
Chapter 7 - Solved Problems

Solved Problem 7.1. A continuous time system has transfer function Go(s) given by

Go(s) =
Bo(s)
Ao(s)

=
2

(s− 1)(s+ 2)
=

2
s2 + s− 2

(1)

Find a controller of minimal complexity which stabilizes the plant, yields zero steady state error for
step disturbances and generates a closed loop with natural modes which decay at least as fast as e−3t.

Solutions to Solved Problem 7.1

Solved Problem 7.2. Consider a plant with nominal model

Go(s) =
Bo(s)
Ao(s)

=
2(s− 1)

(s− 4)(s+ 2)
=

2s− 2
s2 − 2s− 8

(2)

7.2.1 Using pole assignment synthesis build a controller with integration and with Acl(s) dominated1 by
a factor (s+ 1)2. Plot the response to a unit step reference.

7.2.2 Repeat with Acl(s) dominated by a factor (s+ 8)2.Plot the response to a unit step reference.

7.2.3 Discuss your results.

Solutions to Solved Problem 7.2

Solved Problem 7.3. A plant with nominal model

Go(s) =
1

(s+ 1)2
(3)

is in a feedback loop under control with a PI controller having transfer function

C(s) =
s+ 0.7
s

(4)

Is is possible that this controller has resulted from a pole assignment synthesis.

Solutions to Solved Problem 7.3

Solved Problem 7.4. A plant has nominal model

Go(s) =
Bo(s)
Ao(s)

=
4

(s+ 4)(s+ 2)
=

4
s2 + 6s+ 8

(5)

The reference is a constant. However there is a disturbance at the plant input. It has the general form

di(t) = K1 cos(
√

2 t+ α) + dv(t) (6)

where dv(t) is a signal with (finite) significant energy only in the frequency band [0, 3] [rad/s].
Design a minimum complexity controller to achieve zero steady state error for the reference and the

sinusoidal input disturbance at ω =
√

2 whilst achieving a small error for the remainder of the input
disturbance.

1Recall that a polynomial is dominated by its roots closest to the stability boundary .
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Solutions to Solved Problem 7.4

Solved Problem 7.5. Consider a plant having a nominal model given by

Go(s) =
e−2s

s+ 1
= e−2sḠo(s) (7)

Build a Smith predictor so that the settling time for a step reference is no more than 3 [s]. Assume
that the reference and disturbances are step like signals

Solutions to Solved Problem 7.5

Solved Problem 7.6. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Chile.
Consider a nominal model given by:

Go(s) =
1

(s+ 1)(s− 2)
(8)

Find a controller that stabilizes Go(s).

Solutions to Solved Problem 7.6

Solved Problem 7.7. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Chile.
Consider the same nominal model as in Problem 7.6. Find a controller that leads to:

Acl(s) = (s+ 2)(s+ 3)(s+ 4)(s+ 5) (9)

Solutions to Solved Problem 7.7

Solved Problem 7.8. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Chile.
Consider a nominal model given by

Go(s) =
3s+ 1

(s+ 2)(s− 3)
(10)

The aim of the control law is to track a constant reference, and also to cancel the pole at s = −2 in
Go(s). Find a suitable controller.

Solutions to Solved Problem 7.8

Solved Problem 7.9. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Chile.
Consider a nominal model given by

Go(s) =
1

(s+ 1)2
(11)

Further assume that we need zero steady state error at zero frequency. We want to specify a third order
polynomial Acl(s). From our analysis of the pole assignment methodology we know that not every third
order Acl(s) can achieve stable closed loop. Find the family of stable third degree polynomials that yields
a stable closed loop with zero steady state error at d.c.

Solutions to Solved Problem 7.9
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Chapter 7 - Solutions to Solved Problems

Solution 7.1. With experience, design problems such as this can be tackled by trial and error, using tools
such as MATLAB rltool. However, a systematic approach gives a direct solution. Here we follow the
latter approach.

