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Discrete Delta Domain Models

The shift operator (as described above) is used in the
vast majority of digital control and digital signal
processing work.  However, in some applications the
shift operator can lead to difficulties.  The reason for
these difficulties are explained below.
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Consider the first order continuous time equation

and the corresponding discretized shift operator
equation is of the form:

Expanding the differential explicitly as a limiting
operation, we obtain the following form of the
continuous time equation:

ρy(t) + y(t) =
dy(t)
dt

+ y(t) = u(t)

a2qy(tk) + a1y(tk) = b1u(tk)

lim
∆→0

(
y(t+ ∆) − y(t)

∆

)
+ y(t) = u(t)
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If we now compare the discrete model to the
approximate expanded form, namely

we then see that the fundamental difference between
continuous and discrete time is that the discrete
model describes absolute displacements (i.e. y(t+∆)
in terms of y(t), etc.) whereas the differential
equation describes the increment

�
�

�

�

�
�

�

�

∆
−∆+ )()(i.e. tyty

kk tttubtyatya −=∆=+∆+ +1112 where);()()(



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

This fundamental difficulty is avoided by use of an
alternative operator;  namely the Delta operator:

For sampled signals, an important feature of this
operation is the observation that

i.e., the Delta operator acts as a derivative in the limit as
the sampling period →0.  Note, however, that no
approximations will be involved in employing the Delta
operator for finite sampling periods since we will derive

δ (f(k∆)) ,
f((k + 1)∆)− f(k∆)

∆

lim
∆→0

[δ{f(k∆)}] = ρ(f(t))
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exact model descriptions relevant to this operator at the
given sampling rate.

We next develop an alternative discrete transform (which
we call the Delta transform) which is the appropriate
transform to use with the Delta operator, i.e.

Time Domain Transfer Domain

q
δ

Z-transform
delta transform
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Discrete Delta Transform
We define the Discrete Delta Transform pair as:

The Discrete Delta Transform can be related to Z-
transform by noting that

where  Yq(z) = Z[(k∆)].  Conversely

D [y(k∆)]
�
= Yδ(γ) =

∞∑
k=0

(1 + γ∆)−ky(k∆)∆

D−1 [Yδ(γ)] = y(k∆) =
1

2πj

∮
(1 + γ∆)k−1Yδ(γ)dγ

Yδ(γ) = ∆Yq(z)
∣∣∣
z=∆γ+1

Yq(z) =
1
∆
Yδ(γ)

∣∣∣
γ= z−1

∆
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❖ The next slide shows a table of Delta transform pairs;
❖ The slide after next lists some Delta transform properties.
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Table 12.3: Delta Transform Table

f [k] (k ≥ 0) D [f [k]] Region of Convergence

1
1 + ∆γ

γ

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

1
∆
δK [k] 1 |γ| < ∞

µ[k] − µ[k − 1]
1
∆

|γ| < ∞

k
1 + ∆γ

∆γ2

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

k2 (1 + ∆γ)(2 + ∆γ)
∆2γ3

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

eα∆k α ∈ C
1 + ∆γ

γ − eα∆−1
∆

∣∣∣∣γ +
1
∆

∣∣∣∣ > eα∆

∆

keα∆k α ∈ C
(1 + ∆γ)eα∆

∆
(
γ − eα∆−1

∆

)2

∣∣∣∣γ +
1
∆

∣∣∣∣ > eα∆

∆

sin(ωo∆k)
(1 + ∆γ)ωosinc(ωo∆)

γ2 + ∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

where sinc(ωo∆) =
sin(ωo∆)
ωo∆

and φ(ωo,∆) =
2(1 − cos(ωo∆))

∆2

cos(ωo∆k)
(1 + ∆γ)(γ + 0.5∆φ(ωo,∆))
γ2 + ∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆
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Table 12.4: Delta Transform properties.  Note that Fi(γ) = D[fi[k]],
µ[k] denotes, as usual, a unit step,  f[∞] must be well
defined and the convolution property holds provided
that  f1[k] = f2[k] = 0 for all k < 0.

