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Abstract— Fox and colleagues [1], [2] derived an algorithm
based on stochastic differential equations for approximating the
kinetics of ion channel gating that is substantially simpler and
faster than “exact” algorithms for simulating Markov process
models of channel gating. However, Mino and colleagues [3]
argued that the approximation may not be sufficiently accu-
rate in describing the statistics of action potential generation.
Bruce [4] subsequently showed that some of the inaccuracies
described in [3] were due to implementation choices, but several
important inaccuracies remained. The objective of this study
was to develop a framework for analyzing the remaining
inaccuracies and determining their origin. Simulations of a
patch of membrane with voltage-gated sodium and potassium
channels were performed using an exact algorithm for the
kinetics of channel gating and the approximate algorithm of
Fox. The Fox algorithm assumes that channel gating particle
dynamics have a stochastic term that is uncorrelated, zero-
mean Gaussian noise, whereas the simulation results of this
study demonstrate that in many cases the stochastic term in
the Fox algorithm should be correlated and non-Gaussian noise
with a non-zero mean. The results indicate that the source of
these differences in noise statistics is that the Fox algorithm
does not adequately describe the combined behavior of the
multiple activation particles in each sodium and potassium
channel (three and four, respectively).

I. INTRODUCTION

The stochastic nature of ion channel gating is known to

be physiologically significant for patches of membrane with

small numbers of ion channels [5] such as the nodes of

Ranvier in auditory nerve fibers [6]–[13]. In addition, there is

evidence that the physiological noise from ion channel gating

is perceptually significant for cochlear implants users [14]–

[17]. This motivates the development of accurate and com-

putationally efficient stochastic neural models.

Mino et al. [3] compared four different algorithms for

implementing Hodgkin–Huxley models [18] with stochas-

tic sodium channels: Strassberg and DeFelice [19], Rubin-

stein [6], Chow & White [20], and Fox [1], [2]. The first

three algorithms utilize exact methods for describing channel

kinetics with finite-state Markov process models. In contrast,

the algorithm of Fox uses stochastic differential equations

(SDEs) to approximate the Markov process models. In ad-

dition to being simpler, the approximate method of Fox is

around 7 times faster than the Chow & White algorithm, the

fastest of the exact methods [3].

However, for simulations of a patch of membrane with

1,000 sodium channels, Mino et al. [3] reported that the

approximate method of Fox produced quite different action

potential (AP) statistics than the other methods. They conse-

quently argued that, in spite of its computational advantage,

the Fox algorithm may be too inaccurate in some circum-

stances to use reliably as an approximation to the exact

methods. Further analysis by Bruce [4] showed that some

of the inaccuracies described in [3] were due to the method

used in that study to determine the number of open sodium

channels in the Fox algorithm. Mino et al. [3] rounded down

the number of open sodium channels to an integer value,

whereas Bruce [4] showed that more accurate results are

obtained if the number of open sodium channels is rounded

to the nearest integer [4]. However, several important in-

accuracies remained, which appear to result from incorrect

relative noise levels in the Fox model [4]. In this paper, a

framework is presented for analyzing the inaccuracies of the

Fox algorithm and determining their origin.

II. METHODS

A. Models

The Hodgkin–Huxley model sodium channel has three in-

dependent activation particles m and one inactivation particle

h, while the model potassium channel has four independent

activation particles n [18]. The Markov kinetics for gating

of sodium and potassium channels are given by
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respectively, where xi indicates that i particles of type x are

presently open in a particular channel.

If Ny indicates the number of channels currently in state

y, then the number of open sodium and potassium channels

in a patch of membrane is given, respectively, by

NNa(t) = Nm3h1(t) (3)

and

NK(t) = Nn4(t) . (4)

There are several different numerical methods for simu-

lating the Markov kinetics. [6] and [19] utilize methods that

keep track of the gating particle states of every ionic channel,

whereas the algorithm of [20] takes the more efficient
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approach of just keeping track of the number channels in

each state.

Fox and colleagues [1], [2] proposed an alternative ap-

proach whereby the dynamics of the fraction of open gating

particles x is approximated by the SDE

dx(t)

dt
= αx(t)(1− x(t))−βx(t)x(t)+ g̃x(t) , (5)

where x = m, h, or n, the transition rates αx(t) and βx(t) are

instantaneous functions of the membrane potential V (t), and

the noise term g̃x(t) is Gaussian with moments

〈g̃x(t)〉 = 0 (6)

and

〈
g̃x(t) g̃x

(
t ′
)〉

=
2

Nmax
X

αx(t)(1−x(t))βx(t)x(t)

2
δ
(
t−t ′

)
, (7)

where X = Na for x = m or h and X = K for x = n and Nmax
X

is the total number of ion channels of type X.

