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Abstract

In this thesis spatiotemporal patterns of auditory nerve activity are modelled, in order to determine

how they may code features of acoustical and electrical stimuli. In particular, questions and

applications of interest to cochlear implant development are investigated, including temporal coding

of stimulus features in populations of nerve fibres and stochastic activity in responses to electrical

stimulation.

A model of acoustical stimulation of the auditory nerve is developed to investigate how inter-

spike intervals across a pair of auditory nerve fibres may code acoustical stimulus frequency. The

results indicate that such frequency coding may take place across fibres for frequencies below 1–

3 kHz, if the fibres originate from nearby sites in the cochlea. This investigation is then extended to

spatiotemporal combination, specifically spatiotemporal summation, of activity in more than two

fibres. A model is developed to determine theoretically how various degrees of auditory nerve fibre

convergence onto summing neurons in the cochlear nucleus would affect estimation and discrimi-

nation of stimulus features from the summing neurons’ outputs. Results obtained from the model

indicate that for coding of the stimulus frequency in the periodicity of firings, the optimal spread

of input fibres is very narrow and temporal integration is very short. In contrast, cochlear nucleus

cell types which have a wide spread of inputs and a very short temporal integration window may be

useful in performing estimation and discrimination tasks based on the average discharge rate. The

first two investigations are of responses to pure-tone stimuli in identical auditory nerve fibres—the

possibility of coding different complex-stimulus features in fibres with different response properties

is therefore investigated next. A model of acoustical stimulation is developed to determine an

expression for the Cramer–Rao bound for frequency estimation of the envelope and fine structure

of complex sounds by groups of fibres with different response properties. The estimation variances

are calculated for some typical estimation tasks and demonstrate how, in the examples studied,

a combination of low and high threshold fibres may improve the estimation performance of an

‘efficient’ observer.

A stochastic model of auditory response to single electrical pulses is also derived, and direct

comparisons are made between this model and the same model without the stochastic component.

In contrast to the deterministic model, the stochastic model accurately predicts probabilities of
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discharge measured in response to single biphasic pulses. A model of loudness in cochlear implant

users is developed, which includes spatiotemporal summation of auditory nerve activity and can

incorporate either the deterministic or the stochastic description of auditory nerve response. For all

parameters investigated, the inclusion of stochastic activity in the model is found to produce more

accurate predictions of behavioural performance than it is not included. The stochastic model of

auditory nerve response to electrical stimulation is then extended to describe responses to pulse-

train stimuli. The stochastic model, unlike the deterministic model, accurately predicts means and

variances of discharge rates measured in response to pulse trains. The pulse-train stochastic model

provides a means for extending the loudness model to predict psychophysical data for higher pulse

rates.
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Chapter 1

Introduction

In the human auditory system, the function of the ear is to transduce sound waves into spatiotem-

poral patterns of activity in the auditory nerve, which are processed by the brain to produce the

perception of sound. Spatial refers to the fact that the auditory nerve consists of some 30 000 nerve

fibres, each driven by vibrations at different sites in the cochlea such that the spread of neural

excitation is a function of the acoustical stimulus. Temporal refers to the fact that the timing

of discharges in each fibre is also a function of the stimulus. This transduction process can be

described as the coding of sound features in the patterns of activity in the auditory nerve. This

neural code is propagated to the brainstem by the auditory nerve and processed (decoded) by the

auditory pathways in the brain. A number of different forms of neural processing or decoding may

take place to form the perception of sound, or hearing.

Sensorineural hearing loss refers to a disruption in the transduction of sound waves into neural

activity in the auditory nerve as a result of malformation or degeneration of the organ of Corti

within the inner ear, or cochlea. In the case of a severe hearing loss, the disruption is of such a

degree that little perception of sound can be achieved, even at high sound levels. With a profound

hearing loss this disruption is practically complete. In both cases, amplification of sound by a

hearing aid will provide very little assistance. However, because of the electrochemical nature

of auditory nerve activity, an alternative exists—electrical stimulation of the nerve by a device

known as a cochlear implant or hearing prosthesis can be used to produce neural discharges of the

auditory nerve. Consequently, cochlear implants provide a means of circumventing the disruption

to auditory processing resulting from a sensorineural hearing loss, by electrically processing sound

waves and transducing them via electrical stimulation into activity in the auditory nerve.

If it were possible to design a cochlear implant which perfectly replicated the function of the

human ear, then it would not be necessary to understand how the brain interprets patterns of

activity in the auditory nerve produced by the electrical stimulation in order to develop that

implant—the implant could simply mimic the action of a healthy ear. However, present cochlear
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implant technology is unable to perform such advanced processing of sound as the human ear and

is limited in what patterns of neural activity it can elicit. With such sub-optimal coding of sound it

is desirable to produce neural responses which maximally convey the most perceptually-important

information. Thus, in developing cochlear implants, it is necessary to understand both (i) how

the brain interprets patterns of auditory nerve activity and (ii) what patterns of response are

produced by electrical stimulation. The general aim of this thesis is to develop mathematical and

computational models to:

1. determine which components of auditory nerve activity may be significant for aspects of

perception such as threshold, loudness and pitch, and

2. explain both the electrically elicited auditory nerve activity (physiological responses) and the

resulting perception of the stimulus (psychophysical performance) in cochlear implant users.

The methodology used is first to derive mathematical descriptions of auditory nerve responses

to acoustical and electrical stimulation from physiological data and theory, and then to apply

statistical measures of how stimulus features are represented in different schemes of spatiotemporal

combination and decoding of patterns of activity. Applications of these schemes to perceptual

phenomena are considered theoretically, and some comparisons of predicted responses are made to

those obtained from psychophysical experiments.

Before moving on to an overview of the specific issues addressed in this thesis, a brief summary

is provided of the anatomy and physiology of the ear, how the normal ear may be coding sound

features, and how cochlear implants function.

1.1 Anatomy and physiology of the ear

A detailed description of the anatomy and physiology of the ear can be obtained from standard

texts such as Pickles (1982). A more recent review of the cochlea is given in Dallos et al. (1996).

This section constitutes a summary of the anatomical and physiological features which are pertinent

to this thesis.

The anatomy of the peripheral auditory system, as shown in Figure 1-1, is generally divided

into three segments: the outer, middle, and inner ears. The outer ear consists of the pinna (A)

and the external auditory meatus (B), which function to capture incident sound waves and provide

initial filtering of the signal, increasing the sound pressure in the region of 2 to 7 kHz and assisting

in perceptual tasks such as sound localisation.

The middle ear comprises the tympanic membrane (C) and three ossicles—the malleus (D),

the incus (E) and the stapes (F))—which function to couple the external auditory meatus to the

cochlea (H). Sound pressure waves in the auditory meatus produce vibrations of the tympanic



3

A

B
D

C
F

G

H

I

E

Figure 1-1: Anatomy of the human ear: (A) pinna; (B) external auditory meatus; (C) tympanic

membrane; (D) malleus; (E) incus; (F) stapes; (G) oval window; (H) cochlea; (I) auditory

nerve.

membrane which are transferred by the ossicles to the cochlea. The middle ear’s mechanics are

such that they match the impedance of the auditory meatus to the much higher impedance of the

cochlear fluids, increasing transfer of sound energy from the outer to the inner ear and reducing

reflection of sound waves at the tympanic membrane. The first two ossicles are joined relatively

rigidly so that when the tip of the malleus is pushed by the tympanic membrane, the ossicles rotate

together and transfer the force to the stapes. The footplate of the stapes is attached to the oval

window (G), a flexible window in the wall of the cochlea.

The cochlea is longitudinally divided into three fluid-filled scalae (the scala vestibuli, the scala

tympani, and the scala media) as shown schematically in Figure 1-2. The scalae spiral together

along the length of the cochlea, with the outer scalae (the scala vestibuli and the scala tympani)

joined by an opening at the apex of the cochlea, the helicotrema. The scala media forms a closed

inner compartment, which is separated from the scala vestibuli by Reissner’s membrane on one

side and from the scala tympani by the basilar membrane on the other side. Movement of the

oval window, situated at the base of the scala vestibuli, produces a displacement of the cochlear

fluids to a second window in the cochlea, the round window, which opens into the base of the scala

tympani. The flow of the cochlea fluids results in a wavelike displacement of the basilar membrane,

referred to as the travelling wave. This vibration of the cochlear membranes is indicated by the

dashed lines in Figure 1-2.

The travelling wave propagates from the base of the basilar membrane to its apex. The rigidity
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Figure 1-2: Schematic of the vibrations in the cochlear duct, which is depicted as if it had been

unrolled. From Pickles (1982).

of the basilar membrane decreases with distance from the base, and consequently the wave ampli-

tude grows and the propagation velocity drops as it moves apically until a region is reached where

the cochlear partition approaches resonance and the wave starts to stall. Following this region of

resonance the vibration amplitude falls dramatically and the travelling wave propagates no further.

The site of the resonance is dependent on the frequency of stimulus, such that different frequen-

cies produce different areas of maximum vibration—this is referred to as a tonotopic organisation.

Consequently, the basilar membrane can roughly be described as a continuous series of band-pass

filters, with the centre frequency of each filter decreasing monotonically with distance from the

base. The reduction in propagation velocity in the region of resonance also produces a rapid shift

in the phase of the vibration, leading to a phase lag which accumulates as the wave increases in

amplitude to its maximum and then dies off.

A cross-section of the cochlea is shown in Figure 1-3. The organ of Corti is a structure which

sits on the basilar membrane and performs (i) active filtering of the basilar membrane vibration

and (ii) the transduction of the sound energy conveyed by the travelling wave into neural activity

within the auditory nerve. The former is achieved by the outer hair cells contained within the

organ of Corti—details of the organ of Corti are shown in Figure 1-4. Hairs, or stereocilia, extend

from the outer hair cells on the side of the organ of Corti opposite the basilar membrane and are

embedded in the tectorial membrane, which rests on that side of the organ of Corti. The tectorial

membrane is only attached on one side, whereas the basilar membrane is suspended between the

spiral lamina and the spiral ligament. Consequently, displacement of the basilar membrane in the

form of the travelling wave causes a shear movement between the organ of Corti and the tectorial

membrane, forcing the stereocilia to bend. Slender filaments form links between the tops of short

stereocilia and the sides of adjacent tall stereocilia. It is hypothesised that changes in the tension

of these tip links, caused by bending of the stereocilia, produce changes in the motility of the

outer hair cells, actively modifying the basilar membrane vibration and consequently increasing its

sensitivity and frequency selectivity. This active response may also be modulated by an efferent
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nerve supply which the outer hair cells receive from the cochlear nucleus.

Figure 1-3: A cross-section of the cochlea. From Pickles (1982).

The transduction of the sound energy conveyed by the travelling wave into neural activity

within the auditory nerve is achieved by the inner hair cells and auditory nerve synapses which

are also contained within the organ of Corti. The stereocilia of the inner hair cells extend towards

the tectorial membrane, like those of the outer hair cells, but they do not appear to be embedded

in it. However, the shear movement of the tectorial membrane still forces the stereocilia of the

inner hair cells to bend, either because they are loosely attached to the tectorial membrane, or

because the cochlear fluid between the organ of Corti and the tectorial membrane is made to flow

around the stereocilia by the shear movement, exerting a lateral force on them. Bending of the

stereocilia produced by the basilar membrane vibration can lead to current flow within the hair

cells, which causes the release of neurotransmitters across the hair-cell/auditory-nerve synapses.

Auditory nerve fibres provide a direct synaptic link between the inner hair cells and neurons

in the auditory brainstem, or cochlear nucleus. Around 95% of all afferent auditory nerve fibres

synapse onto inner hair cells, with 10 to 30 fibres each forming a single synaptic connection to

an inner hair cell. A fibre’s axons and cell body are effectively a continuous tubular myelinated

membrane, with regular breaks in the myelin referred to as the nodes of Ranvier. Ionic fluids fill

and surround the nerve membrane, with differing concentrations of ions in the internal and external
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Figure 1-4: A cross-section of the organ of Corti. From Pickles (1982).

fluid. The electrical charges of the ions are such that there exists a difference in potential between

the internal and the external fluids. The reception of the neurotransmitters by an auditory nerve

synapse causes ions to flow through the membrane from the interior to the exterior of the fibre and

vice versa. This results in a change in the potential of a nerve membrane, known as an excitatory

postsynaptic potential. If the postsynaptic potential is of sufficient magnitude, it is propagated

along the auditory nerve fibre to the brain. Such a response is called an action potential, discharge,

firing or spike. This neural activity is then processed by the brain to give the perception of sound.

Inner hair cells appear to release small amounts of neurotransmitters even when they are in

their resting state, i.e., in the absence of basilar membrane vibration. This leads to auditory nerve

discharges occurring in the absence of an acoustical stimulus, or spontaneous activity, with the rate

of spontaneous discharges in single fibres ranging from close to zero up to 100 spikes per second.

In the presence of a weak acoustical stimulus, the basilar membrane vibrates and the stereocilia

bend back and forth, as described above. This produces an oscillation in the amounts of neu-

rotransmitters released, such that action potentials are more likely to occur at one phase of the

stimulus than at others. This is known as phase-locking or synchronisation, and can occur even

though there may be no net increase in the average rate of firing. As the magnitude of the basilar

membrane vibration increases, the amounts of neurotransmitters released also increase, such that

both the average discharge rate and the synchronised component of the discharge rate are roughly

monotonic functions of the vibration amplitude. The discharge rate does not increase linearly

however, because of (i) nonlinearities in the transduction process and (ii) refractory effects which

limit the rate of recovery of a fibre after it has discharged to a state where it can discharge again.



7

This limits the maximum average discharge rate to around 1 000 spikes per second. However, this

is only achieved for very brief stimuli or at the onset of longer continuous stimuli—adaptation in

the transduction process causes an exponential decrease in the discharge rate over the duration

of a stimulus, asymptoting to a maximum discharge rate of around 200–300 spikes per second.

Auditory nerve fibres exhibit a range of thresholds (typically defined as the intensity at which

the average discharge rate rises above its spontaneous rate) on the order of 60–80 dB1, although

perhaps 70% of fibres fall within the bottom 10 dB. Dynamic ranges (the increase in stimulus

magnitude required to increase the average discharge rate from its threshold to saturation) are on

the order of 20–50 dB. The above description of auditory nerve response as a function of the basi-

lar membrane vibration provides an overview of the temporal response characteristics of auditory

nerve fibres. However, as discussed previously, the behaviour of these vibrations is different at each

point along the basilar membrane, giving rise to a spatial pattern of responses also. The tonotopic

arrangement of vibration patterns and the delays in the vibration phase are reflected in the spread

of excitation in the auditory nerve and in the phase of the synchronised components of response

in different fibres respectively. Consequently, patterns of auditory nerve activity are described in

terms of their spatiotemporal characteristics.

Such a spatiotemporal pattern of activity is illustrated in Figure 1-5, which shows the output of a

computer simulation2 in response to a complex acoustical stimulus. The instantaneous probability

of firing for 19 auditory nerve fibres is plotted as a function of their origin on the basilar membrane

(distance from the stapes) and of time. In any one fibre the response is seen to change over time,

and at any one time the response of each fibre is seen to be different. The basilar membrane

displacement at two different times (dashed and solid lines) is plotted on the left, indicating the

movement of the travelling wave which produces this neural response.

1.2 Coding of sound in the normal ear

Although physiological, psychophysical and modelling studies have revealed much about which

aspects of auditory nerve activity are likely to be coding different sound features, many issues

remain unresolved. Therefore, reviewing all issues relating to sound coding is beyond the scope

of this chapter—a recent review of physiological models for basic auditory percepts can be found

in Delgutte (1996). Instead, only a summary of the general principles of sound coding theories

is provided here, and the specific issues relating to coding of sound by cochlear implants will

be addressed later in the introduction to cochlear implants (Section 1.3) and the thesis overview

(Section 1.4).

The spatiotemporal nature of the auditory nerve activity means that information may be coded
1All values given in units of dB are calculated by 20 log10(ratio), unless otherwise stated.
2See Chapter 2 for details of the computer model.
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Figure 1-5: Instantaneous probability of firing (indicated by the height of the trace) for 19 au-

ditory nerve fibres versus origin on the basilar membrane (distance from the stapes) and time.

