
Chapter 13 - Solved Problems

Solved Problem 13.1. Consider a continuous-time system having nominal model given by

Go(s) =
2

(s+ 1)(s+ 2)
(1)

Assume that this system is under digital control using a zero-order sample and hold device, with sam-
pling period ∆. Is there a sampling period such that the sampling zero is located at z = −1?

Solutions to Solved Problem 13.1

Solved Problem 13.2. Use the pole assignment methodology to establish expression (13.6.32) in the book
for the minimum-time dead-beat controller, Cq(z).

Solutions to Solved Problem 13.2

Solved Problem 13.3. Consider a continuous-time plant having nominal model

Go(s) =
e−0.2s

s+ 1
(2)

13.3.1 Design a minimum time dead-beat controller, assuming a sampling period ∆ = 0.1.

13.3.2 Determine the closed-loop polynomial, Aclq(z).

Solutions to Solved Problem 13.3

Solved Problem 13.4. Consider a continuous-time system having a sampled transfer function given by

Goq(z) =
0.1(z + 0.8)

(z − 1.5)(z − 0.6)
(3)

Design a minimum time dead-beat controller for step references

Solutions to Solved Problem 13.4

Solved Problem 13.5. A plant has a nominal model given by

Go(s) =
4

(s+ 1)(s+ 4)
(4)

13.5.1 Synthesize a continuous-time controller such that the closed-loop dynamics are dominated by poles
located at s = −2± j. It is also required that the loop exhibit zero steady state error for constant
references and disturbances

13.5.2 From the result obtained above, build a digital controller using equation (13.5.1) in the book.
Compare the performance of the continuous and the discrete control loops, using firstly ∆ = 0.05 [s]
and then ∆ = 0.4 [s].

Solutions to Solved Problem 13.5
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Chapter 13 - Solutions to Solved Problems

Solution 13.1. The plant is a second-order system, hence the general form of the sampled transfer func-
tion is

Goq(z)
4
= [GoGh0]q(z) = K

z − β
(z − α1)(z − α2)

(5)

One way to answer this question is to first compute Goq(z) using the standard procedure (see section
§12.13 of the book). However, for this plant it is possible to follow a more intuitive approach, paying
attention to some particular features:

a) The discrete-time system poles are located at z = α1 = e−∆ and at z = α2 = e−2∆

b) The d.c. gain in the discrete-time domain is the same as for the original continuous-time system, i.e.,

Goq(1) = K
1− β

(1− α1)(1− α2)
= Go(0) = 1 (6)

c) If we denote by h[k] the response of Goq(z) to a Kronecker delta, δK [k], and by g(t) the response of
Go(s) to a unit step, µ[k], where

g(t) = L−1

[
2

(s+ 1)(s+ 2)s

]
= L−1

[
1
s
− 2
s+ 1

+
1

s+ 2

]
= 1− 2e−t + e−2t (7)

Also h[1] = K. Therefore,

h[1] = K = g(∆) = 1− 2e−∆ + e−2∆ (8)

If we now use this expression for K in (6), we obtain

β = −e−∆ (9)

We thus conclude that β approaches −1 when ∆ = 0, i.e., for an infinite sampling frequency. (See
also Solved Problem 14.1)

Finally, this computation can also be carried out using a symbolic math package such as MAPLE.
This can be done using the following code

> G(s):=2/((s+1)*(s+2)): # define the plant model;
> with(inttrans):g(t):=invlaplace(G(s)/s,s,t):# Compute the step response
> assume (Delta, positive);assume (k, integer);assume(k, positive):
> gd(k):=subs(t=k*Delta, g(t)):# sample the step response
> Goq(z):=simplify((z-1)*ztrans(gd(k),k,z)/z); # compute the sampled transfer function
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This MAPLE code yields

Goq(z) =
ze∆ − 2ze2∆ + 1 + ze3∆ − 2e∆ + e2∆

(ze∆ − 1)(ze2∆ − 1)
=
ze∆(1− 2e∆ + e2∆) + (1− 2e∆ + e2∆)

(ze∆ − 1)(ze2∆ − 1)
(10)

From where (9) is obtained.