We begin by recalling that we can choose an arbitrary set of closed loop natural frequencies if the
closed loop characteristic polynomial, Acl(s) has degree at least equal to 2n-1 (the degree of Ao(s), the
plant nominal model denominator). However, since we want to force zero steady state error at d.c., an
additional degree-of-freedom is needed. We are aiming for a minimum complexity controller; hence, we
choose the degree of Acl(s) equal to 4.

In addition, the roots of Acl(s) should be to the left of s = −3 to ensure that the response time
specification is met. Say we choose

Acl(s) = (s2 + 6s+ 9)(s+ 4)(s+ 5) = s4 + 15s3 + 83s2 + 201s+ 180 (12)

We can now solve the Diophantine equation

(s− 1)(s+ 2)︸ ︷︷ ︸
Ao(s)

s(s+ `0)︸ ︷︷ ︸
L(s)

+ 2︸︷︷︸
Bo(s)

(p2s
2 + p1s+ p0)︸ ︷︷ ︸

P (s)

= s4 + 15s3 + 83s2 + 201s+ 180 (13)

The solution to this equation can found using the MATLAB function paq.m distributed with the book
and available on the web site.

>>Ao=[1 1 -2];Am=[Ao 0];Bo=2;Acl=[1 15 83 201 180];
>> [Lm,P]=paq(Am,Bo,Acl); L=[Lm’ 0];C=tf(P’,L);

We finally obtain

P (s) = 35.5s2 + 114.5s+ 90 (14)

L(s) = s2 + 14s (15)

C(s) =
35.5s2 + 114.5s+ 90

s2 + 14s
(16)

Solution 7.2. We first note that the degree of Acl(s) should be at least 4. Furthermore, to enforce the
specified dominance condition, we will define Acl(s) as

Acl(s) = (s+ a)2(s+ 2a)2; where a ∈ {1, 8} (17)

7.2.1 In this case we choose2 Acl(s) = (s+ 1)2(s+ 2)2. The corresponding diophantine equation becomes

(s− 4)(s+ 2))s(s+ `0) + (2s− 2)(p2s
2 + p1s+ p0) = (s+ 1)2(s+ 2)2 (18)

=⇒(s− 4)s(s+ `0) + (2s− 2)(p̃1s+ p̃0) = (s+ 1)2(s+ 2) = s3 + 4s2 + 5s+ 2 (19)

2Note that this choice of Acl(s) forces the cancellation of the plant pole at s = −2.
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Figure 1: Response to a unit step reference with controller C1(s)

Hence the controller transfer function is given by

C1(s) =
(s+ 2)(p̃1s+ p̃0)

s(s+ `0)
=

6.5s2 + 12s− 2
s2 − 5s

(20)

leading to the complementary sensitivity

To1(s) =
13s2 − 15s+ 2
s3 + 4s2 + 5s+ 2

(21)

The response to a unit step reference for this design is shown in Figure 1.

7.2.2 In this case3 Acl(s) = (s+ 8)2(s+ 16)2 and the diophantine equation is

(s− 4)(s+ 2))s(s+ `0) + (2s− 2)(p2s
2 + p1s+ p0) = (s+ 8)2(s+ 16)2 (22)

Using the MATLAB function paq we obtain

C2(s) =
1326s2 + 856s− 8192

s2 − 2602s
(23)

leading to the complementary sensitivity

To2(s) =
2652s3 − 4364s2 − 1.4670s+ 1.6380
s4 + 48s3 + 832s2 + 6144s+ 1.6380

(24)

The corresponding response to a unit step reference is shown in Figure 2
3 Note that this choice of Acl(s) avoids cancellation of any of the plant poles.
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Figure 2: Response to a unit step reference with controller C2(s)

7.2.3 When comparing the performance of both designs it is evident that the settling time is much smaller
in the second case, as expected, since the dominant closed loop poles are much faster than in the
first design. However it is also clear that this faster response comes at a price: namely very large
overshoot and very large undershoot. In Chapter 8 of the book it is shown that this sort of performance
originates from fundamental limitations associated with the structure and location of poles and zeros
of this particular plant.

