Chapter 13 - Solved Problems

Solved Problem 13.1. Consider a continuous-time system having nominal model given by
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Assume that this system is under digital control using a zero-order sample and hold device, with sam-
pling period A. Is there a sampling period such that the sampling zero is located at z = —1%

Solutions to Solved Problem 13.1

Solved Problem 13.2. Use the pole assignment methodology to establish expression (13.6.32) in the book
for the minimum-time dead-beat controller, Cy(z).

Solutions to Solved Problem 13.2

Solved Problem 13.3. Consider a continuous-time plant having nominal model
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Go(s) - s+ 1 (2)

13.3.1 Design a minimum time dead-beat controller, assuming a sampling period A = 0.1.

13.3.2 Determine the closed-loop polynomial, Aciq(2).

Solutions to Solved Problem 13.3

Solved Problem 13.4. Consider a continuous-time system having a sampled transfer function given by
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Design a minimum time dead-beat controller for step references

Solutions to Solved Problem 13.4

Solved Problem 13.5. A plant has a nominal model given by
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13.5.1 Synthesize a continuous-time controller such that the closed-loop dynamics are dominated by poles
located at s = —2 £ j. It is also required that the loop exhibit zero steady state error for constant
references and disturbances

13.5.2 From the result obtained above, build a digital controller using equation (13.5.1) in the book.
Compare the performance of the continuous and the discrete control loops, using firstly A = 0.05 [s]
and then A = 0.4 [s].

Solutions to Solved Problem 13.5




Chapter 13 - Solutions to Solved Problems

Solution 13.1. The plant is a second-order system, hence the general form of the sampled transfer func-
tion s
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One way to answer this question is to first compute Goq(2) using the standard procedure (see section
§12.18 of the book). However, for this plant it is possible to follow a more intuitive approach, paying
attention to some particular features:
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a) The discrete-time system poles are located at z = a1 = e = and al z =g = e~

b) The d.c. gain in the discrete-time domain is the same as for the original continuous-time system, i.e.,
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c) If we denote by hlk] the response of Goq(2) to a Kronecker delta, dx[k], and by g(t) the response of
Go(s) to a unit step, ulk], where
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Also h[1] = K. Therefore,
Wl =K =g(A) =1—2e2 424 (8)
If we now use this expression for K in (6), we obtain
f=—ct (9)

We thus conclude that 8 approaches —1 when A =0, i.e., for an infinite sampling frequency. (See
also Solved Problem 14.1)

Finally, this computation can also be carried out using a symbolic math package such as MAPLE.
This can be done using the following code

>G(s):=2/((s+1)*(s+2)): # define the plant model;

>with(inttrans):g(t) :=invlaplace(G(s)/s,s,t):# Compute the step response

>assume (Delta, positive);assume (k, integer);assume(k, positive):

>gd (k) :=subs(t=k#*Delta, g(t)):# sample the step response

> Goq(z) :=simplify((z-1)*ztrans(gd(k),k,z)/z); # compute the sampled transfer function



This MAPLE code yields

Gonl2) ze® — 2222 414 2e32 —2e2 4?2 zeP(1 —2e2 +e22) 4 (1 — 22 + e22) (10)
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From where (9) is obtained.

Solution 13.2. We first assume that the pulse transfer function is given by

(11)

where Aoq(2) is a stable nt" order monic polynomial*, and Boyy(2) is a mt" order polynomial, with m < n.
Also, we assume that the controller is expressed as

Cy(z) = (12)

We next require that this is zero steady state error for step references and disturbances. To achieve
this we put an integrator (a pole at z = 1) in the controller. Hence the associated Diophantine equation
becomes

Aoq(z) (z — 1)Lq(2) +Boq(z)Pq(z) = Aclq(z) (13)
Lq(z)

Where the closed-loop polynomial, Acq(2) has degree greater or equal to 2n (see section §7.2 of the
book). Now, say we choose Auy(z) = 2"Apq(2), i.e., we force the cancellation of the nominal model
denominator. Then, the Diophantine equation becomes

Aog(2) (2 = 1)Lg(2) +Bog(2) prAog(z) = 2" Aoq(2) (14)
Lq(2) Py(2)
(z— I)Eq(z) + Bog(2)pn = 2" (15)

If we evaluate at (15) at z = 1 we obtain

Substituting (16)into (15) yields

Ly(2) = (2 = 1) Ly(2) = 2" — puBog(2) (17)

1Recall that a monic polynomial is a polynomial where the leading coefficient is equal to one.