f [k] D [f [k]] Names
l∑

i=1

aifi[k]
l∑

i=1

aiFi(γ) Partial fractions

f1[k + 1] (∆γ + 1)(F1(γ) − f1[0]) Forward shift
f1[k + 1]− f1[k]

∆
γF1(γ)− (1 + γ∆)f1[0] Scaled difference

k−1∑
l=0

f [l]∆
1
γ
F (γ) Reimann sum

f [k − 1] (1 + γ∆)−1F (γ) + f [−1] Backward shift
f [k − l]µ[k − l] (1 + γ∆)−lF (γ)

kf [k] −1 + γ∆
∆

dF (γ)
dγ

1
k
f [k]

∫ ∞

γ

F (ζ)
1 + ζ∆

dζ

lim
k→∞

f [k] lim
γ→0

γF (γ) Final value theorem

lim
k→0

f [k] lim
γ→∞

γF (γ)
1 + γ∆

Initial value theorem
k−1∑
l=0

f1[l]f2[k − l]∆ F1(γ)F2(γ) Convolution

f1[k]f2[k]
1

2πj

∮
F1(ζ)F2

(
γ − ζ

1 + ζ∆

)
dζ

1 + ζ∆
Complex convolution

(1 + a∆)kf1[k] F1

(
γ − a

1 + a∆

)
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Why is the Delta Transform sometimes
better than the Z-Transform?

As can be seen from by comparing the Z-transform
given in Table 12.1 with those for the Laplace
Transform given in Table 4.1, expressions in Laplace
and Z-transform do not exhibit an obvious structural
equivalence.  Intuitively, we would expect such an
equivalence to exist when the discrete sequence is
obtained by sampling a continuous time signal.
We will show that this indeed happens if we use the
alternative delta operator.
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In particular, by comparing the entries in Table 12.3
(The Delta Transform) with those in Table 4.1 (The
Laplace Transform) we see that a key property of
Delta Transforms is that they converge to the
associated Laplace Transform as ∆→0, i.e.

We illustrate this property by a simple example:

lim
∆→0

Yδ(γ) = Y (s)
∣∣∣
s=γ
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Example 12.9

Say that  {y[k]} arises from sampling, at period ∆, a
continuous time exponential  eβt.  Then

and, from Table 12.3

In particular, note that as ∆→0,                      which
is the Laplace transform of eβt.
Hence we confirm the close connections between the
Delta and Laplace Transforms.

y[k] = eβk∆

Yδ(γ) =
1 + γ∆

γ −
[

eβ∆−1
∆

]

βγ
γδ −

→ 1)(Y
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How do we use Delta Transforms?

We saw earlier in this chapter that Z-transforms
could be used to convert discrete time models
expressed in terms of the shift operator into algebraic
equations. Similarly, the Delta Transform can be
used to convert difference equations (expressed in
terms of the Delta operator) into algebraic equations.
The Delta Transform also provides a smooth
transition from discrete to continuous time as the
sampling rate increases.
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We next examine several properties of discrete time
models, beginning with the issue of stability.
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Discrete System Stability
Relationship to Poles
We have seen that the response of a discrete system
(in the shift operator) to an input  U(z) has the form

where  α1 … αn are the poles of the system.
We then know, via a partial fraction expansion, that
Y(z) can be written as

Y (z) = Gq(z)U(z) +
fq(z, xo)

(z − α1)(z − α2) · · · (z − αn)

Y (z) =
n∑

j=1

βjz

z − αj
+ terms depending on U(z)
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where, for simplicity, we have assumed non repeated
poles.

The corresponding time response is

Stability requires that [αj]k → 0, which is the case if
[αj] < 1.

