
     

                                                

 
 
 
 
 
 
 
 
 

LATERAL-INHIBITORY-NETWORK MODELS OF TINNITUS 
 
 

Ian C. Bruce1, Harjeet S. Bajaj and Jennifer Ko 
 
 

Department of Electrical and Computer Engineering, 
McMaster University, 1280 Main Street West, 

Hamilton, Ontario L8S 4K1, Canada 
 
 
 

 
Abstract: Lateral-inhibitory-networks (LINs) of neurons enhance edges and peaks in their 
input excitation pattern.  In the case of reduced spontaneous input to a region of a LIN, 
the edges between the normal and abnormal spontaneous input will be enhanced in the 
LIN’s output.  In LINs within the central auditory system, regional reduction of 
spontaneous input may occur because of deafferentation resulting from a peripheral 
hearing loss.  A model of auditory LINs is developed to investigate how such abnormal 
spontaneous edges in LIN outputs could be related to tinnitus, the phantom perception of 
sounds.  Copyright © 2003 IFAC 
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1. INTRODUCTION 
 
Lateral-inhibitory-networks (LINs) of neurons are 
thought to be widely used throughout the nervous 
system, including the auditory pathways of the brain 
(e.g., Shamma, 1985), to enhance spatial edges and 
peaks in their input excitation patterns.  In the human 
auditory system, the inner ear maps the different 
frequency components of an acoustic signal onto a 
one-dimensional array of peripheral neurons.  This is 
referred to as a tonotopic map.  Processing of the 
peripheral excitation pattern by a LIN in the central 
nervous system will therefore enhance any edges and 
peaks in the frequency spectrum of an acoustic 
signal.  However, if the spontaneous input to a region 
of the LIN (in the absence of sound-driven activity at 
that frequency) is reduced compared to the rest of the 
LIN, the edges between the normal and abnormal 
spontaneous input will be enhanced, giving rise to 
spuriously-enhanced edges in the LIN output. 
 
Independent modelling studies by Gerken (1996) and 
Kral and Majernik (1996) investigated how such 
abnormal activity at the output of a LIN may be 
related to tinnitus, the phantom perception of sound.  
Both studies showed that a LIN receiving reduced 
spontaneous input over a restricted region may 
produce an output similar to that elicited by a tonal 
(or narrowband) acoustic input.  It was consequently 

argued that this spontaneous tone-like output could 
be perceived as tinnitus. 
 
However, both studies utilised highly-simplified 
models of the neurons in the LIN.  In particular, 
neither model incorporated the temporal dynamics 
and spiking behaviour of a neural membrane.  It is 
therefore difficult to assess whether their results 
apply to a LIN of real biological neurons. 
 
In this paper, we develop a recurrent LIN of leaky 
integrate-and-fire neurons, which incorporate 
features of both the passive temporal dynamics and 
the active spiking and refractory behaviour of real 
biological neurons.  It is found that the results of 
Gerken (1996) and Kral and Majernik (1996) are 
only obtained if the temporal dynamics (i.e., the 
membrane time-constant and the duration of 
excitatory and inhibitory synaptic currents) are slow 
enough and the rates of spontaneous inputs and 
outputs are fast enough that a high degree of 
temporal interaction is caused between the excitatory 
inputs and the recurrent lateral inhibitory inputs. 
 

2. THE LATERAL-INHIBITORY- 
NETWORK MODEL 

 
A schematic of the LIN is shown in Fig. 1. Each 
neuron in the LIN is described by an integrate-and-
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fire model.  For a LIN consisting of n neurons, we 
define a column vector v of length n, where each 
element vi is the membrane potential of neuron i in 
the LIN.  For all subthreshold membrane potentials, 
i.e., for all vi(t) less than a constant threshold 
potential vthr (= 1), the dynamics of the membrane 
potentials over time are described by the differential 
equation [e.g., Eq. (2) of Shamma, 1985] 
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where τ (= 5ms) is the membrane time constant, v(0) 
= 0, V is an n × n matrix of excitatory synaptic 
weights, W is an n × n matrix of inhibitory synaptic 
weights, iE is a column vector of length n describing 
the excitatory synaptic input currents, and iI is a 
column vector of length n describing the inhibitory 
synaptic input currents. 
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Fig. 1. Schematic of recurrent LIN.  Excitatory 

synaptic inputs are shown by open ellipses and 
inhibitory synaptic inputs by filled ellipses.  Input 
sin(t) and output sout(t) spike occurrences are 
convolved with unitary postsynaptic currents (not 
shown–see Fig. 2) and multiplied by the 
respective excitatory Vij and inhibitory synaptic 
weights Wij to produce excitatory iE and 
inhibitory iI input currents.  Only convergent 
excitatory inputs onto neuron i and recurrent 
inhibitory inputs originating from neuron i are 
shown.  Individual neurons are described by an 
integrate-and-fire model—see text for details. 

