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7. SIGNAL COMPRESSION

7.1 Introduction to Signal Compression

Compression involves the representation of N bits of
information with NV, bits, where N, < N.

The ratio N: N, is referred to as the compression ratio.
Two forms of compression exist:

1. Lossless, in which the exact original signal can be
retrieved (without error/distortion). Mathematically this
corresponds to an invertible operation.

2. Lossy, in which the original signal cannot be exactly
retrieved. Mathematically this corresponds to a
noninvertible operation.

Much higher compression ratios can be obtain for lossy compression, but
this comes at the expense of distortion/error in the retrieved signal.




/.2 Parametric Signal Compression

Parametric signal compression is based on (parametric)
modeling of certain signal types.

For example, if a signal y|n| is known to be well described by
a slowly-varying autoregressive (AR) process:

N
y[n]l = > apyln—k]+uln],
k=1

then the AR filter coefficients a, can be estimated at regular
time intervals to describe the slowly-varying properties of the
signal.

Note that the input signal to the AR process u[n| must also be
characterized.



Linear prediction coding (LPC) of speech signals:

We recall that an AR system corresponds to an all-pole filter:
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An all-pole filter does a pretty good job of modelling the vocal
tract frequency response caused by the vocal tract
resonances (formants).

Therefore, a reasonable model of speech over a short time
window is an all-pole filter (with filter coefficients a, describing
the vocal tract frequency response) being driven by an
excitation source u|n|, which can be switched between a
noisy signal for unvoiced speech, a periodic pulse-train for
voiced speech, and a single pulse for plosives.



Discrete-time model for speech production:
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Figure 4.20 Overview of the complete discrete-time speech production model.
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A standard method for obtaining the filter coefficients a, and
an estimate of the excitation source signal u|n| is referred to
as linear prediction coding (LPC).

In this method, a windowed segment of speech s|n] is passed
through the inverse of the all-pole model, A(z), to obtain an
estimate of the excitation source signal u[n|.

Note that the filter A(z) can be broken into two parallel
subsystems, in which a difference is taken between s|n] and
s|n| filtered by P(z), where:

N
P(z) = ) akz_k.
k=1



Filtering view of linear prediction:
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Figure5.1 Filtering view of linear prediction: (a) prediction-error filter A(z) =
1 — P(z); (b) recovery of s[n] with ﬁ for oy = ay. A(z) is also considered
the inverse filter because it can yield the input to an all-pole transfer function.

(Quatieri)



P(z) is referred to as a linear “prediction filter"—hence the
name linear prediction coding—because the present value of
the output of the filter is based on a linear combination of the
N past values of the input to the filter:

N

s[n] = Z ars[n — k] .

k=1

We can view the output of the filter A(z) as an error signal
e|n|. If this error signal is minimized, we obtain the best fit
between the actual speech segment s|n| and the predicted
speech segment s[n] that is possible with an all-pole filter.



Example #1: Unvoiced speech;
LPC with orders N = 4, 8 and 16
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LPC with orders N = 4, 8, 16 and 32

Example #2: Voiced speech;
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/.3 Nonparametric Signal compression

LPC is an example of coding that allows compression of a
signal via parametric modelling.

Nonparametric methods also exist for signal compression,
l.e., methods for which a model of the signal is not required.

Lossy nonparametric compression can be obtain via an
orthonormal transform:
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Original signal:

x = |z[0] z[1] ... z[M —1]

"

Compressed signal:

T
X = [X[0] X[1] ... X[L-1]]" =T"x,
where:
M . N
L N,
and T is the M x L transformation matrix.

The signal X can be interpreted as a vector of coefficients of
expansion using the orthonormal basis T:

x = TX.
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Signal reconstruction:
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DFT-based compression:

Recall that the matrix formulation of the DFT is:

X = Wx,
and the inverse DFT is:

1
x = —WHX.
N

Compression of the DFT vector X can be obtained by setting
values of X at specific frequency indices k fo zero to give the
vector X—these values need not be stored or transmitted,
because they are known to be zero. The signal can be
reconstructed using the inverse DFT:

1 -
= —_WHX.
N
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Example #3: M =5; L = 3 = compression ratio = 5:3
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Note that the compression scheme has introduced some high-frequency

error/distortion into the reconstructed signal. o



Example #4: Compression ratio ~ 16:1
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