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Chapter 13

 Digital Control
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Chapter 12 was concerned with building models for
systems acting under digital control.

We next turn to the question of control itself.
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Topics to be covered include:
❖ why one cannot simply treat digital control as if it were

exactly the same as continuous control, and

❖ how to carry out designs for digital control systems so that
the at-sample response is exactly treated.



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Having the controller implemented in digital form
introduces several constraints into the problem:
(a) the controller sees the output response only at the sample

points,

(b) an anti-aliasing filter will usually be needed prior to the
output sampling process to avoid folding of high 
frequency signals (such as noise) onto lower frequencies
where they will be misinterpreted; and

(c) the continuous plant input bears a simple relationship to
the (sampled) digital controller output, e.g. via a zero 
order hold device.
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A key idea is that if one is only interested in the at-
sample response, these samples can be described by
discrete time models in either the shift or delta
operator.  For example, consider the sampled data
control loop shown below
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Figure 13.1:  Sampled data control loop
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If we focus only on the sampled response then it is
straightforward to derive an equivalent discrete model
for the at-sample response of the hold-plant-anti-
aliasing filter combination.  This was discussed in
Chapter 12.
We use the transfer function form, and recall the
following forms for the discrete time model:
(a)  With anti-aliasing filter  F

(b) Without anti-aliasing filter

{ })()()(),(][ 0000 ofresponseimpulsesampled sGsGsFZzGFG hqh

{ })()(),(][ 0000 ofresponseimpulsesampled sGsGZzGG hqh
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Control Ideas

Many of the continuous time control ideas studied in
earlier chapters carry over directly to the discrete
time case.  Examples are given below.
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The discrete sensitivity function is

The discrete complementary sensitivity function is

These can be used and understood in essentially the
same way as they are used in the continuous time
case.

Soq(z) =
Eq(z)
Rq(z)

=
1(

1 + Cq(z) [FGoGh0]q (z)
)

Toq(z) =
Yfq(z)
Rq(z)

=
Cq(z) [FGoGh0]q (z)(

1 + Cq(z) [FGoGh0]q (z)
)
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Are there special features of
digital control models?

Many ideas carry directly over to the discrete case.
For example, one can easily do discrete pole
assignment.  Of course, one needs to remember that
the discrete stability domain is different from the
continuous stability domain.  However, this simply
means that the desirable region for closed loop poles
is different in the discrete case.

We are led to ask if there are any real conceptual
differences between continuous and discrete.
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Zeros of Sampled Data Systems
We have seen earlier that open loop zeros of a system
have a profound impact on achievable closed loop
performance.  The importance of an understanding of
the zeros in discrete time models is therefore not
surprising.  It turns out that there exist some subtle
issues here as we now investigate.

If we use shift operator models, then it is difficult to see
the connection between continuous and discrete time
models.  However, if we use the equivalent delta
domain description, then it is clear that discrete transfer
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Functions converge to the underlying continuous
time descriptions.  In particular, the relationship
between continuous and discrete (delta domain)
poles is as follows (See Chapter 12):

where            denote the discrete (delta domain)
poles and continuous time poles respectively.

ii pp ,δ

pδ
i =

epi∆ − 1
∆

; i = 1, . . . n
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The relationship between continuous and discrete zeros
is more complex.  Perhaps surprisingly, all discrete
time systems turn out to have relative degree 1
irrespective of the relative degree of the original
continuous system.

Hence, if the continuous system has n poles and m(< n)
zeros then the corresponding discrete system will have
n poles and (n-1) zeros. Thus, we have  n-m+1 extra
discrete zeros.  We therefore (somewhat artificially)
divide the discrete zeros into two sets.
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1. System zeros:                   Having the property

where       are the discrete time zeros (expressed
in the delta domain for convenience) and  zi  are
the zeros of the underlying continuous time
system.

δδ
mzz ,...,1

δ
iz

lim
∆→0

zδ
i = zi i = 1, . . . , m
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2. Sampling zeros:                     Having the property

Of course, if m = n - 1 in the continuous time
system, then there are no sampling zeros.  Also,
note that as the sampling zeros tend to infinity for
∆→0, they then contribute to the continuous
relative degree.  This shows the consistency
between the two types of model.
We illustrate by a simple example.

δδ
1,...,1 −+ nzzm

lim
∆→0

∣∣zδ
i

∣∣ =∞ i = m+ 1, . . . , n − 1
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Example 13.1

Consider the continuous time servo system of
Example 3.4, having continuous transfer function

where n = 2, m = 0.  Then we anticipate that
discretizing would result in one sampling zero,
which we verify as follows.

Go(s) =
1

s(s+ 1)
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With a sampling period of 0.1 seconds, the exact
shift domain digital model is

where  K = 0.0048,      = -0.967 and  α0 = 0.905.
The corresponding exact delta domain digital model
is

where  K′ = 0.0048,      = -19.67 and α0 = -0.9516.

qz0

qz0

Goq(z) = K
z − zq

o

(z − 1)(z − αo)

Gδ(γ) =
K ′(γ − zδ

o)
γ(γ − α′

o)
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We see that (in the delta form), the discrete system
has a pole at γ=0  and a pole at  γ=-0.9516.  These
are consistent with the continuous time poles at  s=0
and s=-1.

Note, however, that the continuous system has
relative degree 2, whereas the discrete system has
relative degree 1 and a sampling zero at -19.67 (in
the delta formulation).

The next slide shows a plot of the sampling zero as a
function of sampling period.
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Figure 13.2: Location of sampling zero with different
sampling periods.  Example 13.1
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In the control of discrete time systems special care
needs to be taken with the sampling zeros.  For
example, these zeros can be non-minimum phase
even if the original continuous system is minimum
phase.  Consider, for instance, the minimum phase,
continuous time system with transfer function given
by

Go(s) =
s+ 4
(s+ 1)3
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For this system, the shift domain zeros of [G0Gh0]q(z)
for two different sampling periods are

∆ = 2[s] � zeros at -0.6082 and -0.0281
∆ = 0.5[s] � zeros at -1.0966 and 0.1286

Note that ∆ = 0.5[s], the pulse transfer function has a
zero outside the stability region.

Thus, one needs to be particularly careful of sampling
zeros when designing a digital control system.
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