 
Equation (1) was solved using a 4th-order Runge-
Kutta algorithm with a fixed time-step ∆t of 0.1 ms.  
Input spike instances sin(t) were obtained using the 
Bernoulli approximation of a Poisson process (e.g., 
Edwards and Wakefield, 1990); sin(t) = 1 for discrete 
times t = c∆t (where c = 0, 1, 2,…) during which a 
spike occurs and is zero otherwise.  The jth excitatory 
synaptic current at discrete times  is obtained by 
convolving input spike instances sin(t) for the jth 
input with a unitary excitatory postsynaptic current 
(EPSC) waveform 
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as plotted in Fig. 2.  This type of equation is known 
as an alpha function; the greater the value of αEPSC 
(= 5), the EPSC alpha value, the sharper the alpha 

function.  In this formulation of the alpha function 
the electrical charge delivered, i.e., the area under the 
function, is independent of the alpha value. 
 
The jth inhibitory synaptic current is obtained by 
convolving sout(t) from neuron j (see below) with the 
unitary inhibitory postsynaptic current (IPSC) 
waveform iIPSC(t), which takes the same form as Eq. 
(2) but with the alpha value αIPSC (= 1). 
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Fig. 2. Unitary postsynaptic currents.  Excitatory 

input spike instances sin(t) are convolved in time 
with iIPSC(t) to create the excitatory input current 
iE.  Likewise, recurrent inhibitory output spike 
instances sout(t) are convolved with iIPSC(t) to 
create the inhibitory input current iI. 

 

For any discrete time t, if vi(t) ≥ vthr then vi(t) is set 
to some arbitrarily-high value vsp (= 5) to indicate a 
spike.  vi is then held at zero over the interval [t + ∆t 
, t + tref], where tref (= 1 ms) is the absolute refractory 
period.  Output spike instances sout(t) are also 
recorded for each neuron i.  The jth inhibitory 
synaptic current is then obtained by convolving 
sout(t) from neuron j with iEPSC(t).  Consequently, iI 
is a nonlinear function of the vector of neural 
membrane potentials v.  Such a system with 
inhibitory feedback is referred to as a recurrent LIN. 
 

Each element of the synaptic weight matrices, Vij for 
excitatory inputs and Wij for inhibitory inputs, 
corresponds to the effectiveness of the jth synaptic 
current on neuron i.  In this paper, V is set to the 
identity matrix I, such that neuron i only receives 
excitation from the jth input spike train for j = i.  For 
the inhibitory synaptic weight matrix, each element 
Wij is set to zero for j = i, i.e., neurons do not inhibit 
themselves, and each neuron i receives inhibitory 
inputs from k neighbouring neurons on each side.  In 
this paper, the weights Wij for j = i − k…i − 1 and j = 
i + 1…i + k are set to a Gaussian window function of 
length k = 5, as shown in Fig. 3 (cf. Fig.3 of Gerken, 
1996).  The absolute values of Wij are scaled so that 
the sum of the inhibitory weights for each neuron 
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neuron were to receive identical excitatory and 
inhibitory currents on all its inputs simultaneously, it 
would receive two times as much inhibitory drive as 
excitatory drive.  However, the inhibitory drive is 
distributed across 2k synapses receiving spikes from 
recurrent lateral connections independently over 
time, and consequently the inhibitory drive is 
typically somewhat less than the excitatory drive.  
Having slightly more excitatory than inhibitory drive 
allows enhancement of edges and peaks without 
producing distortions of flat regions of the excitation 
pattern (see. Figs. 4–7).  For neurons at and near the 
edges of the LIN, i.e, i ≤ k or i ≥ n − k, the number of 
recurrent inhibitory inputs must be reduced because 
neighbouring neurons will be lacking on one side.  In 
these cases, the weights of the existing inhibitory 
synapses are increased so as to match the total 
inhibitory input for neurons in middle sections of the 
LIN, removing confounding edge effects. 
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Fig. 3. Inhibitory weights Wij (open circles) for 
neuron i and the jth recurrent output spike train.  
Wij is zero for j = i, obeys a Gaussian window 
function (dashed line) for recurrent inputs from 
the k (= 5) neighbouring neurons on each side, 
and is zero elsewhere. 

