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Goals in Feedback Control Design

Thus far we have learnt about:
– methods for analyzing the stability and 

performance of feedback control loops, and

– methods for synthesizing a controller.

What then should be our design goals, i.e., 
what constitutes a “good” (or even “ideal”) 
controller?
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Ensuring stability
The first requirement for any feedback control loop 
is stability.  It is pointless to try to achieve any 
performance specification if the system is 
unstable.

Techniques that we have used to analyze the 
stability of a feedback control system are:

– Routh’s array

– root-locus diagrams

– Nyquist stability plots

– the robust stability theorem
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Performance requirements
Some performance requirements that we 
might consider are:

– step response, including the rise time, 
maximum undershoot or overshoot, settling 
time

– steady-state error

– frequency response

– disturbance (noise) rejection

– performance robustness
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Achieving a specific
performance criterion

Sometimes we might care about achieving just one 
performance criterion, and we are unconcerned 
about the other performance measures.  In such 
cases, we can design our controller directly to 
meet this criterion while maintaining stability.

The design problem in Lab #2 is an example of 
this:- values for the system parameters K and a
were found that ensured stability while achieving a 
satisfactorily-small steady-state error for a ramp 
reference signal.
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Achieving “ideal” performance
Question: Given a set of performance 
criteria, is there a design methodology that 
we can use to obtain a good trade-off 
between all these requirements?
(We will refer to this as “ideal” performance rather than 
“optimal”, which would require a mathematical proof 
according to optimization theory.)

Answer: Yes!
In order to show this, we will return to the 
ideas developed in Lectures #1 and #2.
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Returning to the goal of feedback

Recall that the goal of applying feedback 
was to create an approximate inverse of the 
plant such that the plant output Y(s) ' R(s), 
the reference signal.

In a one-d.o.f., unity-feedback nominal 
control loop, this corresponds to:
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Assessing To(s) ' 1

Ideal performance would therefore be achieved if 
we could produce a nominal complementary 
sensitivity To(s) of approximately one for all 
frequencies ω within the bandwidth of the 
reference signal R(s).

To evaluate how a unity nominal complementary 
sensitivity To(s) can be obtained over a specific 
frequency range, we will make use of Bode 
diagrams.

Note that it will be helpful here to review the rules 
for creating approximate magnitude-frequency 
plots.
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Approximate Bode
magnitude-frequency plots

1. The DC gain (i.e., the gain for ω = 0) is 
obtained by setting s = 0.

2. Each zero at the origin (i.e., s = 0) 
causes the magnitude-frequency 
response to increase by 20 dB/decade, 
starting at ω = 0.

3. Each pole at the origin causes the 
magnitude-frequency response to 
decrease by 20 dB/decade, starting at 
ω = 0.
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Approximate Bode plots (cont.)

4. A real-valued zero at s = c causes the 
magnitude-frequency response to 
increase by 20 dB/decade, starting at
ω = |c|.

5. A real-valued pole at s = c causes the 
magnitude-frequency response to 
decrease by 20 dB/decade, starting at 
ω = |c|.
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Approximate Bode plots (cont.)
6. A pair of complex-conjugate zeros at

s = c and c∗ causes the magnitude-
frequency response to increase by 40 
dB/decade, starting at ω = |c|, and creates a 
null at ω = Im{c}.

7. A pair of complex-conjugate pole at
s = c and c∗ causes the magnitude-
frequency response to decrease by 40 
dB/decade, starting at ω = |c|, and creates a 
resonance at ω = Im{c}
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Obtaining To(s) ' 1

Using these rules for the approximate Bode 
magnitude-frequency plot, we can devise the 
following method for obtaining To(s) ' 1 over a 
desired frequency range:

First, by including integration in the controller, i.e., 
a pole at s = 0, we can ensure that the DC gain
is 1, i.e., To(j0) = 1.

We can show this by letting the denominator 
polynomial of the controller transfer function:
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Obtaining To(j0) = 1

We can now write the nominal complementary 
sensitivity as:

Setting s = j0 gives:
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Perfect plant inversion
By using integration in the controller and obtaining 
To(j0) = 1, we say that we have obtained perfect 
plant inversion for ω = 0.

Note that this is equivalent to obtaining zero 
steady-state error in response to a step reference 
change, which is a DC signal (i.e., has a frequency 
of 0) in the steady state, our original motivation for 
including integration in the controller.
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Dominant poles and zeros
Second, if we  obtain To(j0) = 1 via integration in 
the controller, then the rules for the approximate 
Bode plot show that the magnitude-frequency 
response of To(s) will remain at approximately 1
from ω = 0 up to ω = |d|, where |d| is magnitude of 
the pole or zero of To(s) closest to the imaginary 
axis.

The pole(s) and zero(s) closest to the imaginary 
axis are therefore referred to as the dominant
pole(s) and zero(s).
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Bandwidth of To(s)
If the nominal plant model is strictly proper and the 
controller is proper, as is normally the case, then 
To(s) is strictly proper and has a low-pass
frequency response overall.

⇒ The bandwidth of To(s) is determined by the 
magnitudes of the closed-loop poles and zeros.

Therefore, it is desirable, in general, to have the 
closed-loop poles and zeros be as far away from 
the imaginary axis as possible.
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Example #1
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Poles of To(s)
Observing the nominal complementary sensitivity 
function:

we see that root-locus analysis or the pole 
assignment method can be used to obtain a 
desired characteristic polynomial:

the roots of which are the poles of To(s).
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Zeros of To(s)
Observing the nominal complementary sensitivity 
function:

we see that the zeros of To(s) consist of the zeros 
of the controller, the roots of P(s), and the zeros of 
the plant model, the roots of Bo(s), unless they are 
cancelled by the denominator of the controller 
L(s).
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Effect of zeros of To(s)
Any zeros of To(s) that are closer to the imaginary 
axis than the dominant closed-loop pole will cause 
|To(jω)| to deviate from 1 before the (low-pass) 
bandwidth of To(s) is reached.  This produces 
overshoot if the zero is minimum-phase and 
undershoot if it is nonminimum-phase.
If all the zeros of To(s) are further from the 
imaginary axis than all the closed-loop poles, then 
the zeros will have only a small effect on the 
response properties (e.g., frequency response, 
step response), and the closed-loop bandwidth will 
be determined by the dominant pole.
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Example #2

−6 −5 −4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s



22

Example #2 (cont.)
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The minimum-phase zero at s = −0.5 produces an 
overshoot, while the minimum-phase zero at
s = −5 has little effect on the step response.
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What is a good bandwidth?
From Example #2 we see that we might want to 
limit the bandwidth of To(s) to avoid the overshoot 
produced by the zero at s = −0.5, i.e., move the 
closed-loop poles closer to the imaginary axis than 
the zero.

In the next set of lectures we will:

1. look at the fundamental limitations of a one-
d.o.f., unity-feedback control loop, and

2. determine what is a good closed-loop 
bandwidth given these limitations.
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