A Biomechanical Analysis of the Golf Swing

Eric Lesiuta

Introduction

• The golf shot is one of the most difficult biomechanical motions in sport to execute [Vaughn, 1979] Work and Power

2

 The golf swing employs 90% of peak muscle activity in amateur golfers and 80% of peak muscle activity in professional golfers [Hosea and Gatt (1996)] Lumbar spinal loads

Introduction

- The main objective of the golf swing is to maximize the club head linear velocity at the point of impact with the ball
- Through basic physics this is modelled through conservation of energy and momentum at the time of impact
- $\frac{1}{2}m_{\text{club}}v_{\text{club}}^2 = \frac{1}{2}m_{\text{club}}V_{\text{club}}^2 + \frac{1}{2}m_{\text{ball}}v_{\text{ball}}^2$ KE transfer • $m_{\text{club}}v_{\text{club}} = m_{\text{club}}V_{\text{club}} + m_{\text{ball}}v_{\text{ball}}$ Elastic Collision

Introduction

 In a perfectly elastic collision, this can be modelled as:

$$v_{\text{ball}} = v_{\text{club}} \frac{2m_{\text{club}}}{m_{\text{club}} + m_{\text{ball}}} = v_{\text{club}} \frac{2}{1 + m_{\text{ball}}/m_{\text{club}}}$$

• In reality, some energy is lost due to the deformation of the golf ball:

$$v_{\text{ball}} = \frac{(1+c_R)v_{\text{club}}}{1+m_{\text{ball}}/m_{\text{club}}}$$

The Fundamentals of the Golf Swing

- There are four main phases of the golf swing:
- 1) Set-up or Approach
- 2) Backswing
 3) Downswing
 4) Follow through
 [6]

The Set-up or Approach

- Aligns golfer properly with ball, while establishing static and dynamic balance of golfer
- 50-60% of the golfer's weight should be on the back foot [27].
- Truck flexed to 45 deg at hips [2]
- Right lateral shoulder tilt of 16 deg [2]
- An effective grip that allows the golfer to control the club-face, and allows the club to hinge and unhinge during the swing

Great Posture = Great Shot

The Backswing

- Properly stretches muscles and joints responsible for generating power on backswing
- "X Factor" of approx. 50 deg [Meister]
- Left elbow extended while right arm abducted to 75-90 deg
- Left hand is firmly gripping while right hand is passive, wrists are cocked

The Downswing

- Returns the club head to the ball in the correct plane with maximum velocity
- Hips and Trunk muscles initiate downswing
- Right arm adducts and the elbow extends
- To attain maximum velocity, wrists should be un-cocked later in the downswing, accounting for as much as 9% addition of club head velocity

FIGURE 2. The double pendulum model of a golf swing.

The Follow-Through

- Decelerates the body and club head by using eccentric muscle actions [43]
- Hand and wrists follow the plane of the swing path
- Postural stability is maintained and swing is finished in a balanced position

Work on Joints

• W = T
$$\theta$$

Work_{joint} = $\int_{t_2}^{t_1} (\vec{\omega}_i \cdot \sum \vec{T}_i) dt$

• α, β, γ = X, Y, Z axis rotations respectively

$$Work_{joint} = \sum_{0}^{n} T_{\alpha} (\alpha_{t+\Delta t} - \alpha_{t}) + \sum_{0}^{n} T_{\beta} (\beta_{t+\Delta t} - \beta_{t}) + \sum_{0}^{n} T_{\gamma} (\gamma_{t+\Delta t} - \gamma_{t})$$

o n is the number of numerical time steps

11

Total Work on all Joints ~1500N*m

Data Type	Units	Male	Male	Male	Fem
		Scratch	5H	13H	18H
Club Head Vel	m·s ⁻¹	52.0	49.7	46.3	42.1
Max Torque	Nm	42.1	36.8	24.6	24.0
Max Force	Ν	512	453	390	304
Total Work	Nm	355	289	288	235
Max Lin Work	Nm	206	155	140	114
Max Ang Work	Nm	146	134	148	121
Lin/Ang Work	Ratio	1.41	1.16	.95	.94
Peak Power	Nm·s ⁻¹	3875	3005	2310	1720
Peak Lin Power	Nm·s ⁻¹	2775	2316	1402	1188
Peak Ang Power	Nm·s ⁻¹	1150	890	1078	698
Lin/Ang Power	Ratio	2.41	2.60	1.30	1.70
Peak Kinet Engy	Nm	334	302	264	216
Peak Strain Engy	Nm	3.7	3.4	2.9	2.5 [5
Swing Efficiency	%	24.5	20.2	26.1	26.8

Injuries

• Approximately 80% of golf-related injuries are reported to occur in the lower back, the elbow and the wrist [2, 8,17,18].