 
3. RESULTS 

 
Simulations of LINs containing 200 integrate-and-
fire neurons receiving Poisson-distributed spike 
inputs were performed in MATLAB (MathWorks, 
Natick, MA).  These neurons were assumed to have 
best frequencies (BFs) over the range 0 to 10 kHz 
corresponding to linear spacing on the basilar 
membrane (Greenwood, 1990). 
 
Figure 4 shows mean spike rates for the LIN inputs 
and outputs for a case of spike inputs arising from 
normal hearing.  The spontaneous input rate is 50 
spikes/s for all neurons, and input spike rates are 
elevated (max = 250 spikes/s) around BF = 5.5 kHz, 
simulating a pure-tone acoustic stimulus at that 
frequency.  The spontaneous output spike rate is 
around 25 spikes/s, reduced from 50 spikes/s because 
of both the recurrent inhibitory inputs and the 
refractory behaviour of the integrate-and-fire neuron.  
The lateral inhibitory behaviour produces contrast 
enhancement of the excitatory peak at 5.5 kHz–note 

the dips approaching zero in the mean output spike 
rate around 5 and 6 kHz. 
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Fig. 4. Mean spike rates for LIN inputs sin(t) (thin 
dashed line) and outputs sout(t) (thick solid line) 
for a case of normal hearing, with spontaneous 
input rates of 50 spikes/s and a pure-tone acoustic 
stimulus at 5.5 kHz. 

 
A case of abnormal spontaneous input to the LIN is 
simulated in Fig. 5 for a high-frequency hearing loss 
above 1.1 kHz.  The spontaneous input rate is 50 
spikes/s for neurons in the normal region below 1.1 
kHz, but the spontaneous rate is reduced to 20 
spikes/s for neurons in the region of hearing loss, 
producing an edge in the spontaneous excitation 
pattern.  A pure-tone acoustic stimulus of 5.5 kHz 
still produces elevated (max = 250 spikes/s) input 
spike rates around that BF.  As well as the contrast 
enhancement of the excitatory peak at 5.5 kHz, the 
LIN now produces a small peak at the low frequency 
side of the edge between the regions of normal and 
impaired hearing (indicated by the arrow), with a 
small corresponding dip on the high frequency side 
of the edge.  
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Fig. 5. Mean spike rates for LIN inputs sin(t) (thin 
dashed line) and outputs sout(t) (thick solid line) 
for a case of impaired hearing, with spontaneous 
input rates of 50 spikes/s in the region of normal 
hearing and 20 spikes/s in the region of high-
frequency hearing loss, and a pure-tone acoustic 
stimulus at 5.5 kHz. 

     



4. DISCUSSION AND CONCLUSIONS The peak in Fig. 5 is quite small and consequently 
may be barely distinguishable from the background 
spontaneous activity.  In Figs. 6 and 7 we consider 
cases where the normal spontaneous input rates are 
increased to 100 spikes/s and 200 spikes/s, 
respectively.  In each case, the size of the spurious 
peak of excitation (indicated by the arrows) is 
progressively increased, such that it is clearly 
discernible from the flanking spontaneous activity in 
the normal hearing region and begins to look more 
like a peak of activity due to a pure-tone acoustic 
stimulus. 