The basilar membrane displacement at two different times (dashed and solid lines) is shown on

the left, indicating the movement of the travelling wave which produces this neural response.
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in the site of the activity (spatial coding), in the timing of the activity (temporal coding), or in

some combination of the two (spatiotemporal coding).

1.2.1 Spatial coding

Theories of spatial coding propose that acoustical stimulus features are coded by which auditory

nerve fibres respond. The fibres which are deemed to be ‘responding’ may be distinguished from

‘non-responding’ fibres by their response properties.

For example, the frequency of an acoustical stimulus may be coded by which fibres exhibit

the maximum mean discharge rate (for a review, see Evans, 1981). However, such coding may be

limited by restricted dynamic ranges in single fibres and overlap of the neural populations excited

by difference frequency components of complex stimuli at high intensities (e.g., Evans, 1981).

Variations to this coding scheme which may overcome such restrictions include: frequency is coded

by the fibres exhibiting the greatest change in mean discharge rate with respect to their spontaneous

rate (e.g., Kim et al., 1990), and frequency is coded by the fibres exhibiting the greatest difference

in mean discharge rate across a local population of fibres (Kim and Parham, 1991).

Alternatives have also been proposed as to what response property is used to distinguish fibres

for spatial frequency coding. It has been found that the degree of synchronisation in a local

population of fibres (Young and Sachs, 1979) well represents the frequency components of complex

stimuli even at high intensities (e.g., Jenison et al., 1991; Young and Sachs, 1979). A neural

mechanism which may utilise such coding is investigated in Chapter 3. Another possibility is

that the fibres exhibiting the greatest change in phase across a local population of fibres code the

stimulus frequency (Shamma, 1985).

Not only the stimulus frequency may be coded by the spatial patterns of response. One long-

standing theory of intensity coding is that the stimulus intensity is coded by the spread of neural

excitation elicited by an acoustical stimulus (e.g., Moore and Glasberg, 1996; Zwicker and Fastl,

1990; Zwicker and Scharf, 1965; Zwicker, 1958).

1.2.2 Temporal coding

In theories of temporal coding, it is hypothesised that information about an acoustical stimulus is

coded by the timing of auditory nerve fibre responses.

For instance, one theory of temporal frequency coding which competes with theories of spatial

frequency coding is that frequency is coded by interspike intervals in single fibres or in populations

of fibres (e.g., Clark, Carter, Maffi and Shepherd, 1995; Rose et al., 1967; Wever, 1949). However,

it is generally recognised that such coding is probably limited to stimulus frequencies lower than a

few thousand Hertz and that spatial frequency coding is required for higher stimulus frequencies.

Neural mechanisms which may utilise temporal frequency coding are investigated in Chapters 2
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to 4.

Additionally, the stimulus intensity may be coded not just by the spread of excitation, but

rather by the average discharge rates in single fibres or in populations of fibres (e.g., Winter and

Palmer, 1991; Hellman and Hellman, 1990; Viemeister, 1988; Viemeister, 1983; Evans, 1981). A

neural mechanism which may utilise such coding is investigated in Chapter 3, and a psychophysical

model which utilises such coding is explored in Chapter 6. One hypothesised temporal coding

scheme which overcomes limits in average-discharge-rate intensity coding is that the degree of

coincidence of discharges in a population of fibres is used to code intensity (Carney, 1994).

1.2.3 Spatiotemporal coding

Although theories of coding are typically classified under the headings of spatial coding or temporal

coding, almost all of the coding schemes listed above actually involve coding of stimulus features in

the temporal features of a population of fibres, i.e., spatiotemporal coding. In theories of ‘spatial’

coding, temporal features of activity in populations of fibres are used to indicate which fibres are

responding. In ‘temporal’ coding schemes, multiple fibres are typically required, either because

physiological data have suggested that certain aspects of neural behaviour, such as refractory

effects, limit what information can be coded in single auditory nerve fibres (e.g., Clark, Carter,

Maffi and Shepherd, 1995; Rose et al., 1967; Wever, 1949), or because the theoretical performance

of a detection, discrimination or estimation system based on single-fibre responses can not be

reconciled easily with psychophysical data (e.g., Winter and Palmer, 1991; Hellman and Hellman,

1990; Viemeister, 1988; Viemeister, 1983; Evans, 1981).

1.3 Cochlear implants

A sensorineural hearing loss leads to significant, or in some cases complete, reduction in the number

and integrity of inner hair cells (Hinojosa and Marion, 1983). Consequently, very little or no

spontaneous auditory nerve activity is present in a severely to profoundly deafened ear (Kiang

et al., 1970), and little or no neural activity is produced by an acoustical stimulus, which results

in a hearing impairment. Retrograde degeneration of the auditory nerve also occurs, reducing

the number of surviving auditory nerve fibres (Hinojosa and Marion, 1983). However, in most

individuals, enough fibres remain to enable electrical stimulation via a cochlear implant to elicit

an audible degree of neural activity. An electronic processor can be used to extract features of

acoustical signals and to transfer them into spatiotemporal patterns of electrical current which will

produce appropriate neural responses. Such processors are typically optimised for speech signals

and are therefore often referred to as speech processors.

As shown in Figure 1-6, a typical cochlear implant consists of a microphone (a), a speech
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processor—worn either behind the ear (b) or on the body (c)—and an electrode array (f). Either

a transcutaneous or a percutaneous link is used to connect the electrode array to the speech

processor. The implant system shown here uses a transcutaneous RF transmitter coil (d) and

receiver/stimulator (e) to communicate between the processor and the stimulator and to provide

the stimulator’s operating electrical power. The present generation of cochlear implants utilise

an array of up to 24 electrodes which is inserted into the basal turns of the scala tympani of

the cochlea (g) through the round window or via a cochleostomy. Some implants have additional

electrodes external to the cochlea. The creation of a potential difference between two or more

electrodes on the electrode array (f) by the stimulator (e) causes electrical currents to flow in the

cochlea (g) and auditory nerve (h). The two electrode configurations investigated in this thesis are

commonly known as monopolar and bipolar stimulation. In the case of monopolar stimulation, the

active electrode is one of the electrodes on the array within the cochlea and the return electrode is

an electrode external to the cochlea. In the case of bipolar stimulation, both the active electrode

and the return electrode are on the electrode array within the cochlea. The electrode configuration

will be referred to as being narrow bipolar if the active and return electrodes are adjacent to each

other on the array, and wide bipolar if there are nonactive electrodes separating the two.

Figure 1-6: Components of a typical cochlear implant: (a) microphone; (b) behind-the-ear

speech processor; (c) body-worn speech processor; (d) transmitter coil; (e) receiver/stimulator;

(f) electrode array; (g) cochlea; (h) auditory nerve.

Injection of current by means of a cochlear implant can cause a sudden depolarisation in the

nerve membrane, similar to an excitatory postsynaptic potential produced by a healthy hair-
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cell/auditory-nerve synapse (Frijns, 1995; Colombo and Parkins, 1987). The magnitude of this

depolarisation is dependent on the geometry of the current flow relative to the nerve membrane

and on the state of the membrane (Frijns, 1995; Ranck, 1975). If the depolarisation is of sufficient

magnitude, it will form a self-sustaining depolarisation which propagates the length of the fibre to

the cochlear nucleus (Frijns, 1995; Colombo and Parkins, 1987). Such discharges are practically the

same as action potentials generated by a healthy ear and will produce sensations perceived as sounds

by cochlear implant users. Which fibres respond will depend on the stimulus current produced at

the active electrode, how the current flows to surviving auditory nerve fibres, and how effectively the

membrane is depolarised by this current. In general, fibres closer to the active electrode are more

easily excited (van den Honert and Stypulkowski, 1987a; Ranck, 1975), and the range of thresholds

in a local population of fibres is on the order of 10–14 dB (van den Honert and Stypulkowski, 1987a).

Multiphasic (particularly biphasic), charge-balanced current pulses are typically used to avoid

damaging charge build-up in the neural tissue (for a recent review, see Tykocinski et al., 1995b).

Stimulation on multiple electrodes is normally required to be non-simultaneous, because field

interactions created by simultaneous stimulation can cause unpredictable and undesirable neural

responses (Clark, 1987; White et al., 1984; Eddington et al., 1978). Thresholds for the cathodic

phase are generally lower than for the anodic phase (Ranck, 1975; Hill, 1936). In a single fibre, a

1–6 dB increase in the stimulus intensity is typically required to increase the discharge probability

in response to a single current pulse from close to zero up to nearly one (see Chapter 5). Discharges

tend to be very well phase-locked to the leading edge of a current pulse, with only a small amount of

jitter occurring in the timing of the discharge (Javel et al., 1987; van den Honert and Stypulkowski,

1987b; van den Honert and Stypulkowski, 1984). Responses to trains of current pulses exhibit

inter-pulse interactions such as refractory effects, which alter the temporal pattern of activity (see

Chapter 7).

A number of dissimilarities exist between neural response patterns elicited by a healthy ear and

those produced by a cochlear implant. These contribute to deficiencies in the speech perception

of implant users, which is still below that of individuals with normal hearing (e.g., Clark, 1997a).

The ability of a particular implant and speech processing strategy to produce the desired neural

response is restricted by a number of factors. Firstly, the software and hardware limitations of the

speech processor, implant and electrode array restrict what electrical currents may be produced

via the electrodes. Secondly, the electrical field produced at sites of action potential generation in

the auditory nerve will be affected by the behaviour of those electrical fields within the structures

of the electrode array, cochlea and auditory nerve (Frijns, 1995; Finley et al., 1990). Thirdly,

action potentials in the normal cochlea are generated by the mechanical/electrical transduction

action of hair cells, not by direct electrical fields such as those produced by cochlear implants.

Even if the first two restrictions did not exist, and any desired pattern of stimulating current were
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achievable, this difference in the way in which action potentials are generated could mean that

not all patterns of neural response are achievable via electrical stimulation with present electrode

designs. Consequently, auditory nerve firing patterns produced by present cochlear implants are

very different to those of normal hearing. It is therefore necessary to optimise the coding of sound

features which are the most important for perception.

The first successful cochlear implants consisted of a single stimulating electrode, limiting the

coding of speech features to the temporal aspects of a single analogue or pulsatile current (House

and Berliner, 1982; Hochmair-Desoyer et al., 1980). Processing strategies for single-electrode im-

plants typically encoded the broadband envelope of an acoustical stimulus in the amplitude enve-

lope of the analogue or pulsatile current (House and Berliner, 1982; Hochmair-Desoyer et al., 1980).

The development of multi-electrode implants made possible stimulation of different populations

of auditory nerve fibres (e.g., Clark, 1987; Eddington, 1980), permitting the coding of more than

just the stimulus envelope. The next most important speech features were deemed to be the

formants and higher frequency components (Clark, 1987). As described previously, both the site

of neural excitation and the periodicity of firing in single fibres change as a function of acoustical

stimulus frequency. Consequently, most theories of frequency coding are based on either of these

two features of auditory nerve activity (for a recent review, see Delgutte, 1996). Preliminary

psychophysical investigations with a multi-electrode implant (Clark, 1987) indicated that either

the site of stimulation or the rate of the stimulating pulse-train could be varied to produce a change

in pitch, i.e., the psychological percept of frequency. Both coding schemes have been implemented

in speech processors for multi-electrode cochlear implants. One approach, utilising temporal (firing

periodicity) frequency coding, was to code speech features such as frequency of the voicing pitch and

formants by the periodicity of pulses in multiple non-simultaneous, pulsatile currents (Clark, 1987).

Another approach, utilising spatial (site of excitation) frequency coding, was to code spectral

components of speech by continuous spectral analysis by a fixed number of filters and continuous

analogue output from electrodes exciting different neural populations (Eddington, 1980). Most

theories of intensity coding are based on degree of neural excitation (Evans, 1981), and neural

excitation is known to increase with the current delivered by an electrical stimulus. Further

psychophysical investigations (Clark, 1987) indicated that varying the current per pulse (amplitude

and/or pulse-duration) produces a change in loudness, i.e., the psychological percept of intensity.

Consequently the intensity of speech features or spectral components was coded by the amount of

current delivered by the corresponding electrode.

Speech perception with multi-electrode implants was better on average than with single elec-

trode devices (Gantz et al., 1987). The multi-electrode ‘temporal coding’ processing strategy was

later superseded by a spectral-analysis strategy—speech perception was found to improve on av-

erage by using a processor which chooses the position of the stimulating electrodes according to
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the natural tonotopic arrangement of the auditory nerve to represent the spectral components of

the speech signal with greatest amplitude (Clark, Dowell, Cowan, Pyman and Webb, 1995; McKay

and McDermott, 1993; McKay et al., 1991). This was executed with non-simultaneous, pulsatile

stimulation, but at a constant rate, i.e., with no coding via timing of pulses. The ‘spatial cod-

ing’ multi-electrode strategy with a fixed number of filters and electrodes has also been adapted

to make use of non-simultaneous, pulsatile stimulation rather than continuous analogue stimula-

tion (Wilson et al., 1993; Merzenich and White, 1977). With improvements in the software and

hardware used in speech processors and implants, it has been possible to stimulate at higher rates

than initially was possible. This can produce improvements in speech perception (e.g., Wilson

et al., 1991), although increasing the pulse rate above 800 pulses per second with some strategies

can cause performance to decline (Zilberman, 1997).

This history of cochlear implant development displays a move away from coding speech features

via the temporal aspects (stimulation waveform or timing of pulses) of the electrical stimulus to

coding spectral features via the spatial aspects (stimulating-electrode position). However, speech

perception with a fixed-rate stimulation scheme may be limited, and more precise spatiotemporal

patterns of response may be needed to further improve the performance of speech processing

strategies. For instance, some aspects of pulse-timing utilised in earlier speech processing strategies

to code speech features, or some new aspects such as mimicking the basilar membrane phase lag

behaviour (Clark, 1997b; Clark, 1996; Clark, Carter, Maffi and Shepherd, 1995), if introduced

into coding schemes which also provide a high level of spectral information, may further improve

speech perception. However, despite the success of the initial ‘temporal coding’ scheme, it is still

not fully understood how such temporal aspects of neural firing are coding stimulus features. It

is therefore desirable to gain a better understanding of this as attempts are made to introduce

aspects of temporal coding into speech processing strategies.

1.4 Thesis overview

Single fibres are limited in the information they can code, both in their long-term average re-

sponse (e.g., Evans, 1981; Siebert, 1970) and in the periodicity of their activity (e.g., Clark, Carter,

Maffi and Shepherd, 1995; Johnson, 1980; Siebert, 1970; Rose et al., 1967). Therefore, it has been

proposed that activity in groups of auditory nerve fibres may be combined at different stages of

the auditory pathways (Clark, 1996; Rothman and Young, 1996; Carney, 1994; Rothman et al.,

1993; Carney, 1992; Winter and Palmer, 1991; Kim and Parham, 1991; Kim et al., 1990; Viemeis-

ter, 1988; Rhode and Smith, 1986; Teich and Lachs, 1979; Rose et al., 1967; Wever, 1949). Much of

this combining may occur in the convergence of auditory nerve fibres onto neurons in the cochlear

nucleus (Paolini et al., 1997; Joris, Carney, Smith and Yin, 1994; Joris, Smith and Yin, 1994; Young
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et al., 1988; Smith and Rhode, 1987), i.e., direct combination of the activity in groups of auditory

nerve fibres. In Chapter 2 a possible mechanism is investigated for temporal frequency coding via

spatiotemporal combination of activity in pairs of auditory nerve fibres. In Chapter 3 this investi-

gation is extended to look at how another neural mechanism, spatiotemporal summation, could be

used in spatiotemporal combination of activity in more than two fibres. In these first two chapters

a model of auditory nerve response to acoustical stimulation is used which has identical fibres,

and only responses to pure-tone stimuli are investigated. However, the response characteristics of

auditory nerve fibres do vary somewhat throughout the auditory nerve, particularly in how they

respond to complex sounds. Therefore, in Chapter 4 a model is developed to examine how the

combination of activity from fibres with different thresholds may assist in the decoding of different

components of complex acoustical stimuli.