Solution 7.3. We note that, for a second order plant, a controller with integration requires (for arbitrary
selection of the closed loop poles) the specification of a fourth order Acl(s). This, applied to our plant,
would have yielded a second order controller. However, the PI controller is only of first order. Thus a
controller of this structure does not allow arbitrary specification of the closed-loop poles. However, it is
possible to locate the poles provided they are constrained.

We observe that with Go(s) and C(s) above, the complementary sensitivity is given by

To(s) =
s+ 0.7

s3 + 2s2 + 2s+ 0.7
(25)

Assume that we specify

Acl(s) = (s3 + 2s2 + 2s+ 0.7)X(s) (26)

where X(s) is an arbitrary first order stable polynomial, then the corresponding Diophantine equation

(s+ 1)2 s(s+ `)︸ ︷︷ ︸
L(s)

+ p2s
2 + p1s+ p0︸ ︷︷ ︸

P (s)

= (s3 + 2s2 + 2s+ 0.7)X(s) (27)

would have as solutions

P (s) = (s+ 0.7)X(s) (28)
L(s) = sX(s) (29)

5



This suggests that there are an infinite number of pole assignment synthesis which could yield a con-
troller of reduced complexity – provided that part of the closed-loop characteristic polynomial is chosen to
satisfy the special constraints associated with using a reduced order controller.

Solution 7.4. Since the plant is of order 2, the minimum degree of Acl(s) is 3. However we require to
force integration in the controller to achieve zero steady state error for constant references. This will take
the degree of Acl(s) to 4. Furthermore, we need to have zero steady state error for a sinusoidal disturbance
of frequency

√
2 [rad/s]. This requirement is equivalent to requiring perfect inversion at ω =

√
2 [rad/s],

and, therefore, to have controller poles at s = ±j
√

2. This takes the degree of Acl(s) to 6.
To choose the sixth degree polynomial Acl(s) we consider the bandwidth of the disturbance component

dv(t). This suggests that the dominant pole should be to the left of −3. Say we choose Acl(s) dominated
by the factor4 (s2 + 8s+ 20)(s+ 4). Thus, a possible choice is

Acl(s) = (s2 + 8s+ 20)(s+ 4)(s+ 5)(s+ 6)(s+ 7) (30)

The corresponding Diophantine equation becomes

(s+ 2)(s+ 4) s(s2 + 2)(s+ `)︸ ︷︷ ︸
L(s)

+ 4 (s+ 4)(p̃3s
3 + p̃2s

2 + p̃1s+ p0)︸ ︷︷ ︸
P (s)

= (s2 + 8s+ 20)(s+ 4)(s+ 5)(s+ 6)(s+ 7)

(31)

After cancelling the factor (s+ 4), we use the MATLAB function paq via the following code

>> Ax=conv([1 2],[1 0 2 0]);Bx=4;Aclx=conv([1 8 20], poly([-5 -6 -7]));
>>[Lx,Px]=paq(Ax,Bx,Aclx)
>>P=conv(Px’,[1 4]); L=conv(Lx’,[1 0 2 0]);C=tf(P,L);

leading to the controller

C(s) =
55.25s4 + 564.5s3 + 2305s2 + 4774s+ 4200

s4 + 24s3 + 2s2 + 48s
=

55.25s4 + 564.5s3 + 2305s2 + 4774s+ 4200
s(s2 + 2)(s+ 24)

(32)

We observe that the controller has poles at s = 0 and s = ±j
√

2, as expected. To evaluate the perfor-
mance of the design regarding disturbance rejection we analyze the magnitude of the frequency response of
the input sensitivity Sio. This can be achieved with the following MATLAB code 5

>> Go=tf(4,[1 6 8]);Sio=minreal(Go/(1+Go*C));
>>w=logspace(-1,1,1000); h=freqresp(Sio,w);
>>subplot(211); semilogx(w, 20*log10(abs(h(1,:))));

This yields the plot shown in Figure 3
From Figure 3 we observe that the input sensitivity attains its maximum value at approximately ω = 5.5

[rad/s] and this maximum is equal to −20 [dB]. We also see that a disturbance in the band [0, 3] [rad/s]
is attenuated by more than 90%.