Type of Injury	% of Amateur	% of Pro
Wrist [2, 8,17,18]	13-20	20-27
Elbow [16, 18 – 20]	25-33	7-10
Lower back [1, 8,17 – 20]	15-34	22-24

Lower Back Injuries

- Lower back injuries are one of the most prevalent injuries in golf
- The L4-L5 (pictured) section of the lower back experiences 6 times their body weight (BW) during the downswing
- This section also experiences mean peak anterior and medial shear loads approaching 1.6 and 0.6 BW during the follow-through phases

Normalized EMG (x100% MVC)

Lower Back Injuries

Lower Back Injuries

Work on Club

$$Work_{Golfer \to c \, lub} = \int_{t_2}^{t_1} (\sum \vec{F_i} \bullet \vec{V_i} + \sum \vec{T_i} \bullet \vec{\omega_i}) dt$$

- \bar{F} is the external applied force
- \vec{V} is the linear velocity
- \vec{T} is Torque
- $\circ \vec{\omega}$ is angular velocity
- i is the x,y,z and α,β,γ components respectively

Work - Energy $Work_{Golfer \to c \, lub} = \Delta K E_{c \, lub} - \Delta S E_{shaft}$

- KE = Kinetic Energy of the club and can be broken down into the shaft and head
- SE = Strain Energy stored by the bending and torsion of the shaft
- We want to reduce SE when designing clubs

Energy of Club

$$KE_{shaft} = \sum_{j=1}^{n} \left(\frac{1}{2} M_{j} V_{gj}^{2} + \frac{1}{2} (I_{xj} \omega_{\alpha j}^{2} + I_{yj} \omega_{\beta j}^{2} + I_{zj} \omega_{jj}^{2}) \right)$$

$$KE_{head} = \sum_{j=1}^{n} \left(\frac{1}{2} M_{h} V_{gh}^{2} + \frac{1}{2} (I_{x} \omega_{\alpha}^{2} + I_{y} \omega_{\beta}^{2} + I_{z} \omega_{\gamma}^{2} + I_{z} \omega_{\gamma}^{2} + I_{z} \omega_{\alpha} \omega_{\gamma} + 2I_{xy} \omega_{\alpha} \omega_{\beta} + 2I_{yz} \omega_{\beta} \omega_{\gamma} + 2I_{xz} \omega_{\alpha} \omega_{\gamma}) \right)$$

$$SE_{shaft} = \sum_{j=1}^{n} \left(K_{xj} \delta_{xj}^{2} + K_{yj} \delta_{yj}^{2} + K_{yj} \delta_{yj}^{2} + K_{Aj} \delta_{Aj}^{2} \right)$$
[5]

Energy Transferred to Ball

• The Velocity of the ball can be modelled by $v_{\rm ball} = \frac{(1+c_R)v_{\rm club}}{1+m_{\rm ball}/m_{\rm club}}$

• Cr was experimentally determined to be around 0.78 [4]

Ball-Club Collision

• Damped Spring-Mass System

•
$$F = KX - C \frac{dx}{dt}$$

• Impact Model [kinematics paper]

•
$$F = KX^e - CV$$

• K = Spring Stiffness (912975N*m obtained experimentally)

- X = Impact Deformation
- e = Stiffening Exponent (1.5265 obtained experimentally)
- C = Dampening Factor
- V = Impact Deformation Velocity

Conclusion

- Analysing complex systems with many Degrees of Freedom is difficult
- Having an understanding of the movements of all your joints can help perfect your swing

23

 There are so many variables in a golf swing and everyone's body is slightly different, so next time you take golf lessons remember there's more value in replicating your own shot than mimicking someone else's precisely

References

- [1] Vaughn, 1979 Work and Power
- [2] [Hosea and Gatt (1996)] Lumbar spinal loads

- [3] Kinematic analyses of the golf swing hub path and its role in golfer/club kinetic transfers - Steven M. Nesbit and Ryan McGinnis
- [4] The Science of a Drive Douglas N. Arnold
- [5] WORK AND POWER ANALYSIS OF THE GOLF SWING - Steven M. Nesbit and Ryan McGinnis
- [6] Hume, Patria A., Justin Keogh, and Duncan Reid. "The Role of Biomechanics in Maximising Distance and Accuracy of Golf Shots." Sports Medicine 35.5 (2005): 429-49. Print.