In the case of electrical stimulation, it has generally been assumed that the auditory nerve

fibres have a deterministic (non-random) response—i.e., neural responses are identical for repeated

identical stimuli—despite significant physiological evidence for stochastic (random) activity at

some stimulus intensities. Consequently, it has been assumed that the temporal pattern of neural

response closely matches the timing of the stimulating electrical pulses, except where refractory

effects prevent a fibre from discharging. However, if cochlear implants are operating at stimulus

intensities which produce stochastic activity in the auditory nerve response, this will significantly

alter the spatiotemporal patterns of response to electrical stimulation. Furthermore, deterministic

models (Pfingst, 1990; Shannon, 1989) and analyses of single-fibre physiological data which assume

a deterministic response (Pfingst et al., 1991; Pfingst, 1990; Pfingst, 1988) have been unable to

explain some important psychophysical phenomena observed in cochlear implant users. Therefore,

in Chapter 5 the physiological evidence for stochastic activity in the auditory nerve response

to electrical stimulation is reviewed and a model is developed which accurately describes the

physiological data. In order to determine whether or not inclusion of stochastic activity in neural

models improves predictions of psychophysical data, in Chapter 6 a model of loudness is derived

which can incorporate either the deterministic or the stochastic description of auditory nerve

response from Chapter 5. In Chapter 7 the stochastic model of auditory nerve response to electrical

stimulation is extended to describe responses to pulse trains. This extended model provides a more

precise prediction of the spatiotemporal patterns of response produced by cochlear implant speech

processing strategies.

In Chapter 8 the results of these investigations are summarised and drawn together to examine

their implications for spatiotemporal coding of sound by cochlear implants.



Chapter 2

Frequency coding by cross-fibre

interspike intervals

2.1 Introduction

It is known that in a single Auditory Nerve (AN) fibre the predominant interval between action

potentials is the same as the period of a pure-tone acoustical stimulus for frequencies up to around

600 Hz, and this provides a possible mechanism by which the brain codes frequency (Clark, 1996;

Javel and Mott, 1988; Horst et al., 1986; Rose et al., 1967; Wever, 1949). For higher frequencies,

refractory effects prohibit a single fibre from firing every cycle, such that the predominant peak in

the Interspike Interval (ISI) histogram becomes a multiple of the period of the stimulus. However,

the difference between the ISIs in single fibres represents the period of the stimulus for frequencies

up to 5 kHz (Rose et al., 1967), although more recent studies indicate that the upper limit is

1.5–3.0 kHz (Clark, Carter, Maffi and Shepherd, 1995; Johnson, 1980). This suggests that ISIs in

groups of fibres could be used for coding frequency in this higher frequency range, following the

Volley Principle first proposed by Wever (1949). In this chapter interspike intervals across a pair

of auditory nerve fibres are investigated to determine how they may code the stimulus frequency.

In a pair of fibres innervating different regions of the cochlea, the distribution of ISIs in each

fibre is affected by factors such as the frequency of the pure-tone stimulus, the characteristic

frequencies of the two fibres, the firing rate versus stimulus intensity behaviour of the fibres, and

the degree of phase-locking in the responses. The ISIs between the fibres is further affected by the

phase delay of the travelling wave. It is uncertain how these factors affect frequency coding across

fibres.

In this chapter the statistical relationship of spike events between two fibres innervating dif-

ferent regions in the cochlea is investigated using a mathematical model of the cochlea, a hair-

16
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cell/auditory-nerve transduction model and an integral expression for the Cross-Fibre Interspike

Interval (CFISI) probability distribution. Given a time-varying acoustical stimulus, the cochlear

model simulates the propagating waves in the cochlear fluid resulting in the vibrations of the basi-

lar membrane and the shearing movements of the hair cells. The auditory nerve model then takes

the hair cell shearing displacements and converts them into the fluctuating firing probabilities of

AN fibres. The cross-fibre interspike interval probability distribution is then calculated from the

firing probabilities using an integral expression. The effect of propagation delays on the cross-fibre

interspike intervals is studied and its implications for cross-fibre temporal frequency coding are

discussed.

2.2 The cochlear model

The cochlear model is a linear, active, time-domain model which is based on a frequency-domain

model published by Neely and Kim (1986). The cochlea is modelled as a fluid-filled rectangular

box with rigid boundaries, and it is separated into upper and lower halves by a flexible cochlear

partition. The endocochlear fluid is assumed to be inviscid and incompressible, and the propagation

of waves in the fluid is restricted to one-dimension in order to simplify the solution. The cochlear

partition is modelled as a 4th order spring-mass-and-damper vibration system shown in Figure 2-

1. It is driven by the fluid pressure difference across the partition and a frequency dependent

active feedback pressure source1 which is proportional to the hair bundle displacement given by

the relative motion of the two masses. A simplified middle ear model is also included to provide the

air-to-fluid coupling from the eardrum to the stapes, so that the input stimulus may be specified as

the sound pressure at the eardrum or the acceleration of the stapes. The output of the model is the

basilar membrane displacement or the hair-cell shearing displacement. In Figure 2-2 the amplitude

(top) and phase (bottom) of the hair bundle vibration are plotted as a function of position on the

basilar membrane, for a 0 dB SPL pure tone at five different frequencies.

According to Neely (1981), the boundary condition at the stapes may be solved in the time-

domain using spatial integration to conserve the volume of fluid in the cochlea. However, this

causes stability problems when the waves are reflected from the apex due to the inaccurate model

of the helicotrema. To overcome this problem, temporal integration can be used to solve the

boundary condition at the stapes, and the helicotrema can either be modelled as zero pressure

difference across the apical wall or as a vibrating apical wall with a pure damping impedance.
1This models the active response of the outer hair cells to the basilar membrane vibration, but does not take

into account input to the outer hair cells from efferent fibres originating from the cochlear nucleus.
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Figure 2-1: Neely and Kim’s (1986) lumped component model of cochlear micromechanics.

The mass M1 represents a cross section of the organ of Corti which is attached to rigid bone

by stiffness and damping components K1 and R1. The basilar membrane is “driven” by fluid

pressure difference Pd and active pressure source Pa. The mass M2 represents a cross section

of the tectorial membrane which is attached to rigid bone by K2 and R2. The two masses are

coupled by K3 and R3. ξt represents the displacement of the tectorial membrane (M2), and gξb

represents the displacement of the basilar membrane (M1).
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Figure 2-2: Magnitude (top) and phase (bottom) of the hair-bundle vibration versus normalised

position on the basilar membrane (distance from stapes), for a 0 dB SPL pure tone at five

different frequencies.
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2.3 The hair-cell/auditory-nerve model

The vibration pattern on the basilar membrane is converted into the fluctuating probability of

an action potential being generated using an auditory synapse model based on a model published

by Meddis et al. (1990). The model parameters are set to produce an output matching ‘high-

spontaneous-rate/low-threshold’ fibres (Meddis et al., 1990). The Meddis et al. model contains

three reservoirs of neural transmitters, namely, a transmitter factory, a free transmitter pool and

a reprocessing store. The transmitter factory manufactures new neural transmitters and releases

them into the free transmitter pool at a rate proportional to the maximum number of transmitters

in the free pool. As the basilar membrane vibrates, the instantaneous shearing displacement on the

hair cell produces a proportional change in the rate at which the free transmitters are released into

the pre-synaptic cleft. Some of the transmitters in the cleft are depleted while others are recovered

into the reprocessing store where they are regenerated and released back into the free transmitter

pool. The rates of depletion and re-uptake are proportional to the amount of transmitters in the

cleft. Finally, the firing probability of the fibre is then obtained by multiplying the amount of

transmitters in the cleft by a constant scaling factor.

However, this firing probability does not take into account the refractory period after the fibre

has fired. It simply represents the instantaneous probability of an action potential irrespective of

when the last action potential occurred. To simulate the effect of an absolute refractory period,

the Meddis model generates neural spikes by comparing the instantaneous firing probability with

a pseudo-random number, and suppresses all action potentials when the fibre is in the refractory

period. With such a model, a post-stimulus time histogram can be obtained by putting the same

stimulus through the model repeatedly until a reasonable number of spikes are obtained, which

may require a lot of computational time when the probabilities are small. Even more iterations

may be required for estimation of the firing probabilities after they have been modified by the

refractory period. To overcome this problem, refractory-modified firing probabilities are calculated

directly according to Eqn. 22 of Edwards and Wakefield (1990). For a step refractory function

with no relative refractory period, the equation can be simplified to:

pk =


sk for k = 1

sk − sk
min[k−1,m]∑

i=1

pk−i for k = 2, 3 . . . n
(2.1)

where pk is the refractory-modified firing probability in the kth time-bin, sk is the unmodified

firing probability, m is the number of bins in the absolute refractory period, and n is the number

of bins in the duration of the stimulus.
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2.4 Cross-fibre interspike interval probability distribution

Neural firing response can be modelled as a self-exciting point process (Snyder and Miller, 1991),

which for many applications is well approximated by an inhomogeneous (non-stationary) Poisson

process (Siebert, 1970). The most obvious technique for evaluating the statistical relationship be-

tween action potentials in pairs of fibres is to use cross-correlation. However, cross-correlation

measures the probability of the interval between all pairs of spikes and not just the interval

between successive spikes. An analysis of the information contained in the ISIs of single AN

fibres (Siebert, 1970) indicated that efficient estimation of the stimulus frequency based on all in-

tervals in a single fibre, i.e., a complete auto-correlation, would produce greater performance than

is seen in psychophysical data. Goldstein and Srulovicz (1977) went on to show that the intervals

only between successive spikes could better explain psychophysical performance. Likewise, in this

chapter an expression is developed for the probability distribution of successive spikes across a

pair of fibres. This is similar to the analysis of discharges recorded simultaneously from pairs

of auditory nerve fibres conducted by Johnson and Kiang (1976). However, Johnson and Kiang

only performed this analysis on fibres with no phase-locked (synchronised) response, modelled by

a homogenous (stationary) Poisson process. Our analysis of the model output extends to fibres

exhibiting a phase-locked response.

First, define the Poisson rate of fibre i as λi(t). Then the probability that fibre i fires between

time t− d and t− d+ δt but not again in the subsequent d seconds is:

λi(t− d)δte
−
∫ t
t−d

λi(s)ds (2.2)

Similarly, the probability that fibre j fires between time t and t + δt but has not fired in the

previous d seconds is:

λj(t)δte
−
∫ t
t−d

λj(s)ds (2.3)

Using (2.2) and (2.3), and assuming statistical independence between the nerve fibres i and j,

an integral expression is derived which provides the normalised probability of intervals of d seconds

between action potentials of fibre i and fibre j:

Normalised Pr [d] = lim
T→∞

∫ T
d
λi(t− d)e

−
∫ t
t−d

[λi(s)+λj(s)]ds
λj(t)dt

T − d
(2.4)

The auditory models provide the probability of neural firings in small time-bins. When the

bins are sufficiently small such that the firing probability of each bin is small, the probability

divided by the bin size approximates the Poisson rates of the action potentials. Upon making this

approximation, the output is applied to (2.4) to calculate the CFISI probability distribution.
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2.5 Results

Figure 2-3 shows the CFISI distribution at 500 Hz and 10 kHz for two cases: (i) both fibres at the

characteristic place, and (ii) one fibre at the characteristic place and the other at a more apical

position. For case (i) at 500 Hz, the first and highest peak is at zero firing delay, meaning there is a

high probability for both fibres to fire simultaneously. The fast decay in the distribution indicates

that the CFISI is likely to be a small multiple of the period. Also, because of the large variation

in the distribution from one peak to the next, there is good phase locking to the positive phase

of the sine wave. For case (ii), the fibres are separated and the probabilities are smaller. The

position of the first peak is now shifted to the right to a position determined by the phase delay

of the travelling wave, but the difference between the peaks remains the same as the period of

the stimulus. At 10 kHz, the distribution becomes flatter such that the probabilities for longer

intervals are now comparable with shorter intervals. The phase locking between the fibres is also

poor as indicated by the shallow troughs between the peaks.
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Figure 2-3: Cross-fibre interspike interval probability distribution with both fibres at the char-

acteristic place (solid lines), and with one fibre at the characteristic place and a second at a

more apical site (dashed lines), for a 500 Hz (top) and 10 kHz (bottom) pure-tone.



23

The results plotted in Figure 2-3 indicate that the stimulus frequency could be coded by the

dominant cross-fibre interspike interval in a pair of fibres which both originate from the CP, if

coincident spikes (the peak corresponding to a cross-fibre interspike interval of zero) are excluded.

However, if one of the fibres originates from some other site on the basilar membrane, a shift occurs

in the CFISI probability distribution. Consequently, if the dominant non-zero CFISI were to be

used to code frequency, this shift would need to be compensated for by some delay line before

the CFISI is calculated. However, no delay line would be needed if the two fibres had a spatial

separation corresponding to a phase delay which is a multiple of the tone period—in this case the

phase of the two responses would be effectively identical and no shift would appear in the CFISI

distribution. One restriction on such a coding scheme is the strength of the synchronisation of the

CFISI. In order to study the synchronisation between the fibres, the cross-fibre Synchronisation

Index (SI) is estimated from the distribution by dividing the fundamental component of the Fourier

transform by twice the DC component2.

Figure 2-5 shows a plot of the cross-fibre SI against the input frequency with both fibres at the

characteristic place. At low frequencies, the cross-fibre SI is high. But for frequencies above 1 kHz,

the cross-fibre SI drops rapidly reaching almost zero at 10 kHz. This suggests that temporal

frequency coding across fibres may be limited to frequencies below 1–3 kHz. This result is in

agreement with 1.5–3.0 kHz upper limit to temporal frequency coding proposed by Clark, Carter,

Maffi and Shepherd (1995) and Johnson (1980), rather than the 5 kHz limit of Rose et al. (1967).

Plotted in Figure 2-5 is the cross-fibre SI (where one fibre is at the CP) versus the characteristic

frequency of the second fibre, i.e., one fibre is fixed at the characteristic place and the other is moved

from basal positions to apical positions. The spread of fibres that are in synchrony is narrower for

the high frequencies than for the low frequencies. To investigate the cross-fibre synchronisation in

the spatial domain, the cross-fibre SI is plotted against the normalised distance from stapes, as

shown in Figure 2-6. It shows that the spread of a pair of fibres that exhibit synchrony in their

CFISIs is narrower in the basal region than in the apical region.

A plot of the cross-fibre SI versus the phase difference between a pair of fibres (where one fibre

is at the CP) for 5 frequencies from 500 Hz to 10 kHz is shown in Figure 2-7. The results indicate

that a pair of fibres with a phase difference smaller than 6–8 radians when the second fibre is on

the basal side or 8–10 radians when the second fibre is on the apical side exhibit a good cross-fibre

SI for all 5 frequencies. This suggests that only cross-fibre interspike intervals measured from pairs

of fibres which are both at the characteristic place (in phase) or which are one cycle (2π radians)

out of phase with each other may have sufficient synchronisation and would therefore be suitable

for coding the stimulus frequency by the dominant non-zero CFISI.
2This estimate is exactly equal to the synchronisation index (Johnson, 1980) of a sinusoid fitted to the cross-fibre

interspike interval probability distribution.
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2.6 Discussion

The results of this chapter show that temporal frequency coding can take place across a pair of

fibres in the form of cross-fibre interspike intervals, but it can be affected by factors such as the

frequency of the stimulus and the site of origin on the basilar membrane of the two fibres. The

cross-fibre synchronisation index suggests that temporal frequency coding may occur across fibres

only for frequencies below 1–3 kHz. Furthermore, it suggests that cross-fibre interspike intervals

measured from pairs of fibres where both are at the characteristic place (in phase), or where one

is at the characteristic place and the other is at a site one cycle (2π radians) out of phase, may

have sufficient synchronisation to code the stimulus frequency. Such an arrangement would remove

the shift in the cross-fibre interspike interval probability distribution which occurs when the fibres

are out of phase by an amount not equal to a multiple of the period. Consequently the stimulus

frequency could be coded by the dominant cross-fibre interspike interval, if coincident spikes (a

cross-fibre interspike interval of zero) are excluded.



