

3D AND 4D ULTRASOUND

Lynn Dony Stephanie Cheung

OUTLINE

- Introduction to Ultrasound
- Why 3D / 4D is used
- Clinical Uses
- Concept of 3D ultrasound
 - Acquisition
 - 3 methods
 - Rendering / Reconstruction
 - Navigation
 - 3 types of images
- 4D ultrasound
- History of Ultrasound
- Future
- Ethics

Introduction to Ultrasound

- High-frequency sound waves (MHz)
- Medical imaging technique: use of sound waves to visualize internal structures
- Basic concept:
 - transducer sends out sound waves
 - Sound waves reflect off of internal structures
 - Image generated from data:
 - Time for the echo to be received
 - Intensity of echo
 - Depends on density of material, location in body
- Different types:
 - 1D, 2D, Doppler, 3D, 4D

WHY 3D / 4D?

- Accuracy and repeatability
 - Less dependent on technician's ability to visualize 2D images in 3D setting
 - Easier to track growth of tumours /diseases, lesions
- No health risks from moderate use
 - Potential health problems
 - Too intense
 - Over-usage
- Useful to see structures in motion
 - Surgery
 - Diagnosis

Traditional 2D Image

3D Image

CLINICAL USES

• 3D

- Imaging during surgery, radiotherapy planning
 - Find instruments with respect to structures in the body
- Looking at structures / sections of larger structures
- Eg: fetal screening, breast biopsy, carotid artery, intestine, eye, intravascular, rectal, gynaecological

• 4D

- Fetal screening
- Echocardiography
- Pelvic floor surgery
- Venous system imaging

CONCEPT OF 3D ULTRASOUND

- Take 2D images, process with position to form 3D visualization
- Processes:
 - 1. Acquisition
 - 2. Rendering / Reconstruction
 - 3. Navigation

1. ACQUISITION

- 3 types of transducers:
 - Mechanically-swept (a and b)
 - 2D transducer array (c)
 - Freehand acquisition (d)

MECHANICALLY-SWEPT

- Transducer is mounted
- Moved along a specified path by a motor
 - Consistent
- As motor moves, transducer array takes B-scans (2D scans)
 - The faster the motion, the less exact the image
 - Image could be distorted
 - Method mainly being used in clinical applications where nothing is moving rapidly
- Fetal screening usually uses this

MECHANICALLY-SWEPT PROBE

9

2D Transducer Array

- o Grid of 128 x 128 transducer elements
 - The more the better (better resolution)
 - 20 x 20 in the 90's
- Alignment of transducer elements is difficult
 - Lots of transducer elements in small space
 - Wiring large number of transducers in small area
- Speed
 - Need to use transducers in parallel
 - 128 sound beams travelling 10 cm in and out →1/60s at speed of 1540 m/s
 - 16384 beams would take 2.1 seconds: too slow!

2D Transducer Array Arrangement

• Align transducers in a grid

- Align transducers in ring around patient
 - Only image things that fit in it
 - Slow data processing with larger ring

FREEHAND

- 1D transducer array with external position sensor
 - Position sensor measures 6 degrees of freedom (calibration)
- Path and image measured
 - Put together to obtain data
- Technician must operate transducer by hand
 - More labour intensive (move smoothly and slowly)
 - More sources of error: not taking same path each time
- 2 types of position sensors: optical and magnetic
 - Optical: calibrated cameras
 - Magnetic: magnetic field
- Can modify a transducer used for 2D ultrasound

FREEHAND TRANSDUCER OPERATION

Transmitter for spatial locator

2. Rendering / Reconstruction

- Done by a computer program
- Rendering
 - Make image more clear, detailed
 - Volume Rendering / Reconstruction
 - Adjust 3D image to be viewed on 2D screen
 - Ray casting
 - Plane composing
 - Surface Rendering
 - Smoothing and texturing
 - Lighting
 - Transparency

SURFACE RENDERING

VOLUME RENDERING / RECONSTRUCTION

3. NAVIGATION

- Done by a computer
- Manipulation of images
 - Surface
 - Used for organs, arteries
 - Slices
 - o Multi-plane view
 - Not the same as B-scans
 - Voxel
 - Locating structures, volume measurements
 - Ray casting

SURFACE

SLICES

VOXEL

4D ULTRASOUND

- Multiple 3D images
 within a short period of
 time put together for a
 moving picture
- Speed of images depends on what is being viewed
 - Fetal imaging vs. echocardiography

http://www.youtube.com/watch?v=KPkliidHlP4

HISTORY

- Multiplanar scanner developed in 1973 by
 Tom Brown in Glasgow
- Three-dimensional visualization began developing in the early 1980's
- A lot of the early work came from cardiologists in an attempt to find a method of measuring the volume of cardiac chambers
- Scanners mounted on articulated arms to track path
- Early images not as clear as
 2D and very time-consuming

Baba's Early 3-D image of a 19 weeks fetus

HISTORY (CONTINUED...)