Note that (5) is equivalent to the deterministic Hodgkin–

Huxley ordinary differential equation for gating particle

dynamics [18] but with the stochastic term g̃x(t) added.

Fox and colleagues [1], [2] showed that the noise term’s

2nd moment can be approximated by

〈
g̃x(t) g̃x

(
t ′
)〉

=
2

Nmax
X

αx(t)βx(t)

αx(t)+βx(t)
δ
(
t − t ′

)
. (8)

In the Fox algorithm, the number of open sodium and

potassium channels is estimated to be

NNa(t) = Nmax
Na m3(t)h(t) (9)

and

NK(t) = Nmax
K n4(t) , (10)

respectively, where Nmax
Na and Nmax

K are the total number of

sodium and potassium channels, respectively, in the patch of

membrane.

Numerical solution of (5) can be achieved by applying Eu-

ler’s method to obtain the discrete-time difference equation

[e.g., see Eq. 5 of [21]]

x[k+1]=x[k]+{αx[k] (1−x[k])−βx[k]x[k]}∆t+g̃x[k]
√

∆t,
(11)

where ∆t is the time step and g̃x[k] is a pseudorandom

number with the statistics of g̃x(t).

B. Framework for estimating Fox noise term from an “exact”

algorithm

Fox and colleagues [1], [2] did not derive an analytical

expression for the error in their approximation. Presented

here is an empirical method for estimating the required Fox

noise term to match the channel gating statistics described

by one of the “exact” models of the Markov kinetics [6],

[19], [20].

From (1), the fraction of sodium channels with three open

m particles is given by

m̂3 =
Nm3h0 +Nm3h1

Nmax
Na

, (12)

and the fraction of sodium channels with an open h particle

is

ĥ =
Nm0h1 +Nm1h1 +Nm2h1 +Nm3h1

Nmax
Na

. (13)

Likewise, (2) gives the fraction of potassium channels with

four open n particles as

n̂4 =
Nn4

Nmax
K

. (14)

Consequently, the Fox noise term that would be required

to track the number of open channels at each time step k

computed from simulations using an exact method is

∆ĝx[k]= x̂[k+1]−x̂[k]−{αx[k] (1−x̂[k])−βx[k] x̂[k]}∆t, (15)

where x̂ = m̂, ĥ, or n̂.

By comparing the statics of ∆ĝm[k], ∆ĝh[k], and ∆ĝn[k]
computed using (15) to the statistics of the analytical noise

terms used in (11), i.e., g̃m[k]
√

∆t, g̃h[k]
√

∆t, and g̃n[k]
√

∆t,

a quantitative measure of the Fox approximation’s accuracy

is obtained.

C. Simulations

In order to understand how the channel gating statistics

affect the auditory nerve fiber AP statistics investigated

in [3] and [4], simulations are performed using the equations

utilized in those studies for the sodium transition rates. In

addition, simulations are performed using equations for the

potassium transition rates that are also appropriate for the

node of Ranvier in auditory nerve fibers [12].

Following [3] and [12], the activation and inactivation

particle transition rates vary with the relative transmembrane

potential V according to

αm =
1.872(V −25.41)

1− e(25.41−V )/6.06
(16)

βm =
3.973(21.001−V )

1− e(V−21.001)/9.41
(17)

αh =
−0.549(27.74+V )

1− e(V+27.74)/9.06
(18)

βh =
22.57

1− e(56.0−V )/12.5
(19)

αn =
0.129(V −35)

1− e(35−V )/10
(20)

βn =
0.3236(35−V )

1− e(V−35)/10
, (21)

where the rates have units of ms−1 and V has units of mV.
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Equation (8) indicates that the dominant factor in the Fox

noise term statistics is the present value of the transition

rates, which in turn depend only on the present value of the

relative transmembrane potential—see (16)–(21). Therefore

simulations were run in voltage clamp condition, i.e., at a

constant relative transmembrane potential.

Voltage clamp simulation were performed with a sampling

step ∆t of 1 µs and a duration of 1 s. The number of sodium

channels Nmax
Na was varied from 100 to 20,000, with the

number of potassium channels Nmax
K always set to one third

of the number of sodium channels (rounded to the nearest

integer).

