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Zeros

The effect that zeros have on the response of a
transfer function is a little more subtle than that due
to poles.  One reason for this is that whilst poles are
associated with the states in isolation,  zeros rise
from additive interactions amongst the states
associated with different poles.  Moreover, the zeros
of a transfer function depend on where the input is
applied and how the output is formed as a function
of the states.
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Consider a system with transfer function given by

H(s) =
−s + c

c(s + 1)(0.5s + 1)
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Figure 4.6:  Effect of different zero locations on the step
                    response
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These results can be explained as we show on the next slides.
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Analysis of Effect of Zeros on
Step Response

A useful result is:
Lemma 4.1:  Let H(s) be a strictly proper function
of the Laplace variable s with region of convergence
ℜ {s} > -α. Denote the corresponding time function
by h(t),

Then, for any z0 such that ℜ {z0} > -α, we have
H(s) = L [h(t)]

∫ ∞

0

h(t)e−z0tdt = lim
s→z0

H(s)
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Non minimum phase zeros and undershoot.
Assume a linear, stable system with transfer function
H(s) having unity d.c. gain and a zero at s=c, where
c∈ !+.  Further assume that the unit step response,
y(t), has a settling time ts (see Figure 4.3) i.e.
                                                Then y(t) exhibits an
undershoot Mu which satisfies

( ) .,11)(1 sttty ≥∀<<−≥≥+ δδ

Mu ≥ 1 − δ

ects − 1
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The lemma above establishes that, when a system
has non minimum phase zeros, there is a trade off
between having a fast step response and having

small undershoot.
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Slow zeros and overshoot. Assume a linear, stable
system with transfer function H(s) having unity d.c.
gain and a zero at s=c, c<0. Define v(t) = 1 - y(t),
where y(t) is the unit step response. Further assume
that
A-1  The system has dominant pole(s) with real part
         equal to -p, p>0
A-2  The zero and the dominant pole are related by

η
�
=

∣∣∣∣ cp
∣∣∣∣ � 1
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A-3  The value of δ defining the settling time (see
Figure 4.3) is chosen such that there exists 0 < K
which yields

Then the step response has an overshoot which is
bounded below according to

|v(t)| < Ke−pt ∀t ≥ ts

Mp ≥ 1
e−cts − 1

(
1 − Kη

1 − η

)
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