
Chapter 12 - Solved Problems

Solved Problem 12.1. The Z-transform of a signal f [k] is given by

Fq(z) =
2z6 − z5 + 3z3 + 2z2

z7 + 2z6 + z5 + z4 + 0.5
=
n(z)
d(z)

(1)

where n(z) and d(z) are the numerator and denominator polynomials respectively
Compute f [3].

Solutions to Solved Problem 12.1

Solved Problem 12.2. Assume that the response of a discrete time system to a Kronecker delta (with
zero initial conditions) is given by

h[k] = 2(0.5)k − 2(0.2)k (2)

12.2.1 Find the system transfer function.

12.2.2 Find the system recursive equation in shift operator form.

Solutions to Solved Problem 12.2

Solved Problem 12.3. A discrete time system, with input u[k] and output y[k], has a transfer function
given by

Gq(z) =
z − 0.8

z2 − 1.3z + 0.42
(3)

Compute the unit step response with zero initial conditions.

Solutions to Solved Problem 12.3

Solved Problem 12.4. The transfer function of a discrete time system is given by

Gq(z) =
0.5z

(z + 0.5)(z − 0.5)
(4)

Compute, if it exists, the steady state response of the system to a unit constant input (∀k ≥ 0) and
initial conditions y[−1] = −1, y[−2] = 3.

Solutions to Solved Problem 12.4

Solved Problem 12.5. A signal f(t) = 2− 2 cos(2π t) is sampled every ∆ [s].
Compute the Z-transform of the sampled sequence f [k] for ∆ = 0.1 [s].

Solutions to Solved Problem 12.5

Solved Problem 12.6. Consider a continuous time transfer function

Go(s) = 3
−s+ 1

(s+ 1)(s+ 3)
(5)

Compute the associated pulse-transfer function, Hoq(z), assuming that the sampling period is ∆ = 0.1
[s] and that a zero order hold is employed.
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Solutions to Solved Problem 12.6

Solved Problem 12.7. A discrete time system has a transfer function given by

Gq(z) =
0.1(z − 0.2)

(z − 0.8)(z − 0.9)
(6)

Assume that the input is a sine wave of the form u[k] = 2 cos(0.2πk). Compute the steady state output,
y[k], if it exists.

Solutions to Solved Problem 12.7
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Chapter 12 - Solutions to Solved Problems

Solution 12.1. To solve this problem we could compute the analytical expression for the inverse Z-
transform, and then we could evaluate that expression at k = 3. An alternative method is to recall
that

Fq(z) = f [0] + f [1]z−1 + f [2]z−2 + f [3]z−3 + f [4]z−4 + . . . (7)

i.e., f [k] can be computed by expanding the fraction in (1) in powers of z−1. This can be done by
dividing n(z) by d(z) up to the term z−3, its coefficient is equal to f [3].

The division can be performed using the MATLAB command deconv. This requires us to perform the
division of z3n(z) by d(z). If we do that we obtain

Fq(z) = 2z−1 − 5z−2 + 8z−3 + . . . (8)

Therefore f [3] = 8.

Solution 12.2.

12.2.1 The transfer function is the Z-transform of the system response to a Kronecker delta (with zero
initial conditions). Hence (use Table 12.1 in the book.)

Hq(z) = Z [h[k]] =
2z

z − 0.5
− 2z
z − 0.2

=
0.6z

(z − 0.5)(z − 0.2)
(9)

This result can also be obtained using a symbolic mathematical software package, such as MAPLE.
In this case, the MAPLE code would be

>h(k):=2*(1/2)^ k-2*(1/5)^k;
>H(z):=simplify(ztrans(h(k),k,z));

12.2.2 Assuming that the system input is u[k] and the system output as y[k], with Z-transforms Uq(z)
and Yq(z), respectively, then

Yq(z)
Uq(z)

= Hq(z) =⇒ z2Yq(z)− 0.7zYq(z) + 0.1Yq(z) = 0.6zUq(z) (10)

=⇒ Yq(z)− 0.7z−1Yq(z) + 0.1z−2Yq(z) = 0.6z−1Uq(z) (11)

