Biomechanics of Total Knee Replacements

By: Melissa Perri and Niki Efantis
Anatomy of the Knee

Major Bones:
- Femur
- Patella
- Tibia

Ligaments:
- Posterier cruciate ligament (PCL)
- Anterior cruciate ligament (ACL)
- Lateral collateral ligament (LCL)
- Medial collateral ligament (MCL)

Meniscii:
- Medial meniscus
- Lateral meniscus

Other components:
- Articular cartilage
- Synovial Lining

Movement of the Knee Joint

- Major movements of the knee are flexion and extension; also some rotation
- Shape of the articulating surfaces of the tibia and femur as well as the 4 ligaments of the knee all play a role in movement of the knee
- Rollback mechanism of flexion
 - As knee bends in flexion femur glides over and rolls back on tibia
 - PCL prevents femur from gliding/rolling too far back on tibial plateau
Unhealthy Knees

CONDITIONS:

1.) Arthritis

2.) Infection

3.) Injury

4.) Aging

5.) Articular Cartilage wear

6.) Insufficient Synovial fluid
Types of Arthritis

1.) **Osteoarthritis**
 - at the age of 50; hereditary
 - Cartilage wears away, bone rubs on bone

2.) **Rheumatoid Arthritis**
 - synovial membrane thickens and becomes inflamed produces too much synovial fluid causing internal pressure
 - can cause cartilage loss and pain

3.) **Post Traumatic Arthritis**
 - Caused by serious knee injuries
 - knee fracture or severe tears of ligaments causing articular cartilage damage over time
 - limits knee function
Healthy Vs. Unhealthy knees

Joint Space

Lost Joint Space
Who is a good candidate for Total Knee Arthroplasty?

- People with severe knee pain
- Knee deformity (e.g., Bow legged or knock kneeed)
- Inability to tolerate pain medications
- Failure of other non-operative procedures such as cortisone injections and physical therapy

- Usually performed on patients 60-80 yrs of age. Can be performed on younger or older patients but unlikely candidates.
History of Knee Replacements

- Knee surgery carried out by ancient Egyptians
- The first knee replacement surgeries began just after WWII
- In the late 1960’s use of plastic on metal became more common
- By the 1970s engineers and scientists designed total condylar prosthesis
- Improved instrumentation used to install replacement during surgery was developed
- Modern designs compromise between stability and freedom of movement while trying to minimize stress in the joint.
Implant Design

Artificial Knee Components

- Femoral Component
- Plastic Spacer
- Tibial Tray
- Patella Button
Materials

1.) strong and high resistance to wear
2.) low coefficient of friction
3.) biocompatibility

- Metal components: titanium alloys or cobalt chromium alloy
 - durable, lightweight, inert in body

- Plastic components: ultra high molecular weight polyethylene (UHMWPE)
 - used for its very low coefficient of friction

<table>
<thead>
<tr>
<th>Materials</th>
<th>Coefficient of friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire/road</td>
<td>1</td>
</tr>
<tr>
<td>Nylon/steel</td>
<td>0.2</td>
</tr>
<tr>
<td>PTFE/PTFE</td>
<td>0.07</td>
</tr>
<tr>
<td>PTFE/PTFE (in water)</td>
<td>0.04</td>
</tr>
<tr>
<td>CoCr/CoCr (in water)</td>
<td>0.38</td>
</tr>
<tr>
<td>CoCr/UHMWPE (in water)</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Surgery

- Damaged portion of femur and tibial bone are removed and replaced with prosthetic components
Alignment during surgery

- Alignment is critical to ensure minimal stress and strain to the prosthesis.
- Mechanical axis is restored as much as possible.
- Special instruments are used to ensure proper cutting and alignment.
Biomechanics

Kinematics:

- **Walking cycle:**
 - represented by 2 steps
 - 4 states: swing through, heel strike, weight transfer, toe-off
 - motion of leg during each step has 2 phases:
 - stance (support) phase
 - swing (nonsupport) phase

- **Lubrication of knee**
 - *Swing phase:* a thick film is pushed into space between cartilage
 - *Heel strike:* load on knee increases, so film squeezed out to reduce thickness
 - *Toe-off:* load is maximum, but there is still film present to avoid surface-to-surface contact

Fig. 17 Lubrication mechanism illustrated for the right knee.
Three Dimensional (3D) Static Analysis

- Force at the knee joint 10% into the stance phase of climbing the stair.
- Forces at knee are dependent on position of the tibia.

