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1.4 Quantization

Digital systems can only represent sample amplitudes with
a finite set of prescribed values, and thus it is necessary for
A/D converters to quantize the values of the samples x|n|.

A typical form of quantization uses uniform quantization
steps, where the input voltage is either rounded or

truncated.
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Figure 3.20 Quantization in analog-to-digital converter: (a) rounding; (b) truncation. Staircase (Porat)
lines show the actual responses; dashed lines show the ideal responses.



A 3-bit rounding uniform quantizer with quantization steps
of A is shown below.
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Figure 4.48 Typical quantizer for A/D conversion.

and Schafer)



Two forms of quantization error e|n| exist:

1. Quantization noise: due to rounding or truncation over
the range of quantizer outputs; and

2. Saturation (“peak clipping”): due to the input exceeding
the maximum or minimum quantizer output.

Both types of error are illustrated for the case of a
sinusoidal signal in the figure on the next slide.

Quantization noise can be minimized by choosing a
sufficiently small quantization step. We will derive a
method for quantifying how small is “sufficient”.

Saturation can be avoided by carefully matching the full-
scale range of an A/D converter to anticipated input signal
amplitude ranges.
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Figure 4.51 Example of quantization noise. (2) Unquantized samples of the signal O hei
x[n] = 0.99cos(n/10). (b) Quantized samples of the cosine waveform in part ( ppenneim
(a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of

the signal in (a). (d) Quantization error sequence for 8-bit quantization of the and Schafer)
signal in (a).



For rounding uniform quantizers, the amplitude of the
quantization noise is in the range —A/2 < e[n] < A/2.

For small A it is reasonable to assume that e|n| is a random
variable uniformly distributed over (—A/2, A/2].

For fairly complicated signals, it is reasonable to assume
that successive quantization noise values are uncorrelated
and that e|n] is uncorrelated with x|n].

Thus, e|n| is assumed to be a uniformly distributed white-
noise sequence with a mean of zero and variance:
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For a (B+1)-bit quantizer with full-scale X, , the noise
variance (or power) is:
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The signal-to-noise ratio (SNR) of a (B+1)-bit quantizer is:
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where ¢,? is the signal variance (or power).

Analog signals such as speech and music typically have a
Gaussian (or super-Gaussian) amplitude distribution, and
consequently samples rarely exceed 3 or 4 times the
standard deviation.

To avoid saturation (peak clipping) we might set X, = 40,
In which case:

SNR~ 6B —1.25 dB.



This uniform quantization scheme is called pulse code
modulation (PCM).

Advantages:
— no coding delay
— not signal specific
Disadvantages:

— high bit rates

e.g. Wireless telephony requires 11 bits for “toll quality” =
analog telephone quality.
If f, = 10,000 Hz = bit rate = 110,000 bps, which may
be impractical for wireless systems.

However, consider a CD player that uses 16-bit PCM
= SNR =~ 88.75 dB & bit rate ~ 320,000 bps, which is

acceptable for wired applications.



Uniform quantization is suboptimal for many applications.
Consider the probability density function (p.d.f.) of speech:
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Figure 12.2 Comparison of histograms from real speech and gamma ..
and Laplacian probability density fits to real speech. The densities are (Quatlerl)
normalized to have mean m, = 0 and variance (r_\_z = 1. Dots (and the

corresponding fitted curve) denote the histogram of the speech.

SoURCE: M.D. Paez and T.H. Glisson, “Minimum Mean-Squared Error
Quantization in Speech” [66]. ©1972, IEEE. Used by permission.



If the p.d.f. of signals to be quantized is known, then an
optimal nonuniform quantization scheme can be derived:
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Figure 12.6 3-bit nonuniform quantizer: (a) Laplacian pdf; (b) decision (Q t .
uatieri)

and reconstruction levels.
Source: L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals
[71]. ©1978, Pearson Education, Inc. Used by permission.



Sometime the p.d.f. of signals to be quantized is known (or
can be assumed), but the signal variance (power) may vary
over time. In this case, an adaptive nonuniform
quantization scheme can be employed:
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Figure 12.11 Adapting a nonuniform quantizer to a local pdf. By measuring (QU atie I’I)
the local variance crxz[n], we characterize the assumed Gaussian pdf. ¢;[n] and
¢2[n] are codewords for the quantized signal X[n] and time-varying variance ¢2[n],
respectively. This feed-forward structure is one of a number of adaptive quantizers
that exploit local variance.




An alternative to nonuniform quantization is companding, in
which a nonlinearity is used to produce a new discrete-time
signal that has a uniform distribution, and a uniform
guantizer can consequently be applied:
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Figure 12.10 The method of companding in coding and decoding: (a) coding stage (Quatieri)

consisting of a nonlinearity followed by uniform quantization and encoding; (b) an inverse
nonlinearity occurring after decoding.



Other nonlinearities approximate the companding
operation, but are easier to implement and do not require a
p.d.f. measurement.

One example is u-law companding, ubiquitous in waveform
coding, which uses the nonlinearity:

T (z[n]) = Xm

Together with uniform quantization, this nonlinearity (for
large values of u, e.g., 255) yields an SNR approximately
independent of X, and o, over a large range of signal
input. For example, toll quality speech is obtainable with
“u-law PCM" utilizing u-law companding followed by a 7-bit
uniform quantizer, which would require 11-bit quantization
without the companding operation.



Table 12.1 Comparison of 3-bit adaptive and nonadaptive quantization schemes [60].
Adaptive schemes use feed-forward adaptation.

SOURCE: Table from L.R. Rabiner and R.W. Schafer, Digital Processing of Speech
Signals [71]. ©1978, Pearson Education, Inc. Used by permission. Data by Noll

[60].
Nonadaptive Adaptive (M = 128) Adaptive (M = 1024)
Nonuniform Quantizers SNR (dB) SNR (dB) SNR (dB)
w-law (= 100, Xmax = 80y) 9.5 - -
Gaussian 1.3 15.0 121
Laplacian 9.9 13.3 12.8

Uniform Quantizers

Gaussian 6.7 14.7 11.3
Laplacian 7.4 13.4 11.5

(Quatieri)
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