Crash Test Dummies

"You have to consider that a test dummy basically motivates all restraint design, whether belts or airbags" -Rolf Eppinger, Chief of the National Transportation Biomechanics Research Center

Tanya Starret and Steph Liddle

http://injurycases.net/pi/videos/dummies.wmv

Goals of test dummies

emperiment.

"Word has it earthlings have been using some of our people for cruel scientific experiments." Human like
Determine injuries which will occur

Consistent

Resilient

History - 1930s

- Car crash fatalities are on the rise
- The inside of a car is a very dangerous place
- Automobile makers start to think about safety BUT NO DATA !!

History - Cadaver Testing

- Test to see what the body can withstand
 - i.e. Crushing and tearing forces
- Tests Conducted:
 - steel ball-bearings dropped on skull
 - body thrown down elevator shafts
 - cadavers subjected to crashes and roll overs

History - Cadaver Testing

Problems:

- Most cadavers from elderly Caucasian males
- Couldn't use accident victims
- No two cadavers are the same
- Child cadavers hard to obtain

Improvements are made but new data acquired from these tests is scarce... Researchers look elsewhere...

History- Animal Testing

Primarily used pigs

- Similar internal structure
- Can be put in a seated position
- Studied impalement by steering column and decapitation
- Information helped redesign the interior of the cabin
 - Dashboard padding Too hard or too soft?
 - Levers, knobs, buttons Placement?
 - Rearview mirror Stiffness?

History- Animal Testing

Animal testing gathered useful data BUTOpposition from Animal Rights groupsPIGS ARE NOT HUMANS!!

Again researchers looked to other solutions...

History - Sierra Sam

- 1949 Introduce Sierra Sam, the original crash test dummy
 - Designed from information gathered from cadaver and animal testing
 - Tested aircraft ejection seats
- The creator of Sierra Sam went on to create Sierra Stan and the VIP-50 crash test dummies
 - Inconsistent results
 - Unreliable

GM needs something better...

History - Hybrid I

1971 - GM Introduces Hybrid I

- 50th percentile male dummy
- Combines best features from VIP-50 and Sierra Stan
- More durable
- More consistent results

• Problems:

- Data acquired doesn't give enough insight into how to reduce injury.
- Can only test effectiveness of restraint

History - Hybrid II

• 1972- Hybrid II

- Improved response in knee, spine and shoulder
- Better documentation
- First dummy to meet the requirements of the Federal Motor Vehicle Safety Standard (FMVSS)

Responses still not human enough!! Hybrid I & II still of limited use...

History - GM gets serious

- Research sitting position in cars

 i.e. relationship of posture to eye position
- Test different materials
- Research value of adding internal elements
 - Ex. Rib cage
- Biomechanical data helps determine ideal stiffness of materials
- Better production machinery

 More accurate, reliable dummies

History - Hybrid III

- 1976 GM introduces Hybrid III, 50th percentile male
 - New neck & thorax
 - More transducers -- better data collection
 - Industry Standard
- Hybrid III becomes a family man
 - Big brother, 95th percentile male
 - 5th percentile female
 - 3 & 6 year old child dummies
 - CRABI baby dummy

Present Day - Dummy Varieties

- Hybrid III family Frontal impact dummies
- **SID** Side Impact Dummy
 - Measures effect on spine, ribs and internal organs
- **BioRID** Rear Impact Dummy
 - More sophisticated spine & neck
 - More natural seating position
 - Primarily used to study whiplash
- CRABI child dummy (6,12& 18 months)
 - Tests effectiveness of child restraints
 - Studies effect of airbag on a child
- **THOR** 50th percentile male
 - Most up-to-date model
 - More later...

THOR's day at the office

 Pre crash 'tests' Head bouncing test Pendulum swing Chest attack Getting dressed Yellow clothes Covered in grease paint Stickers

http://auto.howstuffworks.com/ crash-test-video.htm

Instrumentation

1 – accelerometers
 2 – load cells
 3 – string potentiometers

Potentiometers

Linear

Angular

How it all works: A detailed look at THOR

Head Instrumentation

 Weighted head Bi-axial tilt sensor – Measures the relative angular orientation Uni-axial accelerometers - Reconstruct head kinematics

Face – the skin

Figure 3.1- Face assembly

 Human soft tissue
 Rubber and foam model human skin allowing researchers to determine if human skin would be compressed or torn during a similar experience

Face Instrumentation

- Improvements
 - Uni-directional load cells
 - Located at each eye, on either cheek and the center of the chin

Neck and Spine

Neck Assembly

- Multi-directional response
 - Compression springs in front and back to simulate muscle reaction
 - Soft rubber stoppers to restrict motion in forward, backward and sideways directions
 - Alternating aluminum disks and rubber pucks simulate vertebra

Neck Assembly

Sensors - Miniature load cells: compression of springs - Six component load cell: force and moment and top and base - Rotary potentiometer. relative rotation between head and neck