Solution 13.2. We first assume that the pulse transfer function is given by

Goq(z) =
Boq(z)
Aoq(z)

(11)

where Aoq(z) is a stable nth order monic polynomial1, and Boq(z) is a mth order polynomial, with m < n.
Also, we assume that the controller is expressed as

Cq(z) =
Pq(z)
Lq(z)

(12)

We next require that this is zero steady state error for step references and disturbances. To achieve
this we put an integrator (a pole at z = 1) in the controller. Hence the associated Diophantine equation
becomes

Aoq(z) (z − 1)L̃q(z)︸ ︷︷ ︸
Lq(z)

+Boq(z)Pq(z) = Aclq(z) (13)

Where the closed-loop polynomial, Aclq(z) has degree greater or equal to 2n (see section §7.2 of the
book). Now, say we choose Aclq(z) = znAoq(z), i.e., we force the cancellation of the nominal model
denominator. Then, the Diophantine equation becomes

Aoq(z) (z − 1)L̃q(z)︸ ︷︷ ︸
Lq(z)

+Boq(z) pnAoq(z)︸ ︷︷ ︸
Pq(z)

= znAoq(z) (14)

(z − 1)L̃q(z) +Boq(z)pn = zn (15)

If we evaluate at (15) at z = 1 we obtain

pn =
1

Boq(1)
(16)

Substituting (16)into (15) yields

Lq(z) = (z − 1)L̃q(z) = zn − pnBoq(z) (17)

1Recall that a monic polynomial is a polynomial where the leading coefficient is equal to one.
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This concludes the proof, since then

Cq(z) =
αAoq(z)

zn − αBoq(z)
where α ≡ pn (18)

Solution 13.3. We firstly need to compute the sampled transfer function. We observe that the pure time
delay generates two poles at the origin, i.e., at z = 0, hence

Goq(z) =
1− e−∆

z2(z − e−∆)
=

0.09516
z2(z − 0.9048)

=
Boq(z)
Aoq(z)

(19)

13.3.1 To compute the dead-beat controller one can use equation (13.6.32) from the book, with n = 3 and
α = Boq(1)−1 = 10.51. We thus have

Cq(z) =
αAoq(z)

zn − αBoq(z)
=

10.51z2(z − 0.9048)
z3 − 1

(20)

13.3.2 The closed-loop polynomial, Aclq(z), corresponds to the sensitivity denominator times the can-
celled factors. In this case, the sensitivity denominator is z3, and the cancelled factor is the plant
denominator Aoq(z) = z2(z − 0.9048). Thus

Aclq(z) = z5(z − 0.9048) (21)

This expression shows that the closed loop has a slow pole which is not evident from the loop response
to changes in reference and/or output disturbances. (Recall that this response depends on the com-
plementary sensitivity and sensitivity respectively, and they have only poles at the origin.) However,
for input disturbances, the loop response will include a mode (0.9048)k, since the pole at z = 0.9048
will appear in the input sensitivity.

Solution 13.4. If we apply expression (13.6.32) from the book to calculate the controller, we realize that
an unstable pole-zero cancellation will arise. Thus the solution given in (13.6.32) from the book is not
useful for this particular case. The correct solution requires that, when choosing the closed-loop polynomial,
we avoid cancelling the plant unstable pole (see the solution to Solved Problem 13.2). Let us choose

Aoq(z) = (z − 1.5)︸ ︷︷ ︸
A+(z)

(z − 0.6)︸ ︷︷ ︸
A−(z)

(22)

In this case, the closed-loop polynomial, Aclq(z) cancels the stable factor A−(z). On the other hand,
we know that the closed-loop poles can be arbitrarily chosen2 if Aclq(z) has a degree at least equal to 2n,
where n is the number of plant poles. Hence, for this particular plant, the minimum degree of Aclq(z) is
4. We thus choose

