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Types of causal FIR (generalized) linear-phase filters:

Type I: Symmetric impulse response:

with order M an even integer
(h[n] has length M+1, an odd integer) ⇒
delay α = M/2 is an integer, and β = 0 or π.
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Type II: Symmetric impulse response:

with order M an odd integer
(h[n] has length M+1, an even integer) ⇒
delay α = M/2 is an integer + 1/2, and β = 0 or π.
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Type III: Antisymmetric impulse response:

with order M an even integer
(h[n] has length M+1, an odd integer) ⇒
delay α = M/2 is an integer, and β = π/2 or 3π/2.
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Type IV: Antisymmetric impulse response:

with order M an odd integer
(h[n] has length M+1, an even integer) ⇒
delay α = M/2 is an integer + 1/2, and β = π/2 or 
3π/2.
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Location of zeros for FIR linear-phase filters:

Types I & II: (Symmetric impulse responses)

Evaluating H(z) at z = −1 gives:
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If M is even, then we have the simple identity:

but if M is odd, then we have:

so H(−1) must be zero.

That is, for odd M a type I or II FIR filter must have a zero at z
= −1.  Remembering that the DTFT is the z-transform 
evaluated on the unit circle, the magnitude response at z = 
−1 (→ ω = π) is zero.

Consequently, it is impossible to approximate a highpass filter 
using a symmetric FIR filter with odd order M—an even order 
M must be used in this case.
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Types III & IV: (Antisymmetric impulse responses)

Evaluating H(z) at z = 1 gives:

Consequently, H(z) must have a zero at z = 1 (→ ω = 0) for 
both even and odd M⇒

A type III or IV antisymmetric filter cannot be lowpass, 
irrespective of the order M.
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Evaluating H(z) at z = −1 gives:

If M is odd ⇒M+1 is even, so again we have the simple 
identity:

but if M is even ⇒M+1 is odd and:

so H(−1) must be zero.

Consequently, a type III or IV antisymmetric FIR filter with 
even order M cannot be highpass.
These constraints on the zeros are important in designing FIR 
linear-phase systems since they impose limitations on the 
types of frequency responses that can be achieved!
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6.5 All-Pass Systems
Consider a stable system function of the form:

Note that this system has a pole at z = a and a zero z = 1/a*.

The frequency response of this system is:

The term e−jω has unity magnitude, and the numerator and 
denominator factors are complex conjugates of each other 
and thus have the same magnitude ⇒ |Hap(e

jω)| = 1.

Such systems with a constant magnitude frequency response
are called all-pass systems.
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First-order all-pass filter with a = 0.75ejπ/4:
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General form of all-pass filters with real-valued impulse 
responses:

where A is a positive constant, the d[k]s are the real poles, 
and the e[k]s are the complex poles (which much come in  
complex conjugate pairs for a real-valued impulse response).

For causal and stable all-pass systems, |d[k]| < 1 and |e[k]| <
1 for all k.  That is, all the poles must fall within the unit circle, 
and all the zeros are the reciprocal complex conjugates of the 
poles and thus fall outside the unit circle.
– All-pole filters have a number of applications, including compensation

for phase (or group delay) distortion.

– They are also useful in the theory of minimum-phase systems.
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6.6 Minimum-Phase Systems
A causal and stable system H(z) is considered to be 
minimum-phase if its inverse 1/H(z) is also causal and 
stable.

For this to be true all of the system zeros as well as the poles 
must lie within the unit circle.

Any rational system function can be expressed as:

where Hmin(z) is a minimum-phase system and Hap(z) is an 
all-pass system.  This is referred to as minimum-phase and 
all-pass decomposition.
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Hmin(z) contains the poles and zeros of H(z) that lie inside 
the unit circle, plus zeros that are conjugate reciprocals of the 
zeros of H(z) that lie outside the unit circle.
Hap(z) comprises all the zeros of H(z) that lie outside the unit 
circle, plus poles to cancel out the reflected conjugate 
reciprocal zeros in Hmin(z).
Consequently, a nonminimum-phase system can be created 
out of a minimum-phase system by reflecting one or more 
zeros inside the unit circle to their conjugate reciprocal 
locations outside the unit circle.
Conversely, a minimum-phase system can be created out of 
a nonminimum-phase system by reflecting all the zeros lying 
outside the unit circle to their conjugate reciprocal locations 
inside.
Both of these operations can be performed without changing 
the system’s magnitude frequency response!
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Note:

– Minimum-phase systems are useful for compensating for 
frequency-response magnitude distortions.  If we follow a 
filter with the transfer function H(z) by a filter with the 
transfer function 1/Hmin(z), then the overall transfer 
function is:

leaving only the phase distortion given by Hap(z).

– The name “minimum-phase” arises from the property that 
∠H(z) = ∠Hmin(z) + ∠Hap(z).  All-pass filters always have 
positive phase delay, so the phase delay of H(z) is always 
greater than that of Hmin(z) ⇒ Hmin(z) has the minimum 
possible phase delay for a system with the frequency 
response |Hmin(e

jω)|.
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