Let:
- $R = \text{ground reaction force}$
- $Q = \text{quadriceps (primary muscle acting on the sagittal plane)}$
- $L = \text{ilio-tibial band (varus movement in frontal plane)}$
- $V = \text{joint force, perpendicular to tibial surface}$
- $H = \text{joint force, parallel to tibial surface}$

Vertical force balance, sagittal plane

$$R + L \cos 14 + Q \cos 20 + H \sin 8 - V \cos 8 = 0$$

Horizontal force balance, sagittal plane

$$L \sin 14 + V \sin 8 - H \cos 8 - Q \sin 20 = 0$$

Moment balance, sagittal plane

$$8L + 53Q - 49R + 19H = 0$$

Moment balance, frontal plane

$$8Q \cos 21 + 47L \cos 14 - 42R = 0$$

Setting R equal to body weight, W:
- $V = 2.42W$
- $H = 0.28W$

Resultant joint force = $2.44W$
- $Q = 0.70W$
- $L = 0.80W$
Design Considerations

Load Transfer:

- components of prosthesis are designed to transfer joint loads directly to the underlying cancellous bone
- this property is similar to load distribution in a healthy knee

Engineering solutions:

design goal: distribution of joint loads to underlying cancellous bone as uniformly as possible over as large an area as possible.
a) **Metal Backing:**

Advantages:
- helps to distribute applied loads uniformly over a large area (mod of elasticity)
- reduces maximum compressive stresses and increases maximum tensile stresses

Disadvantages:
- UHMWPE has to be attached securely
- polyethylene must be thinner (creates more wear)
- dimensional changes occur because of wear particles

b.) **Maximum contact area of plateau**

- *goal:* distribute load over as large an area as possible
- Cannot extend the plateau
- Coverage of the entire plateau is important
- This minimizes stress on bone and ligaments as
 Stress = F/A
- In a normal knee joint pressures vary from 3kg/cm^2 to 19.3kg/cm^2
Pegs and Screws for Support

<table>
<thead>
<tr>
<th>Model</th>
<th>Central Peg (A)</th>
<th>Short Peripheral Peg or Screw (B)</th>
<th>Bladed Cruciate Form (C)</th>
<th>Bladed Central Peg (D)</th>
<th>Long Uncemented Intramedullary Stem (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Most widely used</td>
<td>Pegs: Improved rotational resistance</td>
<td>- Resistance to bending, rotation, or shear stress</td>
<td>-Resistance to bending, rotation, or shear stress</td>
<td>Appropriate for sinkage of tibial component</td>
</tr>
<tr>
<td></td>
<td>Does not stress protect the proximal cancellous bone</td>
<td>Screws: - reduce micromotion and enhance ingrowth process</td>
<td></td>
<td></td>
<td>- transfers load directly to lateral cortex</td>
</tr>
<tr>
<td></td>
<td>Carries some varus-valgus bending</td>
<td></td>
<td></td>
<td></td>
<td>- suitable for patients with bony defect</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>- Unsuitable for uncemented application</td>
<td>Pegs: Minimal support to varus-valgus bending</td>
<td>- Instrumentation must be accurate</td>
<td>-Instrumentation must be accurate</td>
<td>- Invasive technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screws: Sometimes stress protect the proximal cancellous bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screws: pressure is localized</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fixation:

Fixation:

Advantages:
- Most widely used
- Does not stress protect the proximal cancellous bone
- Carries some varus-valgus bending

Pegs:
- Improved rotational resistance

Screws:
- Reduce micromotion and enhance ingrowth process

Disadvantages:
- Unsuitable for uncemented application
- Minimal support to varus-valgus bending
- Sometimes stress protect the proximal cancellous bone
- Pressure is localized

