equation is referred to as a rational system function.  
Such systems can be viewed as  the cascade of two systems 
with the transfer functions B(z) and 1/A(z), respectively.

B(z) 1__
A(z)

X(z) Y(z)
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The roots of B(z) and A(z) determine the system zeros  and 
poles.  An alternative formulation of the transfer function in 
terms of the zeros and poles is:

Note:
– Each factor (1 − c[k]) in the numerator contributes an explicit zero at z
= c[k] and an implicit pole at z = 0.

– Each factor (1 − d[k]) in the denominator contributes an explicit pole at 
z = d[k] and an implicit zero at z = 0.

– If M = N, then the implicit zeros and poles at z = 0 all cancel.  If M ≠
N, then some implicit zeros or poles at z = 0 will remain uncancelled.

– If some a[k] or b[k] = 0, then some implicit zeros or poles may exist
at z =∞.
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