=⇒ y[k]-0.7y[k-1]+0.1y[k-2]=0.6u[k-1] (12)

Solution 12.3. The Z-transform of the input is given by

Uq(z) =
z

z − 1
(13)
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Then the Z-transform of the output is given by

Yq(z) = z
z − 0.8

(z − 0.6)(z − 0.7)(z − 1)︸ ︷︷ ︸
Ỹq(z)

(14)

If we expand Ỹq(z) in partial fractions1 we have

Yq(z) = z

[
5

3(z − 1)
− 5
z − 0.6

+
10

3(z − 0.7)

]
=

5z
3(z − 1)

− 5z
z − 0.6

+
10z

3(z − 0.7)
(15)

Applying the inverse Z-transform we finally obtain

y[k] =
5
3
µ[k]− 5(0.6)k +

10
3

(0.7)k; ∀k ≥ 0 (16)

Note the trick used in equation (15), where the whole expression has been factorized by z. This facilitates
the computation of the inverse transform, otherwise a delay has to be introduced in the time function.

The step response of a linear system can also be computed using a software package similar to MAPLE,
using code similar to

>Gq(z):=(z-0.8)/((z-0.6)*(z-0.7));
>invztrans(Gq(z)*z/(z-1),z,k);

Solution 12.4. The system has natural frequencies at 0.5 and −0.5, since both have magnitude less than
one, then the system is stable. The system stability in conjunction with the nature of the input (a constant)
yields an output which converges to a constant.

Note that, in this case, the initial conditions have no effect whatsoever on the steady state behavior,
since they only modify the initial amplitude of the natural modes, which vanish as time progresses.

To compute the steady state value, we use the final value theorem (see Table 12.2 in the book), to obtain

y[∞] = lim
z→1

(z − 1)Yq(z) = lim
z→1

(z − 1)
[
Gq(z)

z

z − 1

]
= Gq(1) =

2
3

(17)

Note that Gq(1) is the d.c. gain of the system.

Solution 12.5. The sampled signal is given by

f [k] = 2− 2 cos(0.2πk) (18)

Using Table 12.1 in the book we have that

Fq(z) =
2z
z − 1

− 2z(z − cos(0.2π))
z2 − 2z cos(0.2π) + 1

=
0.38z(z + 1.0)

(z − 1)(z2 − 1.618z + 1)
(19)

1For this you can use the MATLAB command residue.
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Solution 12.6. We first compute the unit step response of Go(s), this is given by

g(t) = L−1

[
Go(s)
s

]
= L−1

[
3(−s+ 1)

(s+ 1)(s+ 3)s

]
(20)

= L−1

[
1
s
− 3
s+ 1

+
2

s+ 3

]
= 1− 3e−t + 2e−3t (21)

To apply (12.13.4) from the book, we next need to compute the Z-transform of the sequence g[k]
4
=

g(k∆):

Z [g[k]] = Z
[
1− 3(e−∆) + 2(e−3∆)

]
(22)

=
z

z − 1
− 3z
z − e−∆

+
2z

z − e−3∆
=

z

z − 1
− 3z
z − 0.9048

+
2z

z − 0.7408
(23)

= z
−0.2328 z + 0.2575

(z − 1)(z − 0.9048)(z − 0.7408)
(24)

We are finally in position to apply (12.13.4) from the book. This yields

Hoq(z) = (1− z−1)Z [g[k]] =
−0.2328 z + 0.2575

(z − 0.9048)(z − 0.7408)
(25)

The above computation (very painful for a more complicated Go(s)) can be done using the MATLAB
command c2d, as shown in the following code

>>Go=tf([-3 3],[1 4 3]);
>>Hoq=c2d(Go,0.1,’zoh’)

Solution 12.7. We observe that the system is stable (its poles are located inside the unit disk). Hence
the steady state output can be computed using the frequency response concepts explained in section §12.15
of the book.

Thus, the key quantity is Gq(ejθ) where, in this example, θ = 0.2π. This can be computed using the
MATLAB command freqresp.

Gq(ej0.2π) = 0.242e−j2.51 =⇒ y[k] = 0.484 cos(0.2πk − 2.51); in steady state (26)
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