Chapter 3

Spatiotemporal summation of

auditory nerve firings

3.1 Introduction

In the previous chapter combination of activity in pairs of Auditory Nerve (AN) fibres was in-

vestigated to determine how it may be used in spatiotemporal coding of a pure tone’s frequency.

In this chapter the investigation is extended to a spatiotemporal coding mechanism which may

combine information from larger populations of fibres, that is, spatiotemporal summation of fir-

ings in ensembles of AN fibres (Clark, 1996; Rothman and Young, 1996; Carney, 1994; Rothman

et al., 1993; Carney, 1992; Winter and Palmer, 1991; Kim and Parham, 1991; Kim et al., 1990;

Viemeister, 1988; Rhode and Smith, 1986; Teich and Lachs, 1979; Rose et al., 1967; Wever, 1949).

The Cochlear Nucleus (CN) is the first section of the brain to process signals coded in the firing

patterns of AN fibres. Among the varied cell types and neural connectivities of the CN, it has

been found that some groups of AN fibres converge onto individual neurons of the CN and that

the response of these neurons appears to be the spatiotemporal summation of the activity of the

convergent AN fibres (Paolini et al., 1997; Joris, Carney, Smith and Yin, 1994; Joris, Smith and

Yin, 1994; Young et al., 1988; Smith and Rhode, 1987). Previous experimental and modelling work

has concentrated on describing particular cell types, but little research has been done to determine

which AN fibres provide input to these summing neurons and what effects different spreads of

inputs would have on the neurons’ outputs. It can be hypothesised that these effects could be

significant, because of differences in the response of AN fibres originating from different sites on

the Basilar Membrane (BM). In particular, the phase-lag behaviour of the travelling wave produces

phase differences in the synchronised (phase-locked) response components of AN fibres, with the

greatest changes in phase occurring around the site of maximum excitation.

29
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The purpose of this chapter is to determine theoretically how various degrees of AN fibre con-

vergence onto summing neurons in the CN would affect estimation and discrimination of stimulus

features from the summing neurons’ outputs. Such an analysis could provide new insights into

spatiotemporal summation of AN activity by:

1. determining, given a particular theory of sound coding, what spread of input fibres would

be useful (or even optimal) in the processing of AN activity, prompting anatomical and

physiological investigation of what degrees of convergence actually exist, and

2. providing hypotheses for the function of different CN cell types, if they are found to have

theoretically useful/optimal spreads of inputs.

A variety of approaches have previously been used to model summing neurons (Burkitt and

Clark, 1997; Rothman and Young, 1996; Carney, 1994; Rothman et al., 1993; Carney, 1992). In this

chapter a parametric model is proposed which permits investigation under various scenarios, such

as the number of participating nerve fibres and their response properties, etc. The model is based

on a point process model of single-fibre response, coupled with experimentally based parametric

descriptions for both the expected rate of firing (the per-stimulus time histogram) and also for the

extent of convergence onto the summing neuron. Due to the analytical form of the description,

it also facilitates further investigations of information content via theoretical means such as the

Cramer–Rao Bound (Kay, 1993) or channel capacity (Guiaşu, 1977).

In Section 3.2, analytical models with the desired generality and parametric descriptions are

developed. Based on these models, Section 3.3 details parametric properties of the models and

compares an analytical approximation with a more complete numerical model. Section 3.4 inves-

tigates how summing neurons with different parameters could be useful in the processing of AN

activity, under two key theories of the neural coding of sound, and future directions in experimental

and modelling studies are discussed in Section 3.5.

3.2 Statistical model of summed AN response

In this section a model is developed to describe the response properties of a neuron which sums

the activity of a group of convergent AN fibres. A general (parametric) mathematical description

of the response of individual AN fibres is outlined, fitting the parameters via comparison with

experimental observations of neural responses. Analytical approximations for the output of the

summing neuron are then derived. These approximations permit analysis of the capacity of such

structures to convey information about the stimulus, and so form the basis of Sections 3.3 and 3.4.
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3.2.1 Single AN fibre model

Much progress has been made in the mathematical modelling of AN spike trains. There have

been many deterministic models of neural firing, most based on the Hodgkin–Huxley (1952) or

Frankenhauser–Huxley (1964) descriptions. These multi-variable, nonlinear differential equation

descriptions are able to accurately estimate a fibre’s response to a given stimulus, but due to

their highly nonlinear nature have the drawback of being computationally expensive and not easily

parametrically analysed (Dean and Lawrence, 1983). Furthermore, it is extremely difficult to

incorporate stochastic components of response into such models. However, it is generally accepted

that sound features are coded only in the timing and place of the action potentials.

It is therefore assumed that a description of the spike timing in AN fibres will provide sufficient

information for the analysis of sound coding. The AN’s response can be closely approximated

by a series of stochastically distributed identical spikes, and therefore can be modelled via an

unmarked point process model (Snyder and Miller, 1991). Such models only provide information

about the statistical properties of the timing of the neural responses and do not calculate the actual

membrane potential or ion conductances of the fibre. Thus they are much simpler to analyse and

less computationally expensive than the more complete deterministic models.

Point process models range in simplicity from the inhomogeneous Poisson process model through

to the doubly-stochastic and self-exciting point process models (Snyder and Miller, 1991). More

complex model descriptions often permit greater accuracy of approximation (Teich and Khanna,

1985), but may limit analytical investigation of the model’s behaviour. Within the class of point

process models an appropriate model must be chosen based on the behaviour of the physical process

and the required degrees of model accuracy and simplicity.

In the case of the AN, the generation of action potentials is affected by recovery (refractory)

effects conditioned upon earlier action potentials. This immediately suggests modelling the process

via a Self-Exciting Point Process (SEPP) model (Snyder and Miller, 1991). Here the firing proba-

bility is related not only to the intensity of the stimulus and firing characteristics of the individual

fibre, but also to the time since the fibre last fired (via a recovery function). Although there is

limited evidence that certain more general point processes models could be better applied to AN

fibre behaviour (Kumar and Johnson, 1993), the SEPP model has been found to form an excellent

approximation to neural response (Miller and Mark, 1992), and also permits a reasonable degree

of analytical investigation (Irlicht and Clark, 1996). Such models have found much application to

the analysis of AN response (Bi, 1989; Miller, 1985; Johnson and Swami, 1983).

Thus, following Irlicht and Clark (1996), Bi (1989), Jones and Tubis (1985), Johnson and Swami

(1983) and Gaumond et al. (1982), the following assumption is made:

Assumption 3.2.1 The stochastic process describing the timing of the action po-

tentials in the nth fibre is a SEPP (Snyder and Miller, 1991). Define the number
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of spikes (events) to time t as Nt, then at any time t, the time since the last spike

equals t − tNt . The ‘intensity’ (instantaneous rate) of the point process is equal to

sn(t)rn(t − tNt), where sn(t) ≥ 0 is a stimulus related function, depending on time

(determined by the properties of the fibre and of the physical stimulus, i.e., the basilar

membrane vibration driving that fibre), and rn(t − tNt) ≥ 0 is a recovery function,

which lowers the rate of action potential generation as a function of t − tNt , the time

since the last action potential. rn(t) is determined by the properties of the fibre and is

independent of the size of the stimulus.

Remark 3.2.1 Analysis of discharges recorded simultaneously from pairs of AN fi-

bres (Johnson and Kiang, 1976) indicates that the responses of AN fibres to a tone and

to silence can be described as statistically independent point processes, i.e., the assump-

tion of statistical independence between fibres, which is implicit to Assumption 3.2.1,

is an accurate description of the physiological behaviour. Johnson and Kiang’s results

imply that, for a healthy cochlea, the initiation of spikes in AN fibres is governed

by localised processes specific for each fibre. The relationships between vibrations at

different sites on the basilar membrane will cause dependencies and cross-correlations

between these localised processes. However, in the SEPP description these are dealt

with explicitly by the stimulus related functions for each fibre sn(t). If sn(t) is known

for each fibre (a method of calculating them is derived in this section), then the resulting

stochastic processes can be assumed to be otherwise independent and uncorrelated1.

According to Assumption 3.2.1 the rate of neural response is dependent on the specific history

of neural spike activity via the recovery function. However, it is possible to define an ‘expected’

rate which is independent of the history of the process. This could be observed as the instantaneous

average of the rates of a large number of identical fibres subjected to identical stimuli, or as the

Per-Stimulus Time Histogram (PSTH), which is the averaged response of a fibre subjected to

repeated identical stimuli.

Definition 3.2.1

λn(t) ∆= E [sn(t)rn(t− tNt)|t]

= The PSTH of a fibre with stimulus function sn(t)

and refractory function rn(t− tNt)

1It has been suggested that while this may be the case for a healthy cochlea, certain pathologies of the hair cells
may produce further dependencies and cross-correlations in AN activity (Eggermont, 1990). However, this chapter
is concerned only with coding of sound in the normal auditory system.
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Lemma 3.2.1 (Jones and Tubis, 1985)

Consider a fibre modelled by a SEPP, and following Assumption 3.2.1, where λn(t)

is of Definition 3.2.1. Then the expected rate of neural discharge (the PSTH) is given

by:

λn(t) = sn(t)
[
1−

∫ t

0

λn(γ)[1− rn(t− γ)]e
−
∫ t
γ
sn(ξ)rn(ξ−γ)dξ

dγ
]

(3.1)

Lemma 3.2.1 provides a nonlinear integral-equation representation of the expected rate of neural

response (λn(t)) in terms of the stimulus and refractory functions. It is not possible to solve (3.1)

analytically in the general case, leaving solution to either a series expansion or a special case.

Certain restrictions of either rn(t) and/or sn(t) cause equation (3.1) to become analytically

tractable. Such approximations can provide much information about the neural response in the

general case (Irlicht and Clark, 1996; Johnson and Swami, 1983), and also exact representations

in special cases. One such approximation is as follows:

Approximation 3.2.1 rn(t) = U(t− a), where U(t) is the unit step function, and

a is the non-paralysable dead time (absolute refractory period) of the fibre, i.e., the

minimum possible time between neural firings. In this case (3.1) can be expressed as:

λn(t) = sn(t)

[
1−

∫ t

max[0,t−a]

λn(γ)dγ

]
(3.2)

Remark 3.2.2 The subset of SEPPs which hold to this assumption are called

Dead-Time-Modified Poisson Processes (DTMPP). They have found application to di-

verse areas such as neural systems, particle detection, and optical communications (Prucnal

and Teich, 1983; Saleh and Teich, 1982; Vannucci and Teich, 1981; Müller, 1973).

Remark 3.2.3 A DTMPP with a dead time of zero will cause λn(t) of (3.2) to

equal sn(t), in which case the process becomes an unmodified Poisson Process.

Remark 3.2.4 In many cases of interest, Approximation 3.2.1 does not signifi-

cantly affect the statistics of neural response (Irlicht and Clark, 1996). It is applied

here to facilitate calculation of the process variance.

3.2.2 Fitting the single AN fibre model to experimental data

Assumption 3.2.1 and associated theory permit the analysis of neural response in terms of the

stimulus and refractory functions. However, they do not specify these functions and consequently

cannot provide a parametric description for the expected response λn(t). Estimation of rn(t) and

sn(t) functions for a variety of parameters, via minimum description length estimation, can be
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used to obtain expressions for the expected rate (Mark and Miller, 1992). However, a prohibitively

large number of calculations would need to be performed to obtain estimates for all parametric

conditions. An alternative method is to experimentally examine the PSTH of AN fibres subjected

to a variety of acoustical stimuli to obtain a general parametric description of λn(t), and apply the

SEPP model (with Approximation 3.2.1) to calculate the process variance. This method avoids the

time consuming estimation of rn(t) and sn(t), by assuming a fixed rn(t), where rn(t) = U(t− a),

with ‘a’ a constant over all fibres and all stimuli. The result is a computationally inexpensive

approximation of neural response, parameterised by factors including the fibre’s origin on the BM

and the stimulus frequency and intensity.

Parameterisation of λn(t)

The discharge rate of a single fibre can be represented by the Fourier series (ten Kate and van

Bekkum, 1988; Johnson, 1980):

ρ(t) = ρ(1 + 2
∞∑
k=1

Skf sin[2π(kft+ φkf )]) (3.3)

where ρ is the average rate, Skf is the relative amplitude and φkf the phase of the kth harmonic

of the frequency f .

Experiments have demonstrated that, for a pure tone, the fundamental frequency component

dominates the synchronised response, and therefore it is assumed: 0 ≤ Skf ≤ 1
2 for k = 1, and

Skf = 0 for k ≥ 1. Thus the discharge rate of the nth AN fibre in response to a pure tone can be

approximated by a Fourier series with one sine term:

λn(t) = An +Bn sin(ωt+ φn) (3.4)

where An(= ρ) is the average firing rate, Bn(= 2ρSf ) is the amplitude of the fundamental frequency

component, ω(= 2πf) is the tone’s cyclic frequency and φn is the phase delay in the firing-time

distribution of the nth fibre.

For any fibre, the Synchronisation Index (SI) measures the amount with which neural response

is synchronised to the phase of the stimulus. It can be experimentally determined as explained

in (Johnson, 1980; Anderson, 1973), and for the form of neural responses described by (3.4) is

equal to:

SI =
Bn
2An

(3.5)

Remark 3.2.5 If the SI of a fibre is significantly higher than one-half, or if ‘peak-

splitting’ (the presence of a second harmonic component (Johnson, 1980)) occurs, then
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(3.4) will not sufficiently model the behaviour of that particular fibre, and a more com-

plex Fourier series as expressed in (3.3) must be used. Although such expressions have

been developed (Anderson, 1973), these are still periodic in nature and will produce

similar constructive or destructive superposition in a summing neuron to that seen

using this simple model. This is indicated by the computer model in Section 3.3.1.

Equation 3.4 is a general description of neural response, including a parameterisation of average

rate, synchronisation, and phase delay. Together with the SEPP theory of Section 3.2.1 it forms

the basis of the neural models of this chapter. Experimental results and computer models can be

examined to determine the parameters (here An, Bn and φn).

The relationship between the single-fibre response and the signal intensity and frequency

has been investigated experimentally in (Johnson, 1980), producing Observations 1–4. Obser-

vations 5 and 6 arise by fitting Equation (3.4) to the output of the computer model described in

the previous chapter. The transfer function of the basilar membrane section of this model, plotted

in Figure 3-1, displays the cochlea’s filter bank and phase lag behaviour.

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
) 500 Hz

1000 Hz2000 Hz5000 Hz
10000 Hz

0 0.2 0.4 0.6 0.8 1
−10

−5

0

P
ha

se
 (

P
I r

ad
s)

Normalised Position on Basilar Membrane (Distance from Stap
es)

Figure 3-1: Basilar membrane vibration amplitude (top) and phase lag (bottom) curves for five

frequencies between 500 Hz and 10 kHz.



36

Experimental observations of λ(t)

1. Both An and Bn increase fairly monotonically with signal intensity, but the SI appears to

begin decreasing again at higher levels (≥ 50 dB SPL), due either to peak-splitting or to a

skewed waveform.

2. Bn appears to decrease monotonically with Characteristic Frequency (CF), from its maximum

value of An at low CFs (≤ 1 kHz), to a value of 0 at higher CFs (≥ 5 kHz).

3. The average rate, An, also displays a ‘long-term’ adaptation effect, where it decreases quite

rapidly in the first few seconds of the presentation of a constant tone, with a gradual decline

over the next few minutes to a relatively stable value. The SI does not display this behaviour,

however, remaining approximately constant over the entire presentation time. This indicates

that Bn also undergoes adaptation, decreasing at a rate which maintains its proportionality

to An.

4. Units with low spontaneous discharge rates tend to have a higher maximum SI than units

with high spontaneous discharge rates.

5. An and Bn are at their maximum at CF, and drop off as the frequency departs from CF.

This frequency selectivity is normally displayed by means of tuning curves, and can also be

displayed by plotting An and Bn as functions of stimulus frequency for a particular sound

intensity. This is shown in Figure 3-2 for a model of identical ‘high-spontaneous-rate/low-

threshold’ auditory nerve fibres at different points along the basilar membrane.