This concludes the proof, since then

adog(2)
2" — aBogy(2)

Cy(z) = where a = py, (18)

Solution 13.3. We firstly need to compute the sampled transfer function. We observe that the pure time
delay generates two poles at the origin, i.e., at z =0, hence

1—e® 0.09516 Boy(2)

Gog(z) = 2(z—e D) 22(z—09048)  Au(z) "

13.3.1 To compute the dead-beat controller one can use equation (13.6.32) from the book, with n = 3 and
o = B,y(1)71 =10.51. We thus have

alog(z)  10.512%(z — 0.9048)
2" —aByy(2) 23 -1

Cylz) =

(20)

13.3.2 The closed-loop polynomial, A.q(z), corresponds to the sensitivity denominator times the can-
celled factors. In this case, the sensitivity denominator is 23, and the cancelled factor is the plant
denominator Aq(z) = 22(z — 0.9048). Thus

Auq(2) = 2°(2 — 0.9048) (21)

This expression shows that the closed loop has a slow pole which is not evident from the loop response
to changes in reference and/or output disturbances. (Recall that this response depends on the com-
plementary sensitivity and sensitivity respectively, and they have only poles at the origin.) However,
for input disturbances, the loop response will include a mode (0.9048)%, since the pole at z = 0.9048
will appear in the input sensitivity.

Solution 13.4. If we apply expression (13.6.32) from the book to calculate the controller, we realize that
an unstable pole-zero cancellation will arise. Thus the solution given in (13.6.32) from the book is not
useful for this particular case. The correct solution requires that, when choosing the closed-loop polynomial,
we avoid cancelling the plant unstable pole (see the solution to Solved Problem 13.2). Let us choose

Apy(2) = (2 —1.5) (2 — 0.6) (22)
At(z) A= (z)

In this case, the closed-loop polynomial, A.q(z) cancels the stable factor A=(z). On the other hand,
we know that the closed-loop poles can be arbitrarily chosen? if Acq(2) has a degree at least equal to 2n,

where n is the number of plant poles. Hence, for this particular plant, the minimum degree of Agq(z) is
4. We thus choose

Aug(2) = 2°A7(2) = 2°(2 — 0.6) (23)

2With additional requirements to achieve zero steady state error for constant reference and disturbances.



The corresponding Diophantine equation becomes

AT (2)A7(2) (2 = 1)Ly (2) + A7 (2)(paz + pv) Bog(2) = 2°A7(2) = 2°(2 — 0.6) (24)
Aoq(2) Lq(2) Py(z)

If the factor A= (z) is simplified in (24), then

(2= 1.5)(2 = 1) Ly(2) + (Paz + pb) Bog(2) = 2° (25)
A+(z)

We can then evaluate at z =1 and z = 1.5 to obtain

(pa +pb)Boq(1) =1 (26)
(1.5pa + pb) Bog(1.5) = (1.5)° (27)
Solving this set of equations we obtain p, = 18.2367 and p, = —12.6812. We finally have
23 — (paz + pv)Bog(z) 2% —1.82372% — 0.1908z + 1.0145

Lq(2) = 1) = 15 = (2 —1)(z — 0.6763) (28)

From where the controller is seen to be

(18.2367z — 12.6812)(z — 0.6)

Cq(z) = (Z — ]_)(z — 06763)

(29)

Solution 13.5.

13.5.1 Due to the specified dominance condition, we choose the closed-loop polynomial A.(s) as the
following fourth-order polynomial?®
Aa(s) = (s +2+7)(s+2—j)(s+5)(s +30) = s* + 155> + 7952 + 1755 4 150 (30)

where the dominant poles s = —2 + j are accompanied by faster poles located at s = —5 and s = —30.

The corresponding Diophantine equation s

(s+1)(s+4) sL(s)+_4  P(s) = s*+ 155> + 795> + 1755 + 150 (31)
—_—— ——
Ao(s) L(s)  Bols)

To solve equation 31, we use the MATLAB routine paq (in the book CDROM), this yields

6.2552 + 33.755 + 37.5
L(s) = s(s+10); and P(s) = 6.2552 + 33.75s + 37.5 = C(s) = ——2 j(s - 108)+ (32)

3Recall that, in order that we can arbitrarily choose the closed-loop poles, and force integration, the polynomial A, (s)
should have degree, at least, 2n, for a plant with n poles.
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Figure 1: Closed-loop responses for a unit-step reference r(t) = pu(t — 1)

13.5.2 To find a discrete-time controller in delta form, we now use equation (15.5.1) in the book,

_6.257% +33.75y + 37.5

Cs(7) = C(s)],_, v(v + 10)

(33)

This can be transformed to Z-form for each of the specified sampling periods (use the routine del2z
on the book’s CDROM), this yields:

6.250022 — 10.81252 + 4.6563
Ciq(2) = 15,105 for A =10.05 (34)

2522 — 5. 1
Coy(z) = 3222 D102+ for A =02 (35)

22 -1

The performance of both digital controllers and that of the continuous-time controller are next studied
using SIMULINK. A unit-step reference at t = 1 is applied to the three loops. The results are shown
in Figure 1.

From Figure 1 one can see that for A = 0.05 [s] the performance of the digital-control loop is
very close to that of the original continuous-time design. This is a consequence of the fact that, in
this case, the sampling rate which is much higher than the (continuous-time) closed-loop bandwidth.
Howewver, for the much slower sampling, i.e., A = 0.2, the corresponding digital loop is unstable.