 
In this paper, a recurrent, spiking LIN was developed 
to illustrate the effects of reduced spontaneous input 
activity for a region of the LIN.  The results are 
generally consistent with those of Gerken (1996) and 
Kral and Majernik (1996), who found that simpler 
nonrecurrent, non-spiking LIN models produce a 
substantial enhancement of the edge between the 
normal and reduced spontaneous input activity.  
However, with the recurrent, spiking LIN developed 
in this paper, we found that the degree of edge 
enhancement was quite dependent on the mean input 
and output spike rates in the normal region of 
spontaneous activity.  This dependence indicates that 
the effectiveness of the LIN in enhancing edges (and 
peaks) is governed by the amount of inhibitory 
interaction between neighbouring neurons.  Even 
though all these simulations were carried out with 
fairly slow temporal dynamics (τ = 5ms and the 
excitatory and inhibitory postsynaptic currents last 
around 5 ms and 20 ms, respectively), substantial 
enhancement of the edge of the hearing loss is only 
obtained when the input and output spike rates in the 
region of normal hearing are high enough to create 
significant temporal overlap between the excitatory 
and inhibitory currents. 
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If the temporal dynamics are sped up or if the output 
spike rates are reduced by lowering the input rates, 
increasing the membrane threshold potential, or 
extending the duration of the refractory period, there 
will be fewer interactions between the excitatory and 
inhibitory inputs.  For example, output discharge 
rates are lower than input discharge rates, and 
consequently the rate of recurrent inhibitory synaptic 
events is lower than the rate of excitatory synaptic 
events.  Therefore we set the inhibitory postsynaptic 
current duration to be substantially longer than the 
excitatory current duration in these simulations 
(around 20 ms and 5 ms, respectively) to increase the 
opportunities for inhibitory interactions between 
neurons.  However, physiological evidence for longer 
lateral-inhibitory synaptic currents in the auditory 
midbrain or cortex is not strong (e.g., Depireux et al., 
2001; Escabi and Schreiner, 2002) 

 
Fig. 6. Elevated spontaneous input in the region of 

normal hearing:  mean spike rates for LIN inputs 
sin(t) (thin dashed line) and outputs sout(t) (thick 
solid line) for a case of impaired hearing, with 
spontaneous input rates of 100 spikes/s in the 
region of normal hearing (cf. 50 spikes/s in Fig. 
5) and 20 spikes/s in the region of high-frequency 
hearing loss, and a pure-tone acoustic stimulus at 
5.5 kHz. 
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In the case of a normal spontaneous input rate of 200 
spikes/s (Fig. 7), a large peak at the edge of the 
hearing loss was produced at the output of the LIN.  
Following Gerken (1996) and Kral and Majernik 
(1996), we postulate that the spurious peak in the 
output excitation pattern of the LIN may be a neural 
generator of tinnitus, the phantom perception of a 
sound.  While a spontaneous input rate of 200 
synaptic events per second from a single synapse is 
unlikely, it may be possible for multiple independent 
synaptic inputs to add together to create a total 
spontaneous input rate of 200 events/s or greater.  
However, the feasibility of this remains to be 
determined from anatomical and physiological 
studies of LINs in the central auditory system.  Such 
investigations are also necessary to ascertain the 
accuracy of the time scales of the neural dynamics 
used in this paper, i.e., the membrane time constant 

 
Fig. 7. Highly elevated spontaneous input in the 

region of normal hearing:  mean spike rates for 
LIN inputs sin(t) (thin dashed line) and outputs 
sout(t) (thick solid line) for a case of impaired 
hearing, with spontaneous input rates of 200 
spikes/s in the region of normal hearing (cf. 50 
spikes/s in Fig. 5 and 100 spikes/s in Fig. 6) and 
20 spikes/s in the region of high-frequency 
hearing loss, and a pure-tone acoustic stimulus at 
5.5 kHz. 

     



     

and the time courses of excitatory and inhibitory 
postsynaptic currents. 
 
In this paper we have only investigated the acute 
effects of abnormal spontaneous input to a LIN—no 
plastic changes in synaptic weights due to input or 
output activity was considered.  However, there 
exists both physiological and psychophysical 
evidence that many forms of tinnitus develop over 
the course of hours to days (e.g., Kaltenbach, 200), 
suggesting that neural plasticity may play an 
important role.  Therefore, the effects of plastic 
changes in synaptic weights will be examined in 
future modelling studies.  For these investigations, it 
will be important to study the consequences of 
sound-driven auditory-nerve activity from the normal 
and impaired ear (Bruce et al., 2003), in addition to 
spontaneous input activity.  The patterns of driven 
input activity will be greatly different to those of the 
spontaneous activity and may have a profound 
impact on any plastic changes in the LIN synaptic 
weights. 
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