Basic Anatomy of Human Bone
Bone Facts

● Minerals
 ● Composed of hydroxyapatite, a calcium phosphate compound

● Properties
 ● High compressive strength (~200MPa)
 ● Low tensile strength (~130MPa)
 ● Some elasticity

● Cells
 ● Osteoblasts; Osteocytes; Osteoclasts
Bone Grafting

- **What is it?**
 - Surgical procedure to replace or fill in missing sections of bone
 - Implanted materials can be natural or synthetic
 - Should encourage bone healing and growth

- **Who needs it?**
 - Fractured, injured or defective bone
 - Diseases of the bone
 - Bone tumours
 - Bone cancers
 - Fusion of bone joints
Bone Grafting

This is a radiograph of a patient with an autograft transplant. The patient suffered from bone defects in the ulna.
Characteristics of an Ideal Graft

- Accepted by host system
- Strength & Support
- Osteoconduction
 - The likeliness of the material to allow growth of new bone cells
- Osteoinduction
 - The likeliness of the material to induce growth of new bone cells
- Osteogenesis
 - The process of living cells transforming into osteoblasts and create new bones
Types of Bone Grafts

- **Autograft**
 - Materials from the same individual
- **Allograft**
 - Materials from the a donor of the same species
- **Xenograft**
 - Materials from another species
- **Synthetic Substitutes**
 - Man-made materials
Types of Bone Grafts
Autograft

- **Pros:**
 - Ideal
 - Low risk of disease transmission
 - Quick incorporation

- **Cons:**
 - Limited availability
 - May not have the same properties
 - Donor site morbidity

- **From:**
 - Iliac crest
 - Distal radius
 - Proximal tibia
Allograft

- **Pros:**
 - Better availability
 - Eliminates morbidity
 - Similar mechanical properties

- **Cons:**
 - Contamination, often frozen/quarantined before surgery
 - May cause immune reaction
 - Transmission of diseases from donor

- **From:**
 - Donors
 - Cadavers
Xenograft

● Pros:
 ● Alleviate shortage of bones from donors
 ● Abundance of species

● Cons:
 ● Host rejects materials
 ● Mechanical properties may not be met
 ● Experimental
 ● Transmission of genetic disorders

● From:
 ● Other animals (i.e. swine, bovine)
 ● Coral
 ● Wood
Bone Composition Comparison

Cortical bone composition

Ash

Hydroxyproline

Extractable proteins

IGF-I
Synthetic Substitutes

- **Pros:**
 - Abundance
 - Low risk of transmitting disease
 - Customized form

- **Cons:**
 - Cause immune response
 - Texture
 - Weight

- **From:**
 - Metals, alloys
 - Ceramics
 - Polymers
Current Grafting Technology

- Xenografts
 - Grafts are produced from hydroxyapatite in coral
 - This material dissolves easily due to the calcium carbonate content

- Synthetic
 - Surface area of implants are given a rough texture
Nanocoated Bioactive Materials

- Designed to mimic natural texture of bone
- Suitable for repair of load-bearing bones
- Demonstrate superiority due to processing techniques
- Benefits for all people suffering from bone disorders and injuries
- BioAlmog, a hydroxyapatite derivative from coral
- Processed synthetic materials
Processing BioAlmog

- **BioAlmog**
 - ‘Double-conversion’ technique
 1. Coral is processed into pure hydroxyapatite
 2. Hydroxyapatite is undergoes a sol-gel procedure

- **Sol-Gel Technique:**
 - Solid metal salt and material to be refined are kept in a liquid phase
 - Mixture is then manipulated to form a gelatinous colloid
 - Resultant gel is then processed to extract fine particles through precipitation, spray pyrolysis, or emulsion
Sol-Gel Process
Processing Synthetic Particles

- Titanium prostheses
 - Blasted with 20\(\mu\)m aluminum grit
 - Soaked in an aqueous solution with a neutral pH for a 3 day period
 - Apatite coating will have a composition closely resembling natural bone mineral
- Cleaning and sterilization
Nano-coating

- Forming a thin layer of nano-size particles (whether organic or inorganic) onto materials
- Natural bones are a mixture of nano-particles and organic composites
Why is Nano-coating Effective?

Mechanical

- Microscopic and nanoscopic pores are filled in while retaining large pores
- Strength of final result doubled
- Scratch resistant surface
- Improved resistance to ‘wear and tear’
- Uniform thickness
Why is Nano-coating Effective?

Biological

- Reduce chances of host rejection
- Reduce chances of inflammation
- Stimulate growth of new bone cells
- Enhance adhesion between the bones and the implant (up to 90% of bonding between bone cells and the implant)
Effects of Nanocoating
Future of Nano-coated Bone Grafts

- Durable
- Wide range of placement
- Shape, composition
- Addition of remote controlled probes to nanoparticles
References

- http://adam.about.com/encyclopedia/9714.htm
Thank you for your attention!

Questions?