
COMP ENG 4TL4:

Digital Signal Processing

Notes for Lecture #27
Tuesday, November 11, 2003



2

6. SPECTRAL ANALYSIS
AND ESTIMATION

6.1 Introduction to Spectral Analysis
and Estimation

The discrete-time Fourier transform (DTFT) decomposes 
infinite discrete-time signals into infinite-duration complex 
exponentials with infinite frequency resolution.

In Lecture #15 we saw that if we limit the duration of discrete-
time sequences by windowing, we limit the effective 
frequency resolution of the DTFT, and consequently of the 
discrete Fourier transform (DFT).
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Question: Should our aim then always be to use the longest 
window length that is computationally feasible when 
analyzing the spectrum of a signal with the DFT?

Answer: No!  Two important cases in which we may wish to 
use shorter window lengths are:

1. spectral analysis of time-varying signals (e.g., speech), 
and

2. spectral estimation of stationary random signals.

The reason for the former should be self evident (see the next 
slide); the reason for the latter will become apparent later.
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Long-term spectra of two different sentences:
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6.2 Spectral Analysis of Time-Varying Signals
Short-Time Fourier Transform (STFT):

The STFT (sometimes referred to as the time-dependent
Fourier transform) of a signal x[n] is defined as:

where w[n] is a window sequence of length L.
– Note that a one-dimensional sequence x[n] is transformed into a two 

dimensional function of the time variable n, which is discrete, and the 
frequency variable ω, which is continuous.

– Like in the DTFT, the frequency variable ω is periodic with 2π, so we 
need only consider values of ω for 0 · ω < 2π.

– The STFT can be interpreted as the DTFT of  the shifted signal 
x[n+m] as it moves past the stationary window w[m].
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Example: Consider the discrete-time signal:

referred to as a linear chirp.
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STFT magnitude of the linear chirp signal:

STFT magnitude with Hamming window of length 400 samples
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DTFT of the whole chirp signal:
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The inverse STFT is given by:

if w[0] ≠ 0.

Note that if we sample X[n,ω) at N equally spaced 
frequencies ωk = 2πk/N, with N ≥ L, then we can still 
recover the original sequence x[n].

This gives us the discrete STFT:

which is the DFT of the windowed sequence x[n+m]w[m].
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It is also unnecessary to evaluate the STFT or discrete STFT 
at every time sample n; we can still reconstruct the original 
sequence if X[n,ω) or X[n,k] is sampled every R time 
samples:

where r and k are integers such that −∞ < r <∞ and 0 · k
· N−1, if N ≥ L ≥ R.

The condition R · L ensures that all samples x[n] are 
included in the discrete STFT for some r.  If R = L, then the 
signal will be broken up into non-overlapping contiguous 
frames indexed by r.  If R < L, then the frames will overlap.
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Region of support for X[n,ω) (top panel) and grid of sampling 
points (bottom panel) for X[rR,k] with N = 10 and R = 3:
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Discrete STFT Analysis of Speech Signals:

Speech is produced by excitation of the vocal tract, which 
extends from the glottis in the larynx to the lips.

One way of classifying speech sounds is according to the 
excitation source:
– Voiced sounds (e.g., a, e, i, o, u, m, n) are produced by 

quasi-periodic pulsing of the glottis.
– Fricative sounds (e.g., f, s, sh, ch) are produced by noise-

like turbulence created at a constriction of the vocal tract.
– Plosive sounds (e.g., p, k, t) are produced by completing 

closing the vocal tract to build up air pressure behind the 
closure, and then abruptly releasing the pressure to 
generate a single impulse-like airflow.

It is also possible to combine voicing with the other two sound sources ⇒
voiced fricatives (e.g, v, z) and voiced plosives (e.g., b, g, d).
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Conceptual model of speech production:

(Quatieri)
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Examples of speech sounds with different excitation sources:

(Quatieri)
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With a constant vocal tract shape, speech can be modeled as 
the response of an LTI filter (the vocal tract) to one of the 
particular excitation sources.

In natural speech, the vocal tract changes shape relatively 
slowly over time as the throat, tongue and lips perform the 
gestures of speech, and consequently it can be viewed as a 
slowly time-varying filter that imposes its frequency response 
properties on the spectrum of the excitation source.

The spectrogram, a graphical display of the magnitude of the 
time-varying discrete STFT, is given by:

or
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The wideband spectrogram has a “short” window with a 
duration less than one pitch period of voiced speech
(i.e., < 10 ms for male speakers).  Consequently, it has very 
good temporal resolution, such that the temporal dynamics of 
short speech sounds (e.g., unvoiced plosives) are well 
defined, but poor frequency resolution, such that the 
harmonics in voiced sounds are unresolved.  However, the 
periodicity in voicing appears as vertical striations and the 
vocal tract resonances (formants) appear as greater-
magnitude (e.g., darker) regions on the spectrogram.

The narrowband spectrogram has a “long” window with a 
duration of several pitch periods of voiced speech
(typically 20–40 ms).  Consequently, it has very good 
frequency resolution, such that the harmonics in voiced 
sounds are resolved and appear as horizontal striations in the 
spectrogram, but poor temporal resolution, such that the 
spectra of transient speech sounds are smeared over time.
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Formation of the narrowband and wideband spectrograms:

(Quatieri)
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Example:
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"How do we define it?"
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