6. The phase lag in the basilar membrane vibration as shown in Figure 3-1 produces systematic

differences in the phase of the synchronised response in each fibre (φn).

If it can be assumed that a summing neuron receives input from identical fibres, this will

greatly simplify the derivation of a model of that neuron. Auditory nerve fibres do differ in their

spontaneous response, and also in their onset and saturation thresholds. However, experiments

have shown that fibres with low spontaneous rates and high thresholds show enhanced responses

to the envelopes of complex sounds, while fibres with higher spontaneous rates and low thresholds

respond to the temporal fine structure (Langner, 1992; Horst et al., 1986). Because AN fibres

with similar input/output properties appear to convey similar temporal information about sound

features, the summing-neuron model is restricted to the case where it receives input from identical

AN fibres.

Assumption 3.2.2 It is assumed that all AN fibres converging on to any one

summing neuron are identical, except in the site on the basilar membrane from where

they originate.
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Figure 3-2: An (solid lines) and Bn (dashed lines) versus normalised position on the basilar

membrane for five different stimulus frequencies, as labelled in pane (c), at sound levels of −30

dB (a) to 60 dB (d).
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Based on Assumption 3.2.2 and Observations 5 and 6, two further approximations are proposed:

Approximation 3.2.2 Define the Characteristic Place (CP) as the position on

the basilar membrane corresponding to the CF. Then, An and Bn are approximately

constant for identical fibres close to the CP and will therefore be denoted simply as A

and B.

Approximation 3.2.3 The phase delay φn changes linearly with slope α over small

distances around the CP. For N identical fibres spread out evenly over distance d on

the BM, the phase delay of the nth fibre can be expressed by: φn = αd nN , and therefore

(3.4) can be approximated by:

λn(t) = A+B sin
(
ωt+ αd

n

N

)
(3.6)

Remark 3.2.6 The approximation of Bn close to the CP by a constant improves

with increasing sound intensity (see Figure 3-2).

Remark 3.2.7 Sensitivity of the model to Approximations 3.2.2 and 3.2.3 can be

examined via application of the computer model described in the previous chapter

which does not require these approximations. Comparisons of results generated from

the analytical model and from the computer model are given in Section 3.3.1.

3.2.3 Calculation of the variance in single fibre response

The variance in single fibre response over an arbitrary time period τ can be calculated in the

following ways:

1. It can be estimated for any stimulus function by computer simulation of the SEPP process.

However, this is computationally expensive and does not permit easy parametric analysis.

2. It can be calculated exactly via analytical expressions for the case of a constant stimulus

function. This occurs when both the incident tone is at a constant intensity, and the SI of

a single fibre is zero. The synchronised response of a single fibre is at a maximum at low

frequencies and drops rapidly when the frequency rises above 1 kHz, to a constant firing rate

for frequencies above approximately 5 kHz.

3. It can be approximated analytically for the case of a sinusoidally modulated sn(t) where the

stimulus function varies slowly relative to the dead time (Vannucci and Teich, 1978). These

conditions will be satisfied for low-CF fibres (CF << 1 kHz) at low sound intensities (see

Figure 3-2) and for mid-CF fibres (1 kHz < CF < 5 kHz).
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Lemma 3.2.2 Consider a single fibre modelled by a DTMPP (Assumption 3.2.1

and Approximation 3.2.1) which has reached an equilibrium state (Cox, 1962). Define

sn(t) according to Assumption 3.2.1 and λn(t) according to Definition 3.2.1. Define

Nn(t, τ) as the number of spikes in the nth fibre counted in the time interval [t − τ, t]

and ‘a’ as the dead time.

In the case where sn(t) = s0, a constant:

var[Nn(t, τ)] =
2s0

1 + as0

∞∑
k=1

sk0
(k − 1)!

U(τ − ak)
∫ τ−ak

0

[τ−ak−γ]γk−1e−s0γ .dγ

+
τs0

1 + as0
−
(

τs0

1 + as0

)2

(3.7)

lim
τ→∞

var[Nn(t, τ)] =
s0

(1 + as0)3
τ

= λn(t) (1− aλn(t))2
τ (3.8)

In the case where sn(t) varies slowly relative to the dead time (Vannucci and Teich,

1978):

lim
τ→∞

var[Nn(t, τ)] =
∫ t

t−τ

sn(u)
(1 + asn(u))3

du

=
∫ t

t−τ
λn(u) (1− aλn(u))2 du (3.9)

Proof: see Appendix A.

Remark 3.2.8 Numerical analysis indicates the conditions under which the asymp-

totic variance (3.8) estimates the variance (3.7) to within 10%. This accuracy is ob-

tained in the following situations:

• for all values of τ , when s0 = 10 spikes/second,

• for τ > 1 ms, when s0 = 100 spikes/second,

• and for τ > 8 ms, when s0 = 1 000 spikes/second.

Approximation 3.2.4 Just as λn(t) describes the expected rate of single fibre

response at time t, σ2
n(t) is defined as the variance in the single fibre rate at time t.

Following Lemma 3.2.2, the variance is approximated via the expression:

σ2
n(t) ≈ λn(t) (1− aλn(t))2 (3.10)
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Remark 3.2.9 From Lemma 3.2.2, (3.10) is a general approximation for any slowly

varying λn(t). (3.6) may be substituted for λn(t) in (3.10) to obtain a specific expression

of the variance for that case. This expression cannot be further simplified, so it is left

in the form of (3.10).

3.2.4 A summing-neuron model

In the Introduction the biological evidence was discussed for summing neurons in the CN, which

could be used in the spatiotemporal summation of AN responses as proposed by a number of

theories of sound coding. A model is now developed of such a summing neuron, which receives

input from identical convergent AN fibres described by the single-fibre model developed in the

previous section. Expressions for the mean and variance of the model’s output are developed as

functions of stimulus parameters and degree of AN fibre convergence.

Spatial summation of AN activity

Following Assumption 3.2.1, single-fibre responses are described by statistically independent stochas-

tic processes2, and consequently the mean and variance of the summed response can easily be

calculated.

Define S(t) as the sum of the rates of N fibres spread out symmetrically around the CP over

a distance d on the BM, and Wn as the weighting of the nth fibre in the sum. Then under As-

sumption 3.2.2 and Approximations 3.2.1, 3.2.2, 3.2.3 and 3.2.4, the mean of S(t) can be expressed

as:

µS(t) =
N−1∑
n=0

Wn

[
A+B sin

(
ωt+ αd

n

N

)]
(3.11)

and its variance as:

σ2
S(t, ) ≈

N−1∑
n=0

Wnλn(t) (1− aλn(t))2 (3.12)

Approximation 3.2.5 Input fibres are given equal weighting in the summing-

neuron model.

Remark 3.2.10 It is likely that many other distributions of weighting of neural

response are present in summing neurons. Any such distribution could easily be incor-

porated into the results which follow via an appropriate weighting function.
2See Remark 3.2.1 for a discussion of the conditions under which statistical independence can be assumed.
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Integral approximation of summed response

In order to permit straightforward analysis of the parametric dependence of S(t), an integral

approximation of S(t), defined as I(t), is introduced. From (3.6), the rate per unit distance, where

the nerve fibre density is N
d , can be expressed as a continuous function of time, t, and of position

on the BM, x:

λ(x, t) = {A+B sin(ωt+ αx)}N
d

(3.13)

Approximation 3.2.6 S(t) can be approximated by I(t) via integration of the

rate as described in (3.13) over distance d.

µI(t) =
∫ d

0

{A+B sin(ωt+ αx)}N
d

dx

= NA+NBsinc
(
αd

2π

)
sin
(
ωt+

αd

2

)
(3.14)

and

σ2
I (t) ≈

∫ d

0

λ(x, t) (1− aλ(x, t))2 dx

where sinc(x) ∆= sin(πx)
πx

Conditions for approximation of µS(t) by µI(t)

In Teich and Lachs (1979) it was assumed that the fibres and the distribution of characteristic

frequencies are so dense that it is reasonable to consider the characteristic frequencies as a con-

tinuum. However, if a number of coding mechanisms exist in parallel, then it is possible that not

all the fibres in a particular region contribute to each mechanism. In this case, (3.14) cannot be

used unless µI(t) is a reasonable approximation to µS(t). To this end, a bound for the difference

between the integral and the sum is determined.

Claim 3.2.1 The relative difference (normalised by the long-term average of µI(t))

between the integral and the sum is bound by:

ρ
∆=
|µI(t)− µS(t)|

µI
≤
∣∣∣∣ αBd2NA

∣∣∣∣ (3.15)

Proof: see Appendix A.

Remark 3.2.11 The largest possible error will occur when B = A, and when

α is at a maximum. From the computer model and physiological data, B ≤ A and,
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α ≤ −2π
0.15 rad/cm. Therefore an upper bound for the relative error of (3.15) is: ρ ≤ dπ

0.15N ,

where d is measured in centimetres.

Thus, it is possible to guarantee a maximum error of 5% when N
d ≥ 418.9cm−1, or

1% when N
d ≥ 2 094.4cm−1.

Remark 3.2.12 In the human cochlea there are approximately 30 000 nerve fibres

innervating the BM which has a length of about 3.5 cm. This means that the average

fibre density is 8 570 cm−1. Even if only a quarter of the nerve fibres within any given

distance, d, converge onto a summing neuron, the error will still be less than 1 %.

Therefore, the integral expression µI(t) can be used as an estimator of the sum µS(t),

except where N
d is less than 418.9cm−1.

Remark 3.2.13 There exist two cases where µI(t) is exactly equal to µS(t), oc-

curring when αd = −2π, or when d = 0. These are examined in detail in Sec-

tions 3.4.1 and 3.4.2.

Temporal integration

Summing neurons have classically been described by ‘integrate-and-fire’ models (Burkitt and

Clark, 1997), where a discharge on any input fibre produces an Excitatory Post-Synaptic Po-

tential (EPSP) in the summing neuron. These EPSPs are then integrated over time by a ‘perfect

integrator’ (in which the decay of the potential across the membrane is ignored), by a ‘shot-noise’

model (Carney, 1994; van Stokkum and Gielen, 1989) (in which each EPSP is represented by an

instantaneous increase in postsynaptic voltage that decays exponentially over time), or by an in-

tegrator which includes a more physiologically accurate description of the EPSP waveform. An

analytical description of such temporal integration can easily be obtained for the summed AN

response by using the perfect integrator approximation of the integrate-and-fire behaviour, with a

rectangular integration window of duration τ . This produces a stochastic counting process (Snyder

and Miller, 1991).

Defining R(t, τ) as the integral of I(t) over the period [t− τ, t], or R(t, τ) ∆=
∫ t
t−τ I(u)du:

µR(t, τ) = NAτ +NBτsinc
(
αd

2π

)
sinc

(ωτ
2π

)
sin
(
ωt+

αd

2
− ωτ

2

)
(3.16)

and

σ2
R(t, τ) ≈

∫ t

t−τ

∫ d

0

λ(x, u) (1− aλ(x, u))2 dxdu

Remark 3.2.14 The temporal integration window duration τ will be dependent

primarily on the membrane time-constant, which for ventral CN cells is on the order



43

of 0.5–10 ms (Manis and Marx, 1991), but will also be affected by the EPSP rise-time

and dendritic extent. The summing model with a relatively small integration time

corresponds to what is classically termed a coincidence detector (Carney, 1994; van

Stokkum and Gielen, 1989).

Remark 3.2.15 The model developed thus far gives a simple yet powerful an-

alytical description of spatiotemporal summation of AN activity, which will permit

investigation of the effects of AN fibre convergence on the output of a summing neu-

ron. Integrate-and-fire models typical incorporate some form of nonlinear input/output

mechanism (thresholding) in the generation of output spikes, but inclusion of such a

thresholding mechanism will greatly complicate the analytical description and may

confound the investigation of the effects of the other model parameters. Therefore, in

investigating the model’s response properties (Section 3.3), only general theoretical con-

siderations of what effects a thresholding mechanism would have on the model’s output

are included. Of particular interest are the results of (Burkitt and Clark, 1997), which

suggest that it is the nonlinear input/output (thresholding) mechanism which produces

the enhancement of synchrony found in other models (Rothman and Young, 1996; Roth-

man et al., 1993) and in physiological data (Joris, Carney, Smith and Yin, 1994; Joris,

Smith and Yin, 1994)—such effects are considered in the following sections where ap-

propriate.

3.3 Response properties of the summing-neuron model

This section examines the response properties of the model developed in the previous section.

Firstly, the amount of synchronisation in the summing neuron’s output is calculated as a function

of the stimulus and neural parameters. Secondly, the ability to detect or estimate acoustical

features from the output of a summing neuron is investigated. This is then related to commonly

used statistical and psychophysical measures. These provide important measures of the model’s

parametric behaviour which are used in Section 3.4 to investigate how summing neurons with

different parameters could be useful in the processing of AN activity, according to key theories of

the neural coding of sound.

3.3.1 Synchronisation in the model output

The synchronised (phase-locked) response component of single AN fibres is a significant feature

of AN firing patterns. Consequently, many theories have been developed which propose various

uses for this synchronisation in the coding of sound features. The Volley Principle, first proposed

by Wever (1949), is one such theory which utilises both the synchronised response of AN fibres
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and the spatial summation of population responses. Furthermore, physiological studies (Joris,

Carney, Smith and Yin, 1994; Joris, Smith and Yin, 1994) have found CN cell types which appear

to enhance synchronisation through spatiotemporal summation of AN firings. To investigate the

effects of model parameters on synchronisation in the model’s output, a measure of synchronisation

in the summed firings of a population of fibres is introduced, the Population Synchronisation

Index (PSI).

The integral approximation of the mean summed firings of a population µR(t, τ), as described

by (3.16), has the same form as the expression for the expected single-fibre discharge rate, given

by (3.4). Therefore an expression for the synchronisation of the summed response, the PSI, can

be derived which is directly analogous to the single fibre SI as described by (3.5):

PSI =
∣∣∣∣ B2A sinc

(
αd

2π

)
sinc

(ωτ
2π

)∣∣∣∣ (3.17)

In Figure 3.3(a), the PSI is plotted as a function of summation distance and tone frequency, for

a spatiotemporal summing neuron centred at the CP and with τ → 0. The input to this neuron is

the response of identical ‘high-spontaneous-rate/low-threshold’ AN fibres as shown in Figure 3-2,

for a stimulus intensity of 60 dB. The maximum value the PSI can take is B
2A , which is equal to

the SI of fibres at the CP. Because the sinc function has a maximum value of 1, input from fibres

away from the CP, measured by the spread of inputs d, and/or temporal integration of responses,

measured by τ , can only decrease the synchronisation. This is illustrated in Figure 3.3(b), where

the PSI normalised by the SI of single fibres at the CP.

Remark 3.3.1 The results of Burkitt and Clark (1997) indicate that a nonlinear

transformation (thresholding) of the summed response could recover some of the lost

synchronisation. Furthermore, if the spread of fibres is restricted to a very small region

around the CP and the temporal integration time constant is also very small, then the

total effect could be a overall enhancement in the synchronisation at the output.

The analytical model relies on approximation of λn(t) by a Fourier series with one sine term

(Equation (3.4)) and on approximation of the values of An, Bn and φn for a local population

of fibres (Approximations 3.2.2 and 3.2.3). Using the computer model described in the previous

chapter, the waveform of λn(t) is a better estimate of the expected discharge rate than (3.4), and

the waveform is calculated explicitly for each fibre. Thus the computer model can be used to

verify the sensitivity of results obtained from the analytical model under these approximations. In

Figure 3-4, both the absolute and the normalised PSI of Figure 3-3 are predicted directly by the

output of the computer model with the spatiotemporal sum calculated numerically, where τ → 0.

The features which are investigated in Section 3.4 occur in both figures, consequently justifying

the approximations for the stated task.



