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Chapter 3

Modeling
Topics to be covered include: 
! How to select the appropriate model complexity
! How to build models for a given plant
! How to describe model errors.
! How to linearize nonlinear models

It also provides a brief introduction to certain commonly
used models, including
! State space models
! High order differential and high order difference equation models
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The Raison d'être for Models

The basic idea of feedback is tremendously
compelling. Recall the mould level control problem
from Chapter 2. Actually, there are only three ways
that a controller could manipulate the valve: open,
close or leave it as it is. Nevertheless, we have seen
already that the precise way this is done involves
subtle trade-offs between conflicting objectives, such
as speed of response and sensitivity to measurement
noise.
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The power of a mathematical model lies in the fact 
that it can be simulated in hypothetical situations, be 
subject to states that would be dangerous in reality, 
and it can be used as a basis for synthesizing controllers.
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Model Complexity

In building a model, it is important to bear in mind
that all real processes are complex and hence any
attempt to build an exact description of the plant is
usually an impossible goal. Fortunately, feedback is
usually very forgiving and hence, in the context of
control system design, one can usually get away with
rather simple models, provided they capture the
essential features of the problem.



 Goodwin, Graebe, Salgado ©, Prentice Hall 2000Chapter 3

We introduce several terms:
! Nominal model. This is an   approximate description of

the plant used for control system design.

! Calibration model.  This is a more comprehensive
description of the plant. It includes other features not used
for control system design but which have a direct bearing
on the achieved performance.

! Model error. This is the difference between the nominal
model and the calibration model.  Details of this error may
be unknown but various bounds may be available for it.
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Building Models
A first possible approach to building a plant model is to postulate a
specific model structure and to use what is known as a black box
approach to modeling.  In this approach one varies, either by trial and
error or by an algorithm, the model parameters until the dynamic
behavior of model and plant match sufficiently well.
An alternative approach for dealing with the modeling problem is to
use physical laws (such as conservation of mass, energy and
momentum) to construct the model.  In this approach one uses the fact
that, in any real system, there are basic phenomenological laws which
determine the relationships between all the signals in the system.
In practice, it is common to combine both black box and
phenomenological ideas to building a model.
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Control relevant models are often quite simple
compared to the true process and usually combine
physical reasoning with experimental data.



Types of plant models
Physical systems (plants) can typically be described 
as dynamical systems, and consequently they can 
be modeled using differential equations for 
continuous-time models and difference equations for 
discrete-time models.

Commonly used forms for modeling dynamical 
systems are:

– State space models (continuous or discrete time)

– Higher-order differential or difference equations



Simulating/solving models
A linear or nonlinear differential or difference equation can be 
simulated (i.e., solved numerically) in the time domain using 
ODE solvers, such as those available in Matlab.
An analytical solution can be obtained for a linear time-
invariant (LTI) system.
Two powerful tool that can be used for LTI systems are:
1. the Laplace transform, which transforms a differential equation into 

an algebraic equation, and
2. the z-transform, which transforms a difference equation into an 

algebraic equation.

From this algebraic equation, a transfer function can be 
obtained, which provides important information about the 
response properties of the system, such as its frequency 
response and its stability.



Analyzing control systems
If the plant model is linear, and the other parts 
of the control loop can be implemented using 
linear components, then transfer functions for 
the entire control loop can be derived.

As we will see later in this course, these 
transfer functions offer a power tool for 
analysis and synthesis of control systems.

Consequently, for nonlinear systems we will 
typically attempt to derive an approximate 
linear model, i.e., linearize a nonlinear model.
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State Space Models

For continuous time systems

For discrete time systems

dx

dt
= f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

x[k + 1] = fd(x[k], u[k], k)
y[k] = gd(x[k], u[k], k)
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Linear State Space Models

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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Example 3.3

Consider the simple electrical network shown in
Figure 3.1.  Assume we want to model the voltage
v(t)

On applying fundamental network laws we obtain
the following equations:

Figure 3.1:  Electrical
network.  State space model.
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vf (t)

i(t)R1

L C v(t)R2

v(t) = L
di(t)
dt

vf (t) − v(t)
R1

= i(t) + C
dv(t)
dt

+
v(t)
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These equations can be rearranged as follows:

We have a linear state space model with

di(t)
dt

=
1
L

v(t)

dv(t)
dt

= − 1
C

i(t) −
(

1
R1C

+
1

R2C

)
v(t) +

1
R1C

vf (t)

A =

[
0 1

L

− 1
C −

(
1

R1C + 1
R2C

)]
; B =

[
0
1

R1C

]
; C =

[
0 1

]
; D = 0
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Example 3.4

Consider a separately excited d.c. motor. Let va(t)
denote the armature voltage, θ(t) the output angle. A
simplied schematic diagram of this system is shown
in Figure 3.2.

Figure 3.2:  Simplified model of a d.c. motor
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ia(t)

va(t)
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A laboratory servo kit
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A demonstration robot containing
several servo motors
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Let
J  - be the inertia of the shaft
τe(t)  - the electrical torque
ia(t)  - the armature current
k1; k2  - constants
R  - the armature resistance

Application of well known principles of physics tells
us that the various variables are related by:
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Jθ̈(t) = τe(t) = k1ia(t)

vω(t) = k2θ̇(t)

ia(t) =
va(t) − k2θ̇(t)

R

d

dt

(
x1(t)
x2(t)

)
=

[
0 1
0 −k1k2

R

] [
x1(t)
x2(t)

]
+

[
0
k1
R

]
va(t)
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Solution of Continuous Time
State Space Models

A key quantity in determining solutions to state
equations is the matrix exponential defined as

The explicit solution to the linear state equation is
then given by

eAt = I +
∞∑

i=1

1
i!
Aiti

x(t) = eA(t−to)xo +
∫ t

to

eA(t−τ)Bu(τ )dτ
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