- 1991 matrix array scanner to image cardiac structures in real-time and 3D
- 1994 development of Medical Ultrasound Imaging integrated circuits (MUsIC)
 - process signals from multiple images
 - basis for first electronically steered matrix-array 3D ultrasound imager
- Many of the pioneering volume rendering algorithms were developed by Pixar Animation Studios

2-D matrix-array at Duke

FUTURE

- Current problems:
 - Speed and resolution compromise
 - Size of equipment
 - Cost
- Future development
 - Develop 2D transducers
 - Different alignments
 - Cheaper cost, more compact
 - Research shows that 3D is promising
 - Not being used as widely: cost, size
 - Resolution, speed have already been improved
 - 4D is very intense (time-sensitive)
 - Make safer
 - Increase speed without sacrificing quality

Intrauterine Sport Activities

פעילות ספורט ברחם

ETHICS

- A commercial practice?
 - Peek-a-boo Ultrasound
 - My Sunshine Baby
 - Womb with a View
 - Access to ultrasound \rightarrow \$
- Pro-life movement
 - Nebraska LB 657
 - 2009
 - Women about to abort must have an ultrasound within one hour before abortion

QUESTIONS?

REFERENCES

- Avni, F. E., Cassart, M., Cos, T., Donner, C., Hall, M., Ismaili, K., & Massez, A. (2007). Evolution of fetal ultrasonography. Eur Radiol, 17, 419-431. doi:10.1007/s00330-006-0307-1
- Berg, S., Blaas, H. K., & Eik-Nes, S. H. (2000). Three-dimensional fetal ultrasound. Bailliere's Clinical Obstetrics and Gynaecology, 14(4), 611-627. doi:10.1053/beog.2000.0100
- Cohen, S. M., Messing, B., Valsky, D. V., & Yagel, S. (2009). Three-dimensional and four-dimensional ultrasound applications in fetal medicine. Current Opinion in Obstetrics and Gynecology, 21, 167-174. doi:10.1097/GCO.0b013e328329243c
- Dahiya, N. (n.a.). The Basics of 3D/4D Ultrasound. Retrieved 11/28/2010 from http://www.gehealthcare.com/usen/ultrasound/education/products/cme_3d4d.html
- Downey, D. B., & Fenster, A. (November/December 1996). 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology, , 41-51. doi:0739-51 75/96/\$5.00
- o Dckelmann, A., & Kalache, K. (2010). Three-dimensional ultrasound in evaluating the fetus. *Prenatal Diagnosis*, 30(7), 631-638.
- o Gee, A., Prager, R., Treece, G., & Berman, L. (2003). Engineering a freehand 3D ultrasound system. Pattern Recognition Letters, 24(4-5), 757-777. doi:10.1016/S0167-8655(02)00180-0
- Gee, A., Prager, R., Treece, G., Cash, C., & Berman, L. (2004). Processing and visualizing three-dimensional ultrasound data. The British Journal of Radiology, Special Issue, (77), S186-S193. doi:10.1259/bjr/80676194
- Kim, Y., & York, G. (1999). Ultrasound processing and computing: Review and future directions. Annu. Rev. Biomed. Eng., 1, 559-588. doi:1523-9829/99/0820-0588\$08.00
- Kurjak, A., Miskovic, B., Andonotopo, W., Stanojevic, M., Azumendi, G., & Vrcic, H. (2007). How useful is 3D and 4D ultrasound in perinatal medicine? *Journal of Perinatal Medicine*, 35(1), 10-27.
- o Kurjak, A., Vecek, N., Hafner, T., Bozek, T., Funduk-Kurjak, B., & Ujevic, B. (2002). Prenatal diagnosis: What does four-dimensional ultrasound add? *Journal of Perinatal Medicine*, 30(1), 57-62.
- Leung, K. Y., Ngai, C. S. W., Lee, A., Chan, H. Y., Leung, W. C., Lee, C. P., et al. (2006). The effects on maternal anxiety of two-dimensional versus two-plus three-/four-dimensional ultrasound in pregnancies at risk of fetal abnormalities: A randomized study. *Ultrasound in Obstetrics and Gynecology*, 28(3), 249-254. doi:10.1002/uog.2844
- Merc, L., Barco, M., & Bau, S. (2008). Three-dimensional volume sonographic study of fetal anatomy: Intraobserver reproducibility and effect of examiner experience. *Journal of Ultrasound in Medicine*, 27(7), 1053-1063.
- o Prager, R. W., Ijaz, U. Z., Gee, A. H., & Treece, G. M. (2010). Three-dimensional ultrasound imaging. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 224(2), 193-223.
- Sheiner, E., Hackmon, R., Shoham-Vardi, I., Pombar, X., Hussey, M. J., Strassner, H. T., et al. (2007). A comparison between acoustic output indices in 2D and 3D/4D ultrasound in obstetrics. *Ultrasound in Obstetrics Gynecology*, 29(3), 326-328.
- Wiseman, C., & Kiehl, E. (2007). Picture perfect: Benefits and risk of fetal 3D ultrasound. MCN, the American Journal of Maternal Child Nursing, 32(2), 102-9.
- Shen, O., & Yagel, S. (2010). The added value of 3D/4D ultrasound imaging in fetal cardiology: Has the promise been fulfilled? *Ultrasound Obstet Gynecol*, 35, 260-262. doi:10.1002/uog.7569
- Woo, J. (2001). A short history of the development of 3-D ultrasound in obstetrics and gynecology. Retrieved 11/28, 2010, from http://www.ob-ultrasound.net.libaccess.lib.mcmaster.ca/history-3D.html
- http://nebraskalegislature.gov/FloorDocs/Current/PDF/Intro/LB675.pdf