Aclq(z) = z3A−(z) = z3(z − 0.6) (23)

2With additional requirements to achieve zero steady state error for constant reference and disturbances.
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The corresponding Diophantine equation becomes

A+(z)A−(z)︸ ︷︷ ︸
Aoq(z)

(z − 1)L̃q(z)︸ ︷︷ ︸
Lq(z)

+A−(z)(paz + pb)︸ ︷︷ ︸
Pq(z)

Boq(z) = z3A−(z) = z3(z − 0.6) (24)

If the factor A−(z) is simplified in (24), then

(z − 1.5)︸ ︷︷ ︸
A+(z)

(z − 1)L̃q(z) + (paz + pb)Boq(z) = z3 (25)

We can then evaluate at z = 1 and z = 1.5 to obtain

(pa + pb)Boq(1) = 1 (26)

(1.5pa + pb)Boq(1.5) = (1.5)3 (27)

Solving this set of equations we obtain pa = 18.2367 and pb = −12.6812. We finally have

Lq(z) =
z3 − (paz + pb)Boq(z)

A+(z)
=
z3 − 1.8237z2 − 0.1908z + 1.0145

(z − 1.5)
= (z − 1)(z − 0.6763) (28)

From where the controller is seen to be

Cq(z) =
(18.2367z − 12.6812)(z − 0.6)

(z − 1)(z − 0.6763)
(29)

Solution 13.5.

13.5.1 Due to the specified dominance condition, we choose the closed-loop polynomial Acl(s) as the
following fourth-order polynomial 3

Acl(s) = (s+ 2 + j)(s+ 2− j)(s+ 5)(s+ 30) = s4 + 15s3 + 79s2 + 175s+ 150 (30)

where the dominant poles s = −2± j are accompanied by faster poles located at s = −5 and s = −30.

The corresponding Diophantine equation is

(s+ 1)(s+ 4)︸ ︷︷ ︸
Ao(s)

sL̃(s)︸ ︷︷ ︸
L(s)

+ 4︸︷︷︸
Bo(s)

P (s) = s4 + 15s3 + 79s2 + 175s+ 150 (31)

To solve equation 31, we use the MATLAB routine paq (in the book CDROM), this yields

L(s) = s(s+ 10); and P (s) = 6.25s2 + 33.75s+ 37.5 =⇒ C(s) =
6.25s2 + 33.75s+ 37.5

s(s+ 10)
(32)

3Recall that, in order that we can arbitrarily choose the closed-loop poles, and force integration, the polynomial Acl(s)
should have degree, at least, 2n, for a plant with n poles.
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Figure 1: Closed-loop responses for a unit-step reference r(t) = µ(t− 1)

13.5.2 To find a discrete-time controller in delta form, we now use equation (13.5.1) in the book,

Cδ(γ) = C(s)
∣∣
s=γ

=
6.25γ2 + 33.75γ + 37.5

γ(γ + 10)
(33)

This can be transformed to Z-form for each of the specified sampling periods (use the routine del2z
on the book’s CDROM), this yields:

C1q(z) =
6.2500z2 − 10.8125z + 4.6563

z2 − 1.5z + 0.5
for ∆ = 0.05 (34)

C2q(z) =
6.25z2 − 5.75z + 1

z2 − 1
for ∆ = 0.2 (35)

The performance of both digital controllers and that of the continuous-time controller are next studied
using SIMULINK. A unit-step reference at t = 1 is applied to the three loops. The results are shown
in Figure 1.

From Figure 1 one can see that for ∆ = 0.05 [s] the performance of the digital-control loop is
very close to that of the original continuous-time design. This is a consequence of the fact that, in
this case, the sampling rate which is much higher than the (continuous-time) closed-loop bandwidth.
However, for the much slower sampling, i.e., ∆ = 0.2, the corresponding digital loop is unstable.
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