

What Transform, When? Discrete **DTFS** Time Yes Time Discrete No **DTFT** Time FS Continuous Yes Time Continuous No FT I-DTFS Frequency Discrete Yes Frequency Discrete No I-FS Frequency Continuous Yes I-DTFT Frequency Continuous No I-FT

Fourier Transform

FT:
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
I-FT:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$

The Fourier Transform is the general transform, it can handle periodic and non-periodic signals. For a periodic signal it can be thought of as a transformation of the Fourier Series

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} X[k] \delta(\omega - n\omega_0)$$

Fourier Series

$$X[k] = \frac{1}{T} \int_{\langle T \rangle} x(t)e^{-jk\omega_0 t} dt$$

$$X[k] = \frac{1}{T} \int_{\langle T \rangle} x(t)\cos(\omega_0 kt) dt - j\frac{1}{T} \int_{\langle T \rangle} x(t)\sin(\omega_0 kt) dt$$

$$X[k] = \underbrace{\sqrt{A_k^2 + B_k^2}}_{|X_k|} \underbrace{e^{-\tan^{-1}(B_k/A_k)}}_{e^{\theta_k}} = |X_k|e^{\theta_k}$$

Fourier Series – Real Signals

$$X[k] = \underbrace{\frac{1}{T} \int_{} x(t) \cos(\omega_o kt) dt}_{A_k} - \underbrace{j \underbrace{\frac{1}{T} \int_{} x(t) \sin(\omega_o kt) dt}_{B_k}}_{B_k} - B_{-k}$$
If x(t) is real valued: $A_k = A_{-k}$ $B_k = -B_{-k}$

 $X(t) = \sum_{i=1}^{n} X[k]e^{\beta \omega_{i}t} = X[0] + \sum_{i=1}^{n} (X[k]e^{\beta \omega_{i}t} + X[-k]e^{-\beta \omega_{i}t}) = X[0] + \sum_{k=1}^{n} ((A_{k} + jB_{k})e^{\beta \omega_{i}t} + (A_{-k} + jB_{-k})e^{-\beta \omega_{i}t})$ $X(t) = X[0] + \sum_{k=1}^{\infty} \left(\left(A_k + j B_k \right) e^{\beta \omega_k t} + \left(A_k - j B_k \right) e^{-\beta \omega_k t} \right) = X[0] + \sum_{k=1}^{\infty} \left(A_k \left(e^{\beta \omega_k t} + e^{-\beta \omega_k t} \right) + j B_k \left(e^{\beta \omega_k t} + e^{-\beta \omega_k t} \right) \right)$

 $X(t) = X[0] + 2\sum_{k=1}^{\infty} \text{Re} \left(|X[k]| e^{j\theta_k} e^{jk\omega_k t} \right) = X[0] + 2\sum_{k=1}^{\infty} |X[k]| \cos(k\omega_0 t + \theta_k)$

Fourier Series - Real +Even/Odd

$$x(t) = X[0] + 2\sum_{k=1}^{\infty} \text{Re}\left(|X[k]| e^{j\theta_k} e^{jk\omega_o t}\right)$$

$$x(t) = X[0] + 2\sum_{k=1}^{\infty} \text{Re}\{(A_k - jB_k)(\cos(k\omega_o t) + j\sin(k\omega_o t))\}$$

$$x(t) = X[0] + 2\sum_{k=1}^{\infty} \left(A_k \cos(k\omega_o t) + B_k \sin(k\omega_o t) \right)$$

Even: f(t) = f(-t), therefore $B_k = 0$; Cosine Series

Odd: f(t) = -f(-t), therefore $A_k = 0$; Sine Series

Cosine Fourier Series

Even Function

FS
$$X[1] = X[-1] = \frac{1}{2}$$

FT =
$$2\pi$$
(FS) $X(j\omega) = \pi\delta(\omega + \omega_0) + \pi\delta(\omega - \omega_0)$

When is FT the continuous counterpart to $2\pi FS$? How do the Delta's move as frequency changes? Sine Fourier Transform

Odd Function FS $X[1] = -X[-1] = \frac{1}{2}j$

FT = 2π (FS) $X(j\omega) = j\pi\delta(\omega + \omega_0) - j\pi\delta(\omega - \omega_0)$

The Fourier Transform of an Odd Signal is Odd. Notice the Fourier Domain graph is in $jF(\omega)$. It is imaginary.