Results shown below were obtained with the Chow &

White algorithm [20]; some simulations were also run using

the Rubinstein algorithm [6] and were found to give similar

results.

III. RESULTS

Simulation results for Nmax
Na = 1,000 and Nmax

K = 333 are

described here. First, an analysis of gating particle dynamics

at V = 16 mV is given. This relative transmembrane potential

is of interest because that is approximately 2/3 the threshold

potential in the model of [3] and [4], and consequently

the gating particle dynamics at this potential will have a

substantial effect on the statistics of AP generation. Second,

an analysis of the noise terms’ standard deviations and means

as a function of the membrane potential is described.

Figure 1 gives an analysis of the dynamics of sodium

activation particles at V = 16 mV. The top two panels show

that at this transmembrane potential the Fox noise term

required to match the m-particle dynamics from the Chow

& White algorithm has small values near zero for most time

steps but has infrequent large values in positive and negative

pairs. These values are well outside the Gaussian distribu-

tion of values from the Fox algorithm. The autocorrelation

function in the bottom right panel indicates that these large

positive and negative values are correlated on a time scale

of several microseconds, unlike the Fox noise term, which

is uncorrelated. The example time series for m̂ plotted in the

bottom left panel shows that these correlated noise values

correspond to brief openings or closings of small numbers

of gating particles.

An analysis of the dynamics of sodium inactivation par-

ticles at V = 16 mV is given in Fig. 2. The histogram of

noise values shown in the top right panel indicates that at

this transmembrane potential the Fox noise term required to

match the h-particle dynamics from the Chow & White algo-

rithm has a distribution of finite values with a similar shape,

mean and standard deviation to the Gaussian distribution of

values from the Fox algorithm. The autocorrelation function

in the bottom right panel indicates that the estimated noise

term for sodium inactivation particles is uncorrelated like the

Fox noise term.

Figure 3 gives an analysis of the dynamics of potassium

activation particles at V = 16 mV. The top two panels show

that at this transmembrane potential the Fox noise term

required to match the n-particle dynamics from the Chow
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Fig. 1. Activation dynamics for 1,000 sodium channels: analysis of m-
particle dynamics for relative transmembrane potential V = 16 mV. Top left
panel: Example time series of ∆ĝm. Top right panel: Histogram of values
of ∆ĝm. The theoretical distribution derived by Fox and colleagues [1], [2]
is shown by the grey-filled Gaussian curve. Bottom left panel: Time series
of m̂ corresponding to top left panel. Bottom right panel: Autocorrelation
function for ∆ĝm.
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Fig. 2. Inactivation dynamics for 1,000 sodium channels: analysis of h-
particle dynamics for relative transmembrane potential V = 16 mV. Top left
panel: Example time series of ∆ĝh. Top right panel: Histogram of values
of ∆ĝh. The theoretical distribution derived by Fox and colleagues [1], [2]
is shown by the grey-filled Gaussian curve. Bottom left panel: Time series
of ĥ corresponding to top left panel. Bottom right panel: Autocorrelation
function for ∆ĝh.

& White algorithm has very small values near zero for most

time steps but has one pair of very infrequent large positive

and negative values indicated by the arrows. As was the case

for sodium activation particles, these values for potassium are

well outside the Gaussian distribution of values from the Fox

algorithm. The autocorrelation function in the bottom right

panel indicates that these large positive and negative values

are correlated on a time scale of tens of microseconds. The

example time series for n̂ plotted in the bottom left panel

shows that these correlated noise values correspond to brief

openings of one out of the 333 potassium channels.

Shown in Figs. 4, 5, and 6 are plots of the noise term

standard deviation and mean as a function of V for sodium
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Fig. 3. Activation dynamics for 333 potassium channels: analysis of n-
particle dynamics for relative transmembrane potential V = 16 mV. Top left
panel: Example time series of ∆ĝn. Top right panel: Histogram of values
of ∆ĝn. The theoretical distribution derived by Fox and colleagues [1], [2]
is shown by the grey-filled Gaussian curve. Bottom left panel: Time series
of n̂ corresponding to top left panel. Bottom right panel: Autocorrelation
function for ∆ĝn.