4Note that by including a closed-loop pole at s = −4 we are forcing the cancellation of the plant pole at that location.
5We use the previously calculated transfer function C(s).
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Figure 3: Input sensitivity frequency response

Solution 7.5. We refer to section §7.4 of the book. We see that we can apply the pole assignment technique
to the rational part of Go(s).

Since the plant has a 2 [s] pure delay, we cannot aim for a settling time less than that if we want a
robust closed loop. Say we choose the settling time equal to 3 [s]. We recall that the settling time is usually
defined as the pure delay plus four times the dominant time constant. This implies that the dominant pole
should be located to the left of −4; this will yield a dominant time constant equal to 0.25 [s]. Say we then
choose (for the rational part i.e., Ḡo(s))

Acl(s) = s2 + 8s+ 20 (33)

Then the corresponding Diophantine equation is

(s+ 1) s︸︷︷︸
L(s)

+1 · (p1s+ p0)︸ ︷︷ ︸
P (s)

= s2 + 8s+ 20 (34)

Then C(s), in Figure 7.1 of the book, is given by

C(s) =
7s+ 20

s
(35)

And the resultant complementary sensitivity is given by:

To(s) =
7s+ 20

s2 + 8s+ 20
e−2s (36)

Solution 7.6. Acl(s) can be arbitrarily specified if its degree is, at least, three. Say we choose

Acl(s) = (s+ 2)(s+ 3)(s+ 4) (37)
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This leads to a controller of the form

C(s) =
p 1s+ p0

s+ `0
(38)

The pole assignment equation is then

Ao(s)L(s) +Bo(s)P (s) = (s+ 2)(s+ 3)(s+ 4) (39)
(s+ 1)(s− 2)(s+ `0) + (p1s+ p0) = (s+ 2)(s+ 3)(s+ 4) (40)

s3 + (`0 − 1)s2 + (p1 − `0 − 1)s+ (p0 − 2`0) = s3 + 9s2 + 26s+ 24 (41)

This polynomial identity leads to equations

`0 − 1 = 9 (42)
p1 − `0 − 1 = 26 (43)
p0 − 2`0 = 24 (44)

Solving yields the controller

C(s) =
38s+ 44
s+ 10

(45)

To solve this kind of problem we can also use the MATLAB function paq.m, as shown in the following
MATLAB code:

>>[L,P]=paq([1 -1 -2],1,[1 9 26 24])

In this command the first argument is Ao(s), the second is Bo(s) and the third is Acl(s). The function
returns the polynomials P (s) and L(s)

Solution 7.7. The degree of Acl(s) is four and the degree of Ao(s) is two. Hence L(s) should have a
degree equal to two. Then

C(s) =
p2s

2 + p1s+ p0

s2 + `1s+ `0
(46)

The corresponding pole assignment equation becomes

Ao(s)L(s) +Bo(s)P (s) = (s+ 2)(s+ 3)(s+ 4)(s+ 5) (47)

(s+ 1)(s− 2)(s2 + `1s+ `0) + (p2s
2 + p1s+ p0) = (s+ 2)(s+ 3)(s+ 4)(s+ 5) (48)

s4 + (`1 − 1)s3 + (p2 − `1 + `0 − 2)s2 + (p1 − `0 − 2`1)s+ (p0 − 2`0) = s4 + 14s3 + 71s2 + 154s+ 120
(49)

This polynomial identity leads to the equations
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`1 − 1 = 14 (50)
p2 − `1 + `0 − 2 = 71 (51)
p1 − `0 − 2`1 = 154 (52)

p0 − 2`0 = 120 (53)