Spine Assembly

Posture & Bending

- Neck and lower thoracic pitch change mechanism
 - Anthropomorphic locations
- Two flex joints
- Allow THOR to assume different postures

Sensors

- Tri-axial accelerometer
- Thoracic load cell

Posture comparison

Neck position

Posture

Thorax and Mid Sternum

Thorax - CRUX

CRUX – compact rotary unit

- Made from 3 rotary
 potentiometers
- Universal joint attaches one end to rib cage
- Other end attached to spine
- Initial, dynamic and final positions of unit can be determined

Figure 16.7- Lower Right CRUX installed

Thorax – CRUX with Ribs

Elliptical ribs

Upper and Lower Right CRUX

Abdomen

Upper Abdomen

- Major damage caused by steering wheel and airbag
- Uniaxial accelerometer

 Uniaxial potentiometer

Lower Abdomen - DGSP

DGSP – double gimballed string potentiometer
Improved measurement of seat belt intrusion

Pelvis and Femur

Previous Tests

Lower body injuries are HUGE!!
Previous tests showed femur was weaker than hip
Dummies femur wasn't conducting force toward pelvis

Improvements

Pelvis

- 3 axis acetabular load cell at hip joint
- Belt load sensors on iliac notch

Femur

 Correct force transmission through femur into pelvic

Pelvis – Construction

- Cast aluminum structure
- Tri-axial accelerometer in rear cavity
- Improved sensors

Side view

Femur - Construction

- Needs to represent largest bone in the body
- 6-axis load cell
- Axial compliant bushing creates a biofidelic deflection

Lower and Upper Extremities

Lower Extremities

- Lower extremity injuries are most frequent
- Numerous load cells providing data for x,y and z directions
- Achilles cable tension
- Ankle rotation

Future of Crash Testing

1. New optical and magnetic sensor

- 3D Imaging capabilities
- Faster and more precise
 - Better able to measure exact amount of chest compression and head injury
 - Can tell if organ bruised or otherwise damaged
- Works by triangulation of magnetic fields
- Measure shearing deformation of the brain
 - Silicon gel will simulate brain tissue
- Major Problem: interference from metal parts

Future of Crash Testing

2. Computer simulations

- Goal: to have virtual humans with all internal organs
 - i.e. mathematical models of human systems
- Programmers not yet able to do full body simulations
- Success with individual body systems
- Extremely repeatable tests

Future of Crash Testing

3. Electronic Airbag sensors

- Records events of the crash
- Real world data
- Every crash provides data to keep others safe
- Helps improve dummies, simulations and other tests
- Eventually, sensors all around the car

Comics

Comics

References

- <u>http://inventors.about.com/library/inventors/blcrashtestdummies1.htm</u>
- <u>http://inventors.about.com/library/inventors/blcrashtestdummies.htm</u>
- http://en.wikipedia.org/wiki/Crash_test_dummy
- <u>http://www.ftss.com/history.cfm</u>
- http://auto.howstuffworks.com/crash-test1.htm
- <u>http://www-nrd.nhtsa.dot.gov/departments/nrd-51/THORAdv/THORAdv.htm</u>
- <u>http://www-nrd.nhtsa.dot.gov/departments/nrd-</u> <u>51/THORAdv/ThorAdv_manualNDX.html</u>
- <u>http://www.freerepublic.com/focus/f-news/1345871/posts</u>
- http://www.jhu.edu/~gazette/julsep98/jul2098/20dummy.html
- <u>http://www%2Dnrd.nhtsa.dot.gov/departments/nrd%2D51/Biomechanics</u> <u>Trauma.html</u>
- <u>http://www.cartoonstock.com/directory/c/crash_test_dummy.asp</u>
- <u>http://www.autoliv.com/Appl_ALV/alvweb.nsf/htmlpages/library_dictionar</u>
 ¥

References

- <u>http://inventors.about.com/gi/dynamic/offsite.htm?site=http://www%2</u> <u>Dnrd.nhtsa.dot.gov/departments/nrd%2D51/BiomechanicsTrauma.ht</u> <u>ml</u>
- <u>http://www-nrd.nhtsa.dot.gov/pdf/nrd-51/thoradv/UserManual/16-</u> <u>CRUX_d.pdf</u>
- http://www.omega.com/prodinfo/loadcells.html
- <u>http://zone.ni.com/devzone/conceptd.nsf/webmain/F015C145C6B86</u>
 <u>58586256CD20069531B</u>
- <u>http://www-nrd.nhtsa.dot.gov/departments/nrd-51/THORAdv/THORAdv.htm</u>
- <u>http://www.vectorscientific.com/biomechanics.html</u>
- http://www.waynegrant.com/video.php
- Jonathan D Rupp, et al. "Comparison of Knee/Femur Force-Deflection Response of the THOR, Hybrid III, and Human Cadaver to Dynamic Frontal-Impact Knee Loading"