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Root Locus (RL)

Another classical tool used to study stability of
equations of the type given above is root locus. The
root locus approach can be used to examine the
location of the roots of the characteristic polynomial
as one parameter is varied.
Consider the following equation

with λ ≥ 0 and M, N have degree  m, n respectively.

1 + λF (s) = 0 where F (s) =
M(s)
D(s)
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“Properness” of rational
transfer functions

The difference in degree between D(s) and M(s)
is the relative degree: nr = n − m.

If m < n (i.e., nr > 0), we say that the transfer 
function is strictly proper.
If m = n (i.e., nr = 0), we say that the transfer 
function is biproper.
If m · n (i.e., nr ≥ 0), we say that the transfer 
function is proper.
If m > n (i.e., nr < 0), we say that the transfer 
function is improper.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 5

Root locus building rules include:
R1 The number of roots of the equation (1 + λF(s) = 0) is

equal to max{m,n}.  Thus, the root locus has max{m,n}
branches.

R2 From (1 + λF(s) = 0) we observe that s0 belongs to the
root locus (for λ ≥ 0) if and only if

arg F (s0) = (2k + 1)π for k ∈ Z.
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R3 From equation (1 + λF(s) = 0) we observe that if s0 belongs
to the root locus, the corresponding value of λ is λ0 where

R4 A point s0 on the real axis, i.e. s0 ∈ �, is part of the root
locus (for λ ≥ 0), if and only if, it is located to the left of an
odd number of poles and zeros (so that R2 is satisfied).

R5 When λ is close to zero, then n of the roots are located at the
poles of F(s), i.e. at p1, p2, …, pn and, if n < m, the other m -
n roots are located at ∞ (we will be more precise on this
issue below).

λ0 =
−1

F (s0)
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R6 When  λ is close to ∞, then m of these roots are located
at the zeros of F(s), i.e. at c1, c2, …, cm and, if n > m, the
other n - m roots are located at ∞ (we will be more
precise on this issue below).

R7 If n > m, and  λ tends to ∞, then, n - m roots
asymptotically tend to ∞, following asymptotes which
intersect at (σ,0), where

The angles of these asymptotes are η1, η2, …, ηm-n,
where

ηk =
(2k − 1)π

n − m
; k = 1, 2, . . . , n − m

σ =
∑n

i=1 pi −
∑m

i=1 ci

n − m
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R8 If n < m, and λ tends to zero, then, m-n roots
asymptotically tend to ∞, following asymptotes which
intersect at (σ, 0), where

The angles of these asymptotes are η1, η2, … ηm-n, where

R9 When the root locus crosses the imaginary axis, say at s =
±jwc, then wc can be computed either using the Routh
Hurwitz algorithm, or using the fact that s2 + wc

2 divides
exactly the polynomial D(s) + λ M(s), for some positive
real value of λ.

σ =
∑n

i=1 pi −
∑m

i=1 ci

m − n

ηk =
(2k − 1)π

n − m
; k = 1, 2, . . . , m − n
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Example

Consider a plant with transfer function G0(s) and a
feedback controller with transfer function C(s),
where

We want to know how the location of the closed
loop poles change for α moving in �+.

Go(s) =
1

(s − 1)(s + 2)
and C(s) = 4

s + α

s
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Figure 5.3:  Locus for the closed loop poles when the 
                   controller zero varies 
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Nominal Stability using
Frequency Response

A classical and lasting tool that can be used to assess the stability
of a feedback loop is Nyquist stability theory. In this approach,
stability of the closed loop is predicted using the open loop
frequency response of the system. This is achieved by plotting a
polar diagram of the product G0(s)C(s) and then counting the
number of encirclements of the (-1,0) point. We show how this
works below.
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Nyquist Stability Analysis
The basic idea of Nyquist stability analysis is as follows:
assume you have a closed oriented curve Cs in  s  which
encircles Z zeros and P poles of the function F(s). We assume
that there are no poles on Cs.
If we move along the curve Cs in a defined direction, then the
function F(s) maps Cs into another oriented closed curve, CF
in  F .
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Illustration:  Single zero function and Nyquist path Cs in  s 

c inside Cs c outside Cs
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Observations

Case (a):  c inside Cs

We see that as s moves clockwise along Cs, the angle
of F(s) changes by -2π[rad], i.e. the curve CF will
enclose the origin in  F  once in the clockwise
direction.

Case (b):  c outside Cs

We see that as s moves clockwise along Cs, the angle
of F(s) changes by 0[rad], i.e. the curve CF will
enclose the origin in  F  once in the clockwise
direction.
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More general result:

Consider a general function F(s) and a closed curve
Cs in  s  .  Assume that F(s) has Z zeros and P poles
inside the region enclosed by Cs.  Then as s moves
clockwise along Cs, the resulting curve CF encircles
the origin in   F  Z-P times in a clockwise direction.
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s

Cr

Ci

r → ∞

To test for poles in the Right half Plane, we choose Cs as the 
following Nyquist path

As  s  traverses the Nyquist path in  s , then we plot a polar plot 
of F = G0C.  Actually we shift the origin to “-1” so that 
encirclements of -1 count the zeros of G0C + 1 in the right 
half plane. 
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Final Result

Theorem 5.1:
If a proper open loop transfer function G0(s)C(s) has
P poles in the open RHP, and none on the imaginary
axis, then the closed loop has Z poles in the open
RHP if and only if the polar plot G0(sw)C(sw)
encircles the point (-1,0) clockwise N=Z-P times.
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Discussion
❖ If the system is open loop stable, then for the closed loop to

be internally stable it is necessary and sufficient that no
unstable cancellatgions occur and that the Nyquist plot of
G0(s)C(s) does not encircle the point (-1,0).

❖ If the system is open loop unstable, with P poles in the open
RHP, then for the closed loop to be internally stable it is
necessary and sufficient that no unstable cancellations occur
and that the Nyquist plot of G0(s)C(s) encircles the point
(-1,0) P times counterclockwise.

❖ If the Nyquist plot of G0(s)C(s) passes exactly through the
point (-1,0), there exists an w0 ∈  � such that F(jw0) = 0, i.e.
the closed loop has poles located exactly on the imaginary
axis. This situation is known as a critical stability condition.
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Figure 5.6:  Modified Nyquist path (To account for open loop
                   poles or zeros on the imaginary axis).
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Theorem 5.2 (Nyquist theorem):
Given a proper open loop transfer function
G0(s)C(s) with P poles in the open RHP, then the
closed loop has Z poles in the open RHP if and only
if the plot of G0(s)C(s) encircles the point (-1,0)
clockwise N=Z-P times when s travels along the
modified Nyquist path.
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