Instrumentation must be accurate

Invasive technique

Appropriate for sinkage of tibial component
- Transfers load directly to lateral cortex
- Suitable for patients with bony defect
Prosthetic Models

3 widely used types:

1.) **Condylar replacement**
 - Simplest form
 - Kinematics are similar to that of the normal of knee
 - Main problem is wear in polyethylene

2.) **Hinged or linked prosthesis**
 - Very constrained design
 - Much of the force transferred to fixation stems and surrounding bone
 - Mostly used for older people with serious knee instability, damaged ligaments and bone loss

3.) **A/P stabilized prosthesis**
 - PCL is removed
 - Post in tibial plateau prevents femur from rolling too far back
 - In addition to wear in polyethylene disc, post is also susceptible to wear
Testing Procedure

- Two types of failure modes:
 - Fatigue
 - Wear-deformation
- Testing for 10 years of usage takes approximately 3 weeks

- **Axial loading**: offset leading could lead to failure of metallic parts, excessive deformation of plastic

- **Shear force**: only 10% of vertical force component, lead to severe plastic wear through metal tray

- **Combination**: combined stresses can be much higher than for one load condition alone.
Problems Arising from Implants

Adverse Effects of Any Surgery

- Scarring
- Nerve injury (temporary/permanent numbness in localized area)
- Blood vessels injury
- Slow healing (especially for diabetics, or patients with long-term steroid use)
- Infection
Adverse Effects of TKA

Infection
- Symptoms may appear early after surgery, or may not appear for months, or even years after the operation
- Infection of the hematoma (collection of blood)

Stiffness
- Usually caused by scar tissue formed near the prosthesis, limiting the range of motion
- Preventive methods: use of Constant Passive Motion (CPM) machine and physical therapy
Loosening

- **Fibrous Tissue:** a soft fibrous tissue develops permitting more relative motion between implant and bone loading.

- **Bone necrosis (death)**

- **Mechanical damage during surgery**

- **Wear debris:**
 - Foreign body wear
 - Sub-surface fatigue

- **Mechanical loosening from fatigue**
 - Debonding: metal stem from cement, and cement from bone
Advancements

- Minimally invasive surgery (MIS) of the knee is a new development
 - Advantages: - needs only a small incision
 - better cosmetic results
 - Disadvantages: - surgeon has limited visibility when placing components

- As a result Computer Aided Orthopedic Surgery (CAOS) is becoming more common
 - uses infrared cameras, sensors and tracking devices
 - a patient specific digital image of the knee is created

- Computer tracks surgeon’s instruments and provides information about where to cut bone for proper alignment
Mobile bearing prosthesis – UHMWPE discs slide along inside of tibial plate - increases contact area at all points of flexion and extension

<table>
<thead>
<tr>
<th>Type</th>
<th>Contact area (square mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable</td>
<td>200-300</td>
</tr>
<tr>
<td>Mobile</td>
<td>1000-1500</td>
</tr>
</tbody>
</table>

Increased wear of polyethylene due to increased sliding since

\[V = k(Wx)/3H \]

where \(k = \) wear coefficient

\(H = \) hardness/softness of material
References

- A Patient's Guide to Total Knee Replacement Surgery
 http://www.healthpages.org/AHP/LIBRARY/HLTHTOP/TKR/
- Biomechanics of Artificial Joints
 http://www.engin.umich.edu/class/bme456/artjoint/artjoint.htm
- Knee Implants (American Academy of Orthopedic Surgeons)
- Total Knee Replacement (American Academy of Orthopedic Surgeons)
- Knee Replacement Surgery
 http://orthopedics.about.com/cs/kneereplacement/a/kneereplacement.htm
- Corin Group PCL
 http://www.corin.co.uk/p_kneereplacements.html
- Total Knee Replacement Patients (VIDEO).
- http://www.healthpages.org/AHP/LIBRARY/HLTHTOP/TKR/
- http://www.totaljoints.info/TOTAL_KNEE_MAIN.htm