The solution of these equations is

`1 = 15 (54)
p2 = 73 + `1 − `0 = 88− `0 (55)
p1 = 154 + 2`1 + `0 = 184 + `0 (56)
p0 = 120 + 2`0 (57)

(58)

We thus observe that there is an infinite number of solutions. Every choice of `0 leads to a different
stabilizing controller, for example, to force integration in the controller we can choose `0 = 0

C(s) =
88s2 + 184s+ 120

s2 + 15s
(59)

In MATLAB we can solve this problem with the command line

>>[L,P]=paq([1 -1 -2],1,[1 14 71 154 120])

This leads to

C(s) =
272s+ 296
s2 + 15s+ 88

(60)

This is equivalent to choosing `0 = 88. The algorithm in paq.m has been designed to yield a minimum
degree P (s).

Solution 7.8. The minimum degree of Acl(s) is four since we need to force integration in the controller,
then

C(s) =
p2s

2 + p1s+ p0

s(s+ `1)
(61)

Since (s+ 2) is cancelled if and only if (s+ 2) is a factor of Acl(s), we choose

Acl(s) = (s+ 2)(s+ 3)(s+ 4)(s+ 5) (62)

The pole assignment equation then becomes
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Ao(s)L(s) +Bo(s)P (s) = (s+ 2)(s+ 3)(s+ 4)(s+ 5) (63)

(s+ 2)(s− 3)(s+ `1)s+ (3s+ 1)(p2s
2 + p1s+ p0) = (s+ 2)(s+ 3)(s+ 4)(s+ 5) (64)

In this polynomial identity we note that (s + 2) has to be a factor of P (s) (a plant pole can only be
cancelled by a controller zero). Thus we define

(s+ 2)(p̃ 1s+ p̃ 0) = p 2s
2 + p 1s+ p 0 (65)

The pole assignment equation then simplifies as follows:

(s− 3)(s+ `1)s+ (3s+ 1)(p̃1s+ p̃0) = (s+ 3)(s+ 4)(s+ 5) (66)

s3 + (3p̃1 + `1 − 3)s2 + (p̃1 + 3p̃0 − 3`1)s+ p̃0 = s3 + 12s2 + 47s+ 60 (67)

This leads to equations

3p̃1 + `1 − 3 = 12 (68)
p̃1 + 3p̃0 − 3`1 = 47 (69)

p̃0 = 60 (70)

The solution is p̃0 = 60, p̃1 = − 44
5 and `1 = 207

5 . Finally the controller is

C(s) =
(s+ 2)(−44s+ 300)

s(5s+ 207)
(71)

Solution 7.9. Define

Acl(s) = s3 + a2s
2 + a1s+ a0 (72)

Then, the degree of L(s) must be one and, to satisfy the steady state requirement, it must have inte-
gration. Hence the controller has the form

C(s) =
p1s+ p0

s
(73)

The pole assignment equation is

Ao(s)L(s) +Bo(s)P (s) = s3 + a2s
2 + a1s+ a0 (74)

s(s+ 1)2 + (p1s+ p0) = s3 + a2s
2 + a1s+ a0 (75)

s3 + 2s2 + (p1 + 1)s+ p0 = s3 + a2s
2 + a1s+ a0 (76)
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From this we see that a2 = 2 assures integration in the controller. Furthermore, since Acl(s) has to
be stable, conditions to satisfy this requirement can be obtained using Routh’s Algorithm applied to the
polynomial Acl(s) = s3 + 2s2 + a1s+ a0

The algorithm yields Acl stable if and only if

2a1 > a0 (77)
a0 > 0 (78)

Finally, the family of polynomials satisfying both, stability and integration, is

A = {s3 + 2s2 + a1s+ a0 ∈ R3[s] : a0 > 0, a1 > 0, 2a1 − a0 > 0} (79)

where R3[s] is the ring of polynomials in s of degree less or equal to three, with real coefficients.
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