Hence stability requires the poles to have magnitude
less than 1, i.e. to lie inside a unit circle centered at
the origin.

y[k] = βj [αj ]
k + terms depending on the input
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Delta Domain Stability

We have seen that the delta domain is simply a shifted
and scaled version of the Z-Domain, i.e.
                                        It follows that the Delta
Domain stability boundary is simply a shifted and
scaled version of the Z-domain stability boundary.  In
particular, the delta domain stability boundary is a
circle of radius 1/∆ centered on - 1/∆ in the γ domain.
Note again the close connection between the
continuous s-domain and discrete δ-domain, since the
δ-stability region approaches the s-stability region
(OLHP) as ∆ → 0.

.1and1 +∆==
∆
− γγ ZZ
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Discrete Models for Sampled
Continuous Systems

So far in this chapter, we have assumed that the
model is already given in discrete form.  However,
often discrete models arise by sampling the output of
a continuous time system.  We thus next examine
how to obtain discrete time models which link the
sampled output of a continuous time system to a
sampled input.

We are thus interested in modelling a continuous
system operating under computer control.
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A typical way of making this interconnection is
shown on the next slide.

The analogue to digital converter (A/D in the figure)
implements the process of sampling (at some fixed
period ∆).  The digital to analogue converter (D/A in
the figure) interpolates the discrete control action
into a function suitable for application to the plant
input.
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Figure 12.4: Digital control of a continuous time 
plant

input

Digital
controller

A/D

Plant
output

D/A
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Details of how the plant input is
reconstructed

When a zero order hold is used to reconstruct  u(t),
then

Note that this is the staircase signal shown earlier in
Figure 12.2.  Discrete time models typically relate
the sampled signal  y[k]  to the sampled input  u[k].
Also a digital controller usually evaluates  u[k]
based on  y[j] and r[j], where {r(k∆)} is the reference
sequence and  j ≤ k.

u(t) = u[k] for k∆ ≤ t < (k + 1)∆
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Using Continuous Transfer
Function Models

We observe that the generation of the staircase signal
u(t),  from the sequence  {u(k)} can be modeled as in
Figure 12.5.

us(t) 1 − e−s∆

s∆

u[k] m(t)

ZOH

Figure 12.5:  Zero order hold
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Figure 12.6: Discrete time equivalent model with 
zero order hold

Gh0(s)
∆

Go(s)
y(t)us(t)u(k∆)

y(k∆)

∆

Combining the circuit on the previous slide with the 
plant transfer function G0(s), yields the equivalent 
connection between input sequence, u(k∆), and 
sampled output y(k∆) as shown below:
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We saw earlier that the transfer function of a discrete
time system, in Z-transform form is the Z-transform
of the output (the sequence  {y[k]}) when the input,
u[k], is a Kronecker delta, with zero initial
conditions. We also have, from the previous slide,
that if u[k] = δK[k], then the input to the continuous
plant is a Dirac Delta, i.e. us(t) = δ(t).  If we denote
by Heq(z) the transfer function from Uq(z) to Yq(z),
we then have the following result.

Hoq(z) = Z [the sampled impulse response of Gh0(s)Go(s)]

= (1− z−1)Z [the sampled step response of Go(s)]
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Example 12.10

Consider the d.c. servo motor problem used as
motivation for this chapter.  The continuous time
transfer function is

Using the result on the previous slide we see that
Go(s) =

b0
s(s+ a0)

Hoq(z) =
(z − 1)

z
Z

{
b0
a0

(k∆) − b0
a2
0

+
b0
a2
0

e−δk

}

=
(z − 1)
a2
0

{
a0b0z∆
(z − 1)2

− b0z

z − 1
+

b0
z − e−a0∆

}

=

(
b0a0∆ + b0e

−a0∆ − b0
)
z − b0a0∆e−a0∆ − b0e

−a0∆ + b0

a2
0(z − 1)(z − e−a0∆)
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This model is of the form:

Note that this is a second order transfer function with a
first order numerator.
The reader may care to check that this is consistent
with the input-output model which was stated without
proof in the introduction i.e.

We have thus fulfilled one promise of showing where
this model comes from.
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