activation, sodium inactivation, and potassium activation,

respectively. The solid dark blue lines correspond to the

standard deviation calculated for the noise term time series

at the sampling step of 1 µs. The h-particle curve (which is

mostly obscured by the green line) is close to the theoretical

curve (black line) from the Fox algorithm (Fig. 5). However,

the m-particle and n-particle curves (Figs. 4 and 6) are quite

different from their corresponding theoretical curves (black

lines); the peaks occur at a lower membrane potential than

the theoretical curves, and they have substantially larger

maxima.
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Fig. 4. Activation statistics for 1,000 sodium channels: standard deviation
and mean of ∆ĝm as a function the relative transmembrane potential
V . Standard deviations are calculated for values of ∆ĝm averaged over
contiguous time windows of duration T , as indicated in the figure legend.
The theoretical standard deviation versus membrane potential relationship
given by (8) is shown for comparison.

The gating particles noise terms’ means are shown by

the dashed blue lines. Again, the h-particle curve (Fig. 5)

matches the theoretical mean of zero from the Fox algorithm,
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Fig. 5. Inactivation statistics for 1,000 sodium channels: standard deviation
and mean of ∆ĝh as a function the relative transmembrane potential
V . Standard deviations are calculated for values of ∆ĝh averaged over
contiguous time windows of duration T , as indicated in the figure legend.
The theoretical standard deviation versus membrane potential relationship
given by (8) is shown for comparison.
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Fig. 6. Activation statistics for 333 potassium channels: standard deviation
and mean of ∆ĝn as a function the relative transmembrane potential
V . Standard deviations are calculated for values of ∆ĝn averaged over
contiguous time windows of duration T , as indicated in the figure legend.
The theoretical standard deviation versus membrane potential relationship
given by (8) is shown for comparison.

whereas the m-particle and n-particle means (Figs. 4 and

6) have appreciably-large negative values in the range of

the resting potential (0 mV) to the AP threshold potential

(∼ 24 mV) for the model of [3] and [4].

Since the m-particle and n-particle noise term time series

estimated from the Chow & White algorithm both exhibit

correlations over time and these noise terms have an accumu-

lative effect on the m-particle and n-particle values according

to (11), it is of interest to determine the effective standard

deviations of the noise terms accumulated over different

time scales. To do this, standard deviations are calculated

for values of ∆ĝm, ∆ĝh, and ∆ĝn averaged over contiguous

time windows of duration T . Included in Figs. 4, 5, and
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6 are standard deviation curves for different values of T ,

as indicated by the figure legends. The standard deviation

curves all begin to reach their respective asymptotic curves

at an integration period of T = 1 ms, indicating that all

the correlations in each noise term time series have been

averaged out over this time period. The h-particle standard

deviation curve asymptote matches the theoretical curve

(Fig. 5); the m-particle and n-particle standard deviation

curve asymptotes have smaller maxima than their respective

curves without integration (i.e., T = 1 µs) but do not match

their respective theoretical curves (Figs. 4 and 6).

The simulations results obtained for different numbers of

sodium channels Nmax
Na and potassium channels Nmax

K were

qualitatively similar to the results shown above. Just as

the theoretical standard deviation scales with the reciprocal

of the number of channels according to (7), the standard

deviations estimated from the Chow & White algorithm also

scale with the reciprocal of the number of channels, such

that the inaccuracies remain even for the largest numbers of

channels investigated in this study.

From the results described above, it can be seen that

the Fox algorithm provides a reasonable approximation of

the single sodium channel inactivation particle h but not

of the three sodium or four potassium activation particles,

m and n respectively. To determine if the origin of the

inaccuracies lies in the multiple activation particles per

channel, some simulations were performed with a modified

sodium channel incorporating just a single activation particle

m rather than the normal three particles. The single m-particle

statistics were well described by the Fox algorithm in these

simulations, confirming that the problem with the Fox SDE

formulation is that it does not capture the effect of small

numbers of channels flicking briefly open or closed due to

the combined action of multiple gating particles per channel.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The differences between the noise term statistics estimated

in this study from the Chow & White algorithm and the

theoretical statistics of the Fox algorithm given by (6) and

(7) appear to be sufficient to explain the inaccuracies in AP

statistics described by [3] and [4].

B. Future Works

It remains to derive an analytical expression for the error

in the Fox approximation [1], [2] and to determine if an

improved SDE formulation can be derived that accurately

captures the combined effects of a channel’s multiple gating

particles on the statistics of the channel’s openings and

closings.
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