45

0

5

10

0
2

4
6

0

0.5

1

Frequency (kHz)

Summation Distance (mm)

P
S

I

(a) PSI

0

5

10

0
2

4
6

0

0.5

1

1.5

Frequency (kHz)
Summation Distance (mm)

P
S

I/S
I C

P

(b) PSI normalised by the SI of single fibres at the CP

Figure 3-3: Analytical results: (a) PSI and (b) PSI/SICP versus summation distance and tone

frequency, for a spatiotemporal summing neuron centred at the CP and with τ → 0.
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Figure 3-4: Computer simulation results: (a) PSI and (b) PSI/SICP versus summation distance

and tone frequency, for a spatiotemporal summing neuron centred at the CP and with τ → 0.
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The features are as follows:

1. For an integration distance close to zero, the output of the summing neuron is highly synchro-

nised at low frequencies, and this synchronisation decreases monotonically with increasing

frequency.

2. The PSI tends to decrease with increasing integration distance and exhibits oscillations over

the integration distance producing local minima and maxima.

3.3.2 Mean-to-standard-deviation ratio

The summing-neuron model permits detection or estimation of the properties of a given sound

as functions of the neuron’s expected (instantaneous mean) response. However, because of the

stochastic nature of neural firing, the brain does not obtain input in the form of the expected

response, but rather receives a single realisation of the process. The distribution of such realisations

determines the extent to which the expected response, and consequently the sound properties, can

be estimated. One method of quantifying this is via analysis of the magnitude of the variance (or

standard deviation) relative to the mean.

The mean-to-variance ratio (MVR) has previously been used as a measure of the detectability

of a counting process similar to the summing-neuron model (Prucnal and Teich, 1983). However,

the MVR is not a true unitless ratio. A better alternative is the mean-squared-to-variance ratio

(MSVR) (Miller et al., 1987), or its square-root, the mean-to-standard-deviation ratio (MSDR),

because they are true unitless ratios. The MSDR is utilised in this chapter. Variants of the MSDR

such as confidence intervals and detectability measures are also used extensively in a number of

disciplines. A large MSDR implies a good detectability or discrimination of a particular signal, or

a tight confidence interval.

Application of the MSDR to calculation of confidence intervals

A Confidence Interval (CI) is the probability that a random variable (in this case the actual number

of spikes counted by the summing-neuron) lies within a certain interval centred around the mean.

The Tchebycheff Inequality (Papoulis, 1991) uses the MSDR to provide a bound on the process

CI where the distribution is unknown.

Lemma 3.3.1 Consider a process with mean µR(t, τ) and variance σ2
R(t, τ). De-

fine NR(t, τ) as the number of spikes counted in the period [t − τ, t] and (µR(t, τ) −

βµR(t, τ), µR(t, τ) + βµR(t, τ)) as the interval estimator of NR(t, τ), then:

Pr {µR(t, τ)−βµR(t, τ) ≤ NR(t, τ) ≤ µR(t, τ)+βµR(t, τ)} ≥ 1−
(
σR(t, τ)
βµR(t, τ)

)2

(3.18)
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Proof: Follows immediately from the Tchebycheff Inequality (See (5-57) of Papoulis

(1991) for instance).

Remark 3.3.2 The relative error β, and consequently the interval estimator (µR(t, τ)−

βµR(t, τ), µR(t, τ)+βµR(t, τ)), can be calculated by setting the right hand side of (3.18)

to the minimum CI desired. Plotted in Figure 3-5 are expected counts (solid lines) and

confidence intervals of at least 75% (dotted lines) for the number of spikes counted in

5 ms by a summing neuron with 10 input fibres, for spreads of inputs creating a zero

PSI (top) and a non-zero PSI (bottom).
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Figure 3-5: Expected counts (solid lines) and confidence intervals of at least 75% (dotted lines)

for the number of spikes counted in 5 ms by a summing neuron with 10 input fibres. Top: Zero

PSI. Bottom: Non-zero PSI.

Remark 3.3.3 In the case of a summing neuron which receives input from 30 or

more AN fibres, the distribution of the counting process can be approximated by a

normal distribution via the central limit theorem. This permits the calculation of CIs

tighter than those obtainable from the Tchebycheff Inequality.
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Application of the MSDR to calculation of psychophysical measures of signal de-

tectability

Another variant of the MSDR has found application to detection/discrimination experiments.

Denoted d′e, it gives a measure of the distance between the mean responses to two different signals

(or one signal and the ‘noise’ created by spontaneous fibre activity), relative to the spread (standard

deviation) of the distributions. Hence d′e provides a measure of the detectability or discrimination

of a signal. Here d′e is computed according to the definition given by Equations (1,2) of Kim et al.

(1990):

d′e =
(m1 −m2)

0.5(σ1 + σ2)
(3.19)

where m1 and σ1 are the mean number and standard deviation of spikes counted, and m2 and σ2

are the mean number and standard deviation of spikes counted due to a second stimulus or the

fibre’s spontaneous activity.

Plotted in Figure 3-6 are values of d′e for a single, high-CF fibre (with a dead time of 1 ms and

a spontaneous rate of 60 spikes/s), calculated via (3.4), (3.7) and (3.19) as a function of discharge

rate and integration time. Detectability is seen to be a monotonic function of the discharge rate,

with the slope increasing with increasing integration time.

Plotted in Figure 3-7 are values of d′e for the output of a summing neuron (with an integration

time of 5 ms) which receives input from an arbitrary number of identical AN fibres (each having the

same properties as used to plot Figure 3-6), calculated as a function of single-fibre discharge rate

and number of input fibres. As was the case for a single fibre, detectability increases monotonically

with increasing discharge rate. However, increasing the number input AN fibres up to 50 fibres

appears to have a greater effect on the detectability than does increasing the integration time up

to 20 ms for a single fibre (cf. Figure 3-6).

3.4 Application of the model to theories of sound coding

In this section, using the measures of the model’s response properties developed in Section 3.3,

summing neurons with different parameters are investigated to determine how the may be used in

the processing of AN activity. Two key theories of the neural coding of sound are examined which

propose that the human brain uses summation of AN activity in performing certain perceptual

tasks. From this it is suggested what degree of AN fibre convergence and temporal integration

would be useful in performing these tasks and which CN cell types reported in the literature appear

to have the required parameters.
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3.4.1 Temporal (time-period) frequency coding

Temporal frequency coding is limited by refractory effects, which prevent the coding of periods less

than the absolute dead time in the periodicity of single fibre responses. It has been suggested that

summation of the response of a number of fibres could overcome this limitation (Wever, 1949).

For tone periods shorter than the dead time, the fibres will tend to fire at multiples of the tone

period, but due to their stochastic nature each fibre in a population can begin its response at any

period of the tone (Clark, 1996; Rose et al., 1967; Wever, 1949). Therefore, if the activity of a

population of AN fibres is summed and the sum has a high PSI, and if the summing neuron has a

refractory period significantly shorter than that of AN fibres, the tone period will be approximately

reconstructed. Furthermore, it has been shown that components of complex acoustical signals are

well represented by the average localised synchronised rate (Young and Sachs, 1979) of a population

of AN fibres, which could be determined by a summing neuron with a high PSI.

A high PSI will be maintained when the temporal integration time is very short, and when the

summation distance is close to zero, minimising the effects of the phase differences in single-fibre

responses resulting from the travelling wave and of the reduced synchronisation of fibres distant

to the CP. Furthermore, thresholding of the summed response could enhance the synchronisation

of the output of a summing neuron. Indeed, there do exist CN cell types which appear to enhance

synchronisation through spatiotemporal summation of AN firings (Joris, Carney, Smith and Yin,

1994; Joris, Smith and Yin, 1994). It can be postulated that the AN fibres which converge onto

these cells originate from a very narrow region of the basilar membrane, if the total effect of these

cells is to enhance synchronisation.

3.4.2 Average-rate intensity coding

Figure 3-5 shows that the maximum of the confidence interval for the summing neuron’s output is

significantly smaller when the PSI is zero than when it is non-zero (even for a relatively small PSI

as shown in the lower pane of Figure 3-5), even though the averages of the confidence intervals over

time are similar. It is likely that estimation and discrimination tasks based on the average rate

of the summed response would need to allow for the maximum range of possible outputs, rather

than the instantaneous variance which oscillates over time as a function of the stimulus frequency.

Consequently, a non-zero PSI could decrease discrimination and complicate the estimation task.

Long-term integration will reduce the PSI, but will also wipe out any rapid changes in the

discharge rate that result from transients in the acoustical signal. An alternative way of estimating

the average of an oscillating discharge rate is spatial summation of the activity of a group of fibres,

where a phase delay is introduced for each fibre such that the time-varying components cancel

out. The basilar membrane mechanics appear to provide such a phase delay. For the analytical

model, the PSI can be maintained at 0, independent of the integration time, if the spread of input
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fibres corresponds to a −2π phase difference in the synchronised components of the responses

(see Figure 3.3(a)). From the computer model (see Figure 3.4(a)), it appears that the loss of

synchronisation in fibres distant from the CP causes the spread of fibres needed to obtain a very

low PSI to be slightly wider than the first minimum in the analytical model’s synchronisation.

However, this also causes the synchronisation to remain relatively low for wider spreads of inputs,

rather than having a series of pronounced peaks and troughs as predicted by the analytical model.

Therefore, if the spread of input fibres is sufficiently wide, the output of the summing neuron will

be practically unmodulated, producing more discriminable outputs. Furthermore, it appears from

Figures 3-6 and 3-7 that increasing the number of input fibres may create more detectable and

discriminable outputs than does increasing the temporal integration time.

In order to gain an appreciation of the spread of inputs required to reduce the synchronisation

to close to zero, the spread of inputs is compared with critical bandwidths, a measure of the

effective spread of neural excitation which can be obtained by a number of different psychophysical

tasks (Moore, 1977). Figure 3-8 shows that the summation distances (o) corresponding to a PSI = 0

are greater than or equal to typical critical bandwidths (*) reviewed by Moore (1977, p. 103). Thus,

the model predicts that the spread of fibres required to produce an output suitable for intensity

coding based on the average discharge rate is at least as wide as psychophysically determined

critical bandwidths. Consequently, if such summing neurons are involved in intensity coding, they

would not cause any spatial filtering of neural excitation narrower than critical bandwidths, and

critical bandwidth measurements based on intensity cues should not be affected by the summing

neurons presence.

At the threshold of hearing, the area of neural excitation will be significantly smaller than the

spread of fibres required to maintain low synchronisation at higher intensities (see the top section

of Figure 3-2), meaning that the summing neuron’s output will be modulated. However, at low

intensity levels, detection of the acoustical signal is of importance, rather than estimation of the

signal intensity or the form of the percept. In this case, it could be desirable for the summed

response to be modulated, because this increases the chances of the summed response reaching

the neuron’s threshold at some stage. Such behaviour, known as stochastic resonance, has been

observed in a range of natural systems and has been determined to be useful in the detection of

weak signals (Moss and Wiesenfeld, 1995). Of particular interest is that summing neurons can

make optimal use of stochastic resonance more easily than can single neurons (Collins et al., 1995).

From these two results it can be hypothesised that one type of spatiotemporal summing neuron

(wide spread of input AN fibres, short temporal-integration window) could be used both for detec-

tion of sounds at low intensity levels and for estimation of the sound intensity at higher intensity

levels.
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Figure 3-8: Zero-PSI widths (o) and typical critical bandwidths (*) from a review by Moore

(1977, p. 103). Top: Widths versus CP; Bottom: Widths (expressed in terms of the correspond-

ing difference in CF) versus CF.
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3.5 Discussion

The analytical models developed in this chapter permit quantitative analysis of the effects of

different degrees of AN fibre convergence onto summing neurons in the CN and of possible uses

of such neurons in the processing of AN activity. The modelling results suggest that CN cells

which show enhanced synchronisation may need to receive input from AN fibres originating from

sites on the basilar membrane which are very close together. This is primarily because of the

effect of the phase differences in single-fibre responses resulting from the wave. A second factor

is the reduced synchronisation of fibres distant from the CP. The results also suggest that the

degradation in synchronisation found in other CN cells could actually be a result of a wide spread of

input fibres, not necessarily a long temporal integration time-constant or some other physiological

mechanism. Furthermore, a near-to-total degradation of synchronisation resulting from a wide

spread of inputs may actually be a useful way of determining the average rate of AN fibres in a

population without requiring long-term temporal integration, which would wipe out information

coded by rapid changes in the instantaneous rate.

These results prompt further anatomical and physiological investigation of which AN fibres

converge onto different types of summing neurons in the CN. In particular, the results prompt a

search for the existence of summing neurons which reduce synchronisation by taking inputs from a

wide spread of AN fibres. The impetus for such an investigation might not have resulted from direct

analysis of physiological data, because (i) reduced synchronisation is possibly less conspicuous than

enhanced synchronisation, and (ii) a function might not have been so readily postulated for such

behaviour.

The results also indicate the ability of models such as the one developed in this chapter to

provide new insights into the physiology of the auditory system. One possible extension to the

model would be to investigate the effects of different weightings for the inputs to the summing-

neuron model, such as a graded spreading function (e.g., closer sources have greater weights), a

statistical spread of influence, or adapted patterns of sensitivity as seen in mature neural systems.

Another useful extension would be to derive expressions for the output of the summing neuron with

a thresholding mechanism added, using a method such as that developed by Burkitt and Clark

(1997). This would allow quantitative analysis of the interaction of the reduction of synchronisation

produced by the spread of AN inputs, as shown in this chapter, with the enhancement of synchro-

nisation produced by thresholding (Rothman and Young, 1996; Rothman et al., 1993; Burkitt and

Clark, 1997).



Chapter 4

The effect of neural thresholds on

frequency estimation

4.1 Introduction

Auditory nerve fibres differ in their spontaneous firing rates, and in their response thresholds.

These response differences suggest that auditory sound coding could be based on more than just

the characteristic frequency of the neurons. In fact, physiological experiments demonstrate that

when stimulated by a complex sound, fibres with low spontaneous rates predominantly respond

to the envelope, and those with high spontaneous rates to the fine temporal structure of the

sound (Langner, 1992; Horst et al., 1986).

The neural response thresholds are highly correlated to the spontaneous rates (Winter et al.,

1990; Liberman, 1978), but reasonably independent of characteristic frequency. Thus the brainstem

receives information from fibres which may approximately be parameterised in a two-dimensional

response space—where one parameter represents characteristic frequency, and the other represents

threshold. Much work has been done to understand how the responses of fibres with different

characteristic frequencies are synthesised for the task of frequency estimation (Kim and Parham,

1991; Miller and Sachs, 1984; Srulovicz and Goldstein, 1983), but very little analysis has been

applied to understanding the role that fibres with different thresholds play in the same task.

In this chapter the effects of filtering by a multi-threshold system on the estimation of complex

acoustic stimuli are investigated. This is achieved by generating a model of neural response to a

complex sound, and investigating via Cramer–Rao bounds (Kay, 1993), and via the distribution

of interspike intervals, the accuracy to which information about the frequencies within the sound

may be estimated, based either on the output of high-threshold and/or low-threshold fibres.
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4.2 Signal and network models

4.2.1 Signal model

Consider a common estimation task performed by the auditory system: the analysis of the fre-

quency components of a speech signal. Such signals are composed of complex sounds which exhibit

a number of resonances (formants), all modulated by a voicing pitch. Perceptual experiments

show that if the actual fundamental of the voicing pitch is missing from the spectrum, then the

estimated voice pitch corresponds to the smallest difference between the harmonics present. This

is a well noted auditory phenomenon known as the ‘missing fundamental’ (Langner, 1992; Javel

and Mott, 1988).

Here the estimation of the voice pitch from the temporal characteristics of neural response is

explored for a signal where two harmonics of the voice pitch are present, but not the fundamental.

The input to the neural network is taken to be the sound pressure wave passed through a linear

filter, the cochlea. The filter characteristics of the cochlea to a 700 Hz tone is shown in Figure 4-1.

Thus, the filtered signal s(t) is expressed as:

s(t) = 1 +
2∑
i=1

Aisin(2πfit+ φi) (4.1)

where f1 and f2 are the harmonic components of the voice pitch present in the filtered signal.

The task is to estimate the voice pitch, f2−f1, and its harmonics, f2 and f1. This could be done

either by estimating f1 and f2 simultaneously and calculating the difference, or by introducing the

f2− f1 component to the signal via a nonlinearity and estimating the voice pitch directly from the

modified signal.

4.2.2 Neural network model

The response of neurons of the auditory nerve may be modelled by an inhomogeneous Pois-

son process (Siebert, 1970), where the instantaneous expected rate is described by means of a

compressively-nonlinear (sigmoidal) function, which is brought about by a number of nonlinear-

ities involved in AP thresholding and generation. From the form of input-output curves derived

from physiological data (Sachs et al., 1989), tanh(.) is taken to be a suitable sigmoidal function.

Although spontaneous rate is routinely used to classify fibre responses, a threshold shift can better

explain the differing responses (Horst et al., 1990).

Thus the Poisson rate of the nth neuron, rn(t), may be described by:

rn(t) = r0 + tanh (αn [s(t)− βn]) (4.2)

where s(t) is the cochlear filtered signal defined in the previous subsection.
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4.2.3 Filtering properties of the neural model

Changing the steepness and position of the sigmoidal tanh(.) allows the simulation of a range of

neural responses with various onset and saturation thresholds, and these nonlinear responses will

attenuate or magnify various components of the sound spectrum. Fourier analysis can be used to

find the threshold value that minimises a cost function which measures the relative magnitude of

a specific frequency component at the output of the sigmoid. Such a cost function can include

a penalty function which prevents the absolute magnitudes of the major components from being

overly attenuated.

For the estimation task described in Section 4.2.1, the components of interest are f1 and f2,

and the missing fundamental of the voice pitch, f2−f1. Consequently, the analysis described above

is performed to determine thresholds which accentuate each of these components.

The relative magnitudes of the two voice-pitch harmonics present in s(t) will depend on their

magnitudes in the sound pressure wave and on the filter characteristics of the cochlea at the place

of the fibre’s input. It is therefore possible to have a range of modulation depths in the signal. Here

two signals are investigated with magnitudes chosen arbitrarily to produce a slightly modulated

s(t) (Example 1) and a highly modulated s(t) (Example 2).

Example 1: Slightly modulated s(t)

Consider the signal and neural response:

s(t) = 1 +
1
6

sin(2π600t) +
5
6

sin(2π700t)

r(t) = 1 + tanh (10(s(t)− T))

where T is a threshold shift.

Example 2: Highly modulated s(t)

Consider a neural response the same as for Example 1, but with the signal:

s(t) = 1 +
1
2

sin(2π600t) +
1
2

sin(2π700t)

For both examples, Fourier analysis of the output of each sigmoid was used to maximise the

relative size of its components at the frequencies 600, 700 and 100 Hz from among the parameterised

sigmoid function:

r(t) = 1 + tanh (10(s(t)− T))

The optimal threshold values, T, are shown in Table 4.1.
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Table 4.1: Optimal thresholds for Examples 1 and 2

Frequency (Hz) 600 700 100

Ex. 1: Optimal T 1.73 1.00 1.75

Ex. 2: Optimal T 0.97 1.00 1.68

The sigmoids are shown in Figure 4-2, and the input and output of the sigmoids and their

Fourier transforms are shown in Figures 4-3 and 4-4. The implications of the filtering properties

of the sigmoidal nonlinearity will be investigated in the next section.
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Figure 4-2: Left: Ex. 1—Slightly modulated s(t). Sigmoids with optimal thresholds for 600,

700 and 100 Hz (top to bottom). Right: Ex. 2—Highly modulated s(t). Sigmoids with optimal

thresholds for 600, 700 and 100 Hz (top to bottom).

4.2.4 Cramer–Rao bounds for neural estimation of frequency

The auditory system takes the responses of some 30 000 auditory nerve neurons, and can produce

estimates of the amplitudes, Ai, and frequencies fi of the sound s(t). Exactly how this is achieved

is largely unknown, however statistical methods can yield information about the ability of any
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Figure 4-3: Ex. 1: Slightly modulated s(t). Output values of the sigmoids with optimal

thresholds for 600, 700 and 100 Hz.
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Figure 4-4: Ex. 2: Highly modulated s(t). Output values of the sigmoids with optimal thresholds

for 600, 700 and 100 Hz.
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proposed neural structures to estimate properties of the sound. In turn, these abilities help shed

light on likely mechanisms for the information processing capabilities of the auditory system.

One method of analysing the ability of proposed mechanisms to code parameters is via the

application of the Cramer–Rao Bound (Kay, 1993). This permits a lower-bound to be given for

the variance of any unbiased estimator for the parameter in question. Of course, such an optimal

estimator may not exist, or even be compatible with the structures of the auditory system. Such

an analysis is still useful, however, because it can rule out mechanisms which do not convey the

required information.

The following Lemma is based on calculations performed in Siebert (1970), for the estimation

of a pure tone.

Lemma 4.2.1 Consider an observation for duration T of an inhomogeneous Pois-

son process with rate r(t, f, A). Then the Cramer–Rao inequality can be expressed

as:

1
σ̂2
f

≤
∫ T

0

1
r(t, f, A)

[
∂r(t, f, A)

∂f

]2

dt

This result can be extended to define the Fisher Information Matrix I(θ), for the estimation of

the unknown vector parameter θ = [A1, f1, φ1, A2, f2, φ2]′, where Ai, fi, φi are the parameters of

s(t) as described in (4.1).

Lemma 4.2.2 Consider observations of a number of inhomogeneous Poisson pro-

cesses, with rates rn(t,θ). In this case, the Cramer–Rao inequality can be expressed

as:

[In(θ)]ij =
∫ T

0

1
rn(t,θ)

∂rn(t,θ)
∂θi

∂rn(t,θ)
∂θj

dt

σ2
n(θi) ≥

[
I−1
n

]
ii

(4.3)

Remark 4.2.1 A standard result of Cramer–Rao theory, shows that the informa-

tion matrix of the combined results of independent experiments equals the sum of the

information matrices of each individual experiment. Thus, under the assumption of

conditional independence of auditory nerve responses, a calculation of the Fisher Infor-

mation Matrix of the output of two or more neurons can be achieved by summing the

individual matrices. This facilitates easy comparison of the output of various groups

of fibres, and the ability to take the output of one fibre, and select the fibre which

minimises the estimator variances based on the combined information of both fibres.
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Thus, the evaluation of Lemma 4.2.2 where the response rates are taken from the signal and

neural models of Sections 4.2.1 and 4.2.2 enables calculation of bounds on estimator performance

based on the outputs of a number of neurons.

In the case of a sigmoidal response function (4.2), and sinusoidal signal model (4.1), the inte-

gral of (4.3) does not appear to be analytically tractable, and consequently it is not solvable for

generalised conditions. However, it is numerically solvable for any given parameters, and in a later

section the estimator variance is investigated for some representative situations.

4.2.5 Interspike interval analysis

Although it is still unknown exactly what mechanisms exist by which the auditory system codes

frequency (Clark, 1996), it has been hypothesised that one method may be via the detection

of dominant intervals between neural responses—effectively picking the period of the response

waveform. This could be achieved via a series of delay lines and coincidence detectors (Clark

et al., 1996; Licklider, 1954). How would the thresholding neurons effect this kind of system?

Although the Cramer–Rao bounds of the previous sections can limit the variance of estimators

based on neural responses, they can not indicate the degree to which the auditory system’s variances

follow the optimal bounds, and consequently are not necessarily an accurate measure of how

useful the output of a selected neuron is to the auditory system. To investigate this question, the

distribution of interspike intervals is used.

Lemma 4.2.3 Consider an Inhomogeneous Poisson Process with rate s(t), over the

time interval [0, T ]. Then the distribution of spikes occurring with a gap of τ is:

D(τ) =

∫ T −τ
0

s(t)s(t+ τ)dt[∫ T
0
s(t)dt

]2
/2

Remark 4.2.2 This distribution measures the relative frequency of spikes occur-

ring with a time difference of τ , regardless of the existence of spikes within the interval.

It is consistent with the type of estimator proposed earlier in this section. An alterna-

tive expression for the distribution of intervals for successive spikes only may also be

derived (see Chapter 2).

The results of Lemma 4.2.3 are used in a later section to calculate the effect of the sigmoidal

nonlinearity on the interspike-interval distribution. Similar to the Cramer–Rao bounds, the integral

appears analytically intractable, but can easily be calculated numerically for specific examples.

4.3 Results

In this section, the effect of various neural thresholds on the frequency estimation task of Sec-

tion 4.2.1 is determined for the case of an efficient estimator, and also for an interspike-interval
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based estimator.

4.3.1 Estimation by an efficient estimator

Analytical descriptions of the inner terms of the integral given in (4.3) are derived for a signal

of the form expressed in (4.1). The integrals, however, appear not to be analytically tractable,

and therefore numerical integration was implemented using an adaptive recursive Newton Cotes 8

panel rule. Cramer–Rao Bounds were calculated for Examples 1 and 2 of Section 4.2.3, with all

three possible combinations of low-threshold (T = 1.00) and high-threshold (T = 1.80) sigmoid

pairs (L+L, H+H and L+H). The bounds were evaluated over 20 ms (Table 4.2) and 100 ms (Table

4.3).

Table 4.2: Cramer–Rao Bounds for Examples 1 and 2: 20 ms

Ex. T 600 Hz 700 Hz 100 Hz
∑

L+L 7.24e−3 1.73e−4 7.80e−3 1.52e−2

1 H+H 4.32e−3 3.77e−4 5.05e−3 9.75e−3

L+H 5.38e−3 2.31e−4 5.97e−3 1.16e−2

L+L 4.01e−4 4.03e−4 9.00e−4 1.70e−3

2 H+H 1.23e−3 1.16e−3 2.65e−3 5.04e−3

L+H 5.89e−4 5.82e−4 1.34e−3 2.51e−3

Table 4.3: Cramer–Rao Bounds for Examples 1 and 2: 100 ms

Ex. T 600 Hz 700 Hz 100 Hz
∑

L+L 5.59e−5 1.16e−6 5.72e−5 1.14e−4

1 H+H 2.85e−5 3.04e−6 3.16e−5 6.31e−5

L+H 3.77e−5 1.67e−6 3.95e−5 7.89e−5

L+L 2.85e−6 2.88e−6 5.46e−6 1.12e−5

2 H+H 8.32e−6 8.27e−6 1.69e−5 3.35e−5

L+H 4.23e−6 4.27e−6 8.24e−6 1.67e−5

In some cases the low-threshold sigmoids produced the smallest bound, in others the high-

threshold. In none of the examples studied did the combination of thresholds (L+H) produce the

smallest error, however when averaged over the signal models studied the L+H combination had

a lower mean error (20 ms: 7.05e−3; 100 ms: 4.78e−5) compared to the L+L (20 ms: 8.45e−3;

100 ms: 6.25e−5) and H+H (20 ms: 7.40e−3; 100 ms: 4.83e−5) combinations. Thus for the
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particular situations investigated, an ‘efficient’ estimator will operate best when the thresholds are

identical, however different signals will require different optimal thresholds, validating the need for

auditory nerve fibres with a range of thresholds.

4.3.2 Estimation from the interspike-interval distribution

One possible mechanism for frequency estimation would be to utilise the interspike-interval distri-

bution as examined in Section 4.2.5 to measure the dominant interspike interval observed between

two fibres. Figure 4-5 shows the relative frequency of occurrence of interspike intervals for Exam-

ples 1 and 2, with a low-threshold and a high-threshold sigmoid.
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Ex. 2: High−threshold (T = 1.8)
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Ex. 1: High−threshold (T = 1.8)
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Ex. 2: Low−threshold (T = 1.0)

Figure 4-5: Left: Ex. 1—Slightly modulated s(t). Interspike-interval distribution for low-

threshold (T = 1.0) and high-threshold (T = 1.8) sigmoids (top and bottom). Right: Ex.

2—Highly modulated s(t). Interspike-interval distribution for low-threshold (T = 1.0) and

high-threshold (T = 1.8) sigmoids (top and bottom).

For both Examples 1 and 2, the interspike interval corresponding to the weighted average

of the periods resulting from the 600 and 700 Hz components of the signal (1.47 ms for Ex. 1;

1.55 ms for Ex. 2) is emphasised by the low-threshold sigmoids, and to the period of the 100 Hz

‘missing fundamental’ (= 10 ms) by the high-threshold sigmoid. This suggests that for a system
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measuring interspike intervals, a combination of low-threshold and high-threshold fibres is useful

to estimate all three frequency components when using this estimation technique, particularly if

further filtering is used to extract only one frequency per fibre (e.g., Srulovicz and Goldstein, 1983).

4.4 Discussion

Auditory nerve fibres may be parameterised in terms of their response properties including the

frequency of sound to which they best respond, and their response thresholds. For the task of

estimation the different frequency components of complex stimuli, the importance of combining the

output of auditory nerve fibres with differing thresholds was measured. The resulting Cramer–Rao

bounds permit the calculation of frequency estimation variance for any given neural parameters and

show, for the calculated examples, that an ‘efficient’ observer of the output of two fibres may benefit

from a mixing of differently-thresholded neurons. It is also demonstrated how combining the output

of differently-thresholded fibres may improve frequency estimation based on interspike intervals.

Due to the numerical nature of the calculations, these results are not calculated parametrically,

but are demonstrated for a number of specific examples. An open question is the extension of

these results to a general case—thereby specifying conditions under which the combined threshold

responses are more useful than single threshold responses, and conditions under which they are

not.



Chapter 5

A stochastic model of the

electrically stimulated auditory

nerve: Single-pulse response

5.1 Introduction

In the previous chapters it has been investigated how spatiotemporal combination of auditory

nerve activity may be used in the processing and decoding of acoustical stimulus features. In

the case of electrical stimulation, spatiotemporal combination of auditory nerve activity has also

been postulated to explain why single-fibre physiological data have been unable to explain some

important psychophysical phenomena observed in cochlear implant users (e.g., Pfingst et al., 1991).

This hypothesised effect of spatiotemporal combination of auditory nerve activity may require that

stochastic components of the single-fibre response to electrical stimulation be considered (White,

1984a).

Historically, neural response to electrical stimulation has been modelled via deterministic de-

scriptions (exceptions among cochlear implant groups include O’Leary et al. (1998), Irlicht and

Clark (1996), Dynes (1996), Rubinstein (1995), White et al. (1987), Hochmair-Desoyer et al.

(1984) and White (1978); and in other fields of neuroscience Clay and DeFelice (1983) and Lecar

and Nossal (1971)). However, a small amount of stochastic activity was present in the squid gi-

ant axon (Hodgkin and Huxley, 1952) and frog node (Dodge, 1961; Frankenhaeuser, 1957) data on

which many deterministic models are based (Verveen and Derksen, 1965). Furthermore, significant

variance has been measured in the response of nerve fibres to single current pulses (Dynes, 1996;

Hoopen and Verveen, 1963; Verveen, 1961; Verveen, 1960) and pulse trains (O’Leary et al., 1998),

which cannot be explained by deterministic models.

68
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However, the amount of variance is dependent on the stimulus intensity. It has been gener-

ally assumed that cochlear implants operate at stimulus intensities which produce extremely high

discharge probabilities (very close or equal to 1) in AN fibres, resulting in very little variance. In

contrast, preliminary evidence is emerging that cochlear implants may be operating at intensities

which produce low to moderate discharge probabilities, i.e., significant variance (see Chapter 6). If

this is correct, then there are important consequences for cochlear implants. For example, (i) both

temporal and spatial aspects of speech coding would be impacted (see Chapters 6 and 7), and

(ii) the survival of AN fibres subject to high stimulation rates is likely to be strongly affected (Xu

et al., 1997; Tykocinski et al., 1995c).

Verveen and Derksen (1968) showed that the variance in response to single current pulses can

be attributed to random fluctuations in the voltage across the membrane of myelinated nerve

fibres at the nodes of Ranvier. They recorded membrane-potentials in vitro from sciatic nerve

of the frog, Rana temporaria. Figure 5-1 shows a number of their membrane-potential traces at

−90 mV 5.1(a) and at a range of depolarised and hyperpolarised potentials 5.1(b) (resting potential

is ∼ −70 mV (Derksen and Verveen, 1966)).

Verveen and Derksen (1968) characterised these fluctuations as having a Gaussian amplitude

distribution and a 1/f frequency spectrum1. In the upper traces of Figure 5.1(b) it appears that

the amplitude of the fluctuations increases as the membrane is depolarised. Furthermore, some

non-stationary behaviour is seen in the middle traces of Figure 5.1(a) and in the lower traces of

Figure 5.1(b). These non-stationary fluctuations appear to increase both in frequency of occurrence

and in amplitude with increasing hyperpolarisation.

Membrane potential fluctuations in squid axons are considered to be of negligible magni-

tude (Verveen and Derksen, 1965). However, Verveen (1962) reported that the magnitude of

the membrane potential fluctuations appears to be negatively correlated with the diameter of the

nerve fibre. Mammalian auditory nerve fibres have a mean diameter of ∼2–4 µm (Gleich and Wil-

son, 1993; Spoendlin and Schrott, 1989) and even smaller diameters (0.1–0.7 µm) at the nodes of

Ranvier in the myelinated portion of the peripheral dendrite, proximal to the habenula (Liberman

and Oliver, 1984). This is two to three orders of magnitude smaller than the mean diameter of

squid giant axons, ∼500 µm (Hodgkin, 1961), which indicates why membrane potential fluctuations

may be of significant magnitude in mammalian auditory nerve fibres.

Further physiological (Sigworth, 1980; Derksen and Verveen, 1966) and modelling (Rubinstein,

1995) studies suggest that these voltage fluctuations are likely to be caused by random transitions

in the state of single ionic channels at the nodes of Ranvier. This is consistent with the magnitude

of the fluctuations being negatively correlated with the diameter of the axon, since the larger the
1A 1/f frequency spectrum indicates that, while the distribution of amplitudes is Gaussian, auto-correlation

exists between these amplitudes, i.e., the amplitude tends to change slowly over time without affecting the relative

frequency of occurrence of amplitudes over an extended period of time.
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(a) Membrane-potential traces at −90 mV.

Horizontal scale: 10 ms; vertical scale: 1 mV.

Reprinted with permission from Figure 20

of Verveen and Derksen (1968) c© 1968 IEEE)

(b) Membrane-potential traces at different lev-

els of membrane potential (given in mV above

each trace). Horizontal scale: 1 s; verti-

cal scale: 5 mV. Reprinted with permission

from Figure 19 of Verveen and Derksen (1968)

c© 1968 IEEE)

Figure 5-1: Membrane-potential traces from Verveen and Derksen (1968) showing fluctuations

in nerve fibre transmembrane potentials at the nodes of Ranvier.
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diameter of the axon, the more single ionic channels there will be at each node. The more channels,

the less significant the fluctuations of any one channel will be when compared with the total ionic

conductance. Indeed, introduction of the correct single-channel conductance statistics to models

such as the Hodgkin–Huxley equations has produced the correct prediction of membrane potential

fluctuations and the resulting response to single pulses and pulse trains (Rubinstein, 1995; Lecar

and Nossal, 1971).

However, detailed stochastic descriptions of AN response to electrical stimulation based on

Hodgkin–Huxley type models (Dynes, 1996; Rubinstein, 1995; Hochmair-Desoyer et al., 1984) are

too computationally intensive to permit simulation of a large number of neurons over hundreds

of milliseconds, which may be required for the simulation to be psychophysically relevant. An

alternative statistical approach is to apply a point process description of neural response (Mark

and Miller, 1992; Miller and Mark, 1992; Bi, 1989; Jones and Tubis, 1985; Johnson and Swami, 1983;

Gaumond et al., 1982; Miller, 1971; Perkel et al., 1967) to electrically elicited responses (O’Leary

et al., 1998; Irlicht and Clark, 1996). This description is more computationally efficient, but

since it is entirely phenomenological it is not easily related to stimulus and neural parameters.

Furthermore, (i) it is not clear how this model specialises to an equivalent deterministic model,

and (ii) the point process description is not easily generalised to a population of fibres.

In this chapter, an alternative model is developed of AN response to electrical stimulation,

following the conceptual approach used in White et al. (1987), White (1978), and Verveen and

Derksen (1968). Based on the Hill (1936) threshold model, the model includes a number of signifi-

cant components of action potential generation, including membrane noise as recorded by Verveen

and colleagues. Threshold models are much simpler conceptually and are more computationally

efficient than Hodgkin–Huxley type models. They have also been shown to provide a good ap-

proximation to the more complex models (Kistler et al., 1997). Additionally, the model can be

fitted easily to the statistics of AN parameters collected from physiological studies. It is therefore

suitable for the calculation of large-scale population responses. Such responses are required for

the investigation of sound coding in ensembles of nerve fibres, for the explanation or prediction of

psychophysical results, or for the development of speech processing strategies for cochlear implants.

The Methods section describes the analysis of the physiological data and the methods used

to derive the neural model. In Section 5.3 the model of AN response to single biphasic electrical

pulses is developed. Response properties of the model are investigated. In particular, comparisons

are made between the behaviour of the model with and without the stochastic component. In

Section 5.4, the model’s suitability for describing large-scale population responses is demonstrated

by developing a model of total AN response. It is shown how the parameters of an arbitrary

number of AN neurons can be fitted to the statistics of AN data collected from physiological

studies. Using a simple model of current spread it is shown how the output of the total AN model
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varies with stimulus and model parameters. Finally, in the Discussion the implications of the

stochastic behaviour of AN response for cochlear implant research are explored.

5.2 Methods

5.2.1 Physiological data

The first set of physiological data presented in this chapter are single-fibre cat AN data from Javel

et al. (1987). A previously unpublished analysis of this data set is presented here, in which the

probability of discharge in response to single biphasic current pulses is estimated.

The probability of discharge for a single biphasic pulse is estimated from the fraction of trials

in which an action potential is generated in response to the first pulse of a pulse train. Because the

first pulse of each pulse-train occurs at least 50 ms after the end of the preceding pulse-train, the

response to the first pulse should closely approximate the response to a single pulse in isolation2.

Data of the same stimulus intensity and pulse width (phase duration) are pooled across pulse trains

of different rates for each neuron.

The method used in suppressing the stimulus artefact meant that little data was collected

for stimuli with pulse widths above 400 µs/phase and none above 600 µs/phase. Pulse width

has a significant effect in a range of psychophysical measures and it would therefore be useful

for the model to be accurate over a greater range of pulse widths. Accordingly, supplementary

physiological data, also from single AN fibres of cats, were collected by Dynes (Bruce, Irlicht,

White, O’Leary, Dynes, Javel and Clark, 1997a).

For this second set of physiological data, animal preparation and techniques to record from

single AN fibres are essentially as described in Kiang et al. (1965). In brief, adult cats were

injected peritoneally with daillyl barbituric acid in urethane solution (dosage 75 mg per kg weight).

A cannula was inserted into the trachea, the cartilaginous external auditory meatus was cut near

the tympanic membrane, and the bulla opened to expose the round window.

The posterior fossa of the cranial cavity was opened dorsally and the cerebellum retracted me-

dially to expose the auditory nerve. The animal was placed in a sound-proof, vibration-isolated,

electrically-shielded chamber. An acoustical cavity containing a calibrated sound transducer (Ra-

dio Shack model 40-1377) was sealed in the meatus. Neural activity was recorded through mi-

cropipettes (FHC #30-31-0) pulled to a resistance of 15-20 Mohms and filled with 2M KCl and

placed in the nerve under visual control.

Electrical stimulation was provided through a single Teflon-coated platinum wire (0.005 in wire

diameter). The apical tip of platinum wire electrodes passed about 4–5 mm through the round

window. In all cases, the indifferent electrode was an 18-gauge needle placed in the ipsilateral
2See Chapter 7 for an investigation of inter-pulse interactions.
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forelimb.

The electrical search stimulus was a train of 100 µsec cathodic pulses presented at a rate of

10/sec. The search stimulus amplitude was varied, but was typically 15 dB below 1 mA. Single

units were detected by monitoring the neural potentials on an oscilloscope. The experimental

stimulus consisted of symmetric anodic/cathodic biphasic stimuli of differing durations, presented

at a rate such that there was at least an 80 msec interval between stimuli. The determination of

the probability of discharge for each stimulus level was based on 100 stimulus presentations.

5.2.2 Model of AN response

The various single-fibre models are defined in the form of electrical circuits. Monte Carlo simula-

tions of these circuits can be carried out on a computer and the response of the model recorded

directly. This method requires the least number of simplifying assumptions and approximations,

producing the most accurate description of the model’s response properties, but is computationally

laborious. This is because the stochastic version of the model requires many simulation iterations

to accurately describe the distribution of responses.

In order to overcome this problem, appropriate simplifying assumptions and approximations

are made, enabling the derivation of analytical approximations of the electrical circuit descriptions.

These assumptions and approximations are tested via Monte Carlo simulations and comparisons

with physiological data and are found to be reasonable and accurate. Predictions of single-fibre

response can be computed simply and efficiently using these analytical approximations and multiple

iterations are not required.

5.3 Single-pulse response

Investigating the response of a single AN fibre to a single biphasic current pulse is useful because it

avoids the complicating effects of inter-pulse interactions which occur in response to pulse trains.

Inter-pulse effects will be considered in Chapter 7, where the model of single-pulse response is used

as the basis for a model of pulse-train response.

In preparation for considering the response to a train of current pulses, any single biphasic

current pulse n is considered. A single pulse is defined as any pulse whose response properties

are not dependent on any previous pulses. The model will therefore be valid for any single pulse

presented in isolation, for the first pulse in a pulse train, and for all pulses in a pulse train of

sufficiently low pulse rate.
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5.3.1 Deterministic model of single-pulse response

The basis of the single-fibre model developed in this section is the Hill (1936) threshold model of

action potential generation. Hill’s model is a phenomenological model that does not directly model

any actual physical potentials, conductances or movement of ions. Instead, conceptual ‘potentials’

are used to describe how a neuron responds to electrical stimulation, determining if and when an

action potential will result in response to a particular stimulus.

Hill’s model utilises two such ‘potentials’, which he labels the ‘stimulus potential’ (V ) and the

‘threshold potential’ (U). A slightly different nomenclature from Hill is applied when using his

equations in order to make clear to which component of the model each symbol refers. Vstim is

used to refer to the stimulus potential and Vthr to refer to the threshold potential. Vstim responds

to the injection of electrical current with a process Hill calls ‘excitation’. Vthr is also affected by

the injection of current in a manner termed ‘accommodation’. When the stimulus potential Vstim

crosses the threshold potential Vthr an action potential is generated.

Hill investigated the behaviour of Vstim and Vthr for a range of stimulus waveforms, including

monophasic current pulses. He showed how an action potential could result from the change

in potential near the cathode in response to rapid increase in current at the onset of the pulse.

Additionally, an action potential may result from the change in potential near the anode in response

to the current returning to its resting value at the offset of the pulse.

For biphasic current pulses, discharges may occur in response to the onset and offset of both

the cathodic and the anodic phases. However, the thresholds are lower for the onset of the cathodic

phase (Ranck, 1975; Hill, 1936) and therefore the response to biphasic pulses is approximated by

the response to the onset of the cathodic phases. Furthermore, inner hair cell loss is assumed to

be complete, such that no spontaneous activity exists (Kiang et al., 1970).

Approximation 5.3.1 It is considered that discharges may only occur in response

to the cathodic phase of a biphasic current pulse and may not occur between pulses.

A discharge in response to the cathodic phase of any biphasic pulse n is referred to as

having occurred during pulse n.

Hill described the response of the stimulus potential Vstim to the onset of the cathodic phase

according to the equation:

Vstim(t) = Vstim(0) + cτI
(

1− e−t/τ
)

where c is a constant (Hill uses b), I is the amplitude of the current pulse and τ is the time-constant

of the change in stimulus potential (Hill uses k).

Hill estimated that the threshold potential changes in response to the cathodic phase according

to the equation:
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Vthr(t) = Vthr(0) + cτI

[
1 +

e−t/τ

λ/τ − 1
− e−t/λ

1− τ/λ

]
where λ is the time-constant of the change in threshold potential.

With the correct values of c, τ and λ, Hill’s model predicts whether or not an action potential

will occur, and also its latency. In order to increase the ease and efficiency with which it can

be calculated whether or not an action potential occurs, a series of further approximations are

made. As a consequence of these approximations, the model’s prediction of the exact latency of

the response will be degraded.

Both τ and λ are properties of the neuron, not of the stimulating current, and λ/τ can typically

be on the order of 40–80 for unmyelinated nerve (Hill, 1936). Threshold versus pulse duration

curves for myelinated fibres (Bostock, 1983) suggest that they have an even greater ratio. If the

stimulus intensity required to generate an action potential is of primary concern, and the exact

latency of the action potential is of secondary importance, the ratio of the time-constants is large

enough that accommodation can be ignored (Hill, 1936). As a consequence of this approximation,

an action potential will occur if the asymptotic value of Vstim(t) is greater than or equal to Vthr(0).

The time course of Vstim(t) can therefore be approximated by a step-function.

Approximation 5.3.2 Vthr is considered not to change in response to the stimu-

lating pulse, remaining at a constant value, Vthr(n), for the duration of the cathodic

phase of pulse n. Vstim is considered to increase instantaneously in response to a current

pulse and remain at a constant value, Vstim(n), for the duration of the cathodic phase

of pulse n.

In making this approximation, a systematic bias is introduced to the estimate of the stimulus

intensity required to produce an action potential. The error is equal to (λ/τ)
1

λ/τ−1 −1 (Hill, 1936).

For a ratio λ/τ = 40 the error will be 9.9%, and increasing the ratio to 80 causes the error to

fall to 5.7%. For myelinated nerve, such as the mammalian auditory nerve, the error will be even

smaller.

Following Approximation 5.3.1 and 5.3.2, Hill’s model can be represented by the electrical

circuit diagram shown in Figure 5-2.

This model is in effect a Bernoulli process (trial) (Devore, 1987), where a discharge in response

to a pulse is considered to have a value of 1 and no discharge a value of 0. The output of this model

is defined as a Bernoulli random variable p(n) which is dependent on the parameters of pulse n

and the parameters of the neural model.

p(n) ∆= Pr {discharge during pulse n}
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+
–Vstim

+

–

+
–Vthr

Discharges
t

Figure 5-2: Deterministic model of single-pulse response.

An expression for the probability of discharge in response to any single pulse n can be derived

directly from the electrical circuit. For the deterministic model, only two possible values of p(n)

exist, zero and one. If the stimulus intensity is great enough to cause Vstim(n) to rise to Vthr(n)

or above, an action potential will always result. If the stimulus intensity is less than this critical

value, no action potential will ever result. That is:

p(n) =

 0 for Vstim(n) < Vthr(n)

1 for Vstim(n) ≥ Vthr(n)
(5.1)

The probability of discharge versus stimulus intensity relationship can be referred to as an

input/output (I/O) function.

5.3.2 Prediction of single-pulse response by deterministic model

Figure 5-3 shows the deterministic model fit to cat data from (Javel et al., 1987). The horizontal

scale is chosen to correspond to typical behavioural dynamic ranges of cochlear implant users in

response to a single pulse (White, 1984b).

The step-function prediction is not due to the simplicity of Hill’s model—even the most complex

deterministic models are still only able to provide a step-function fit to these data!

The step-function fit is a relatively poor representation of the data, and the practical implica-

tions of fitting a step-function are significant. Information which is encoded in the probability of

discharge will not be accurately described by the step function. For example, the step-function can

only code intensity levels as being above or below some ‘threshold’ value, whereas the physiological

data indicate that the probability of discharge in a single AN fibre could be used to code intensity
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levels over some 3 to 4 dB range. Typical behavioural dynamic ranges in cochlear implant users in

response to single short-duration pulses are 6 to 10 dB (White, 1984b), and the fibre’s actual I/O

function covers approximately half of that range. A model which produces a much more accurate

fit to these data is therefore required.
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Figure 5-3: Deterministic model (solid line) fit to probability of discharge data (o) from Neu-

ron 3-21 of Javel et al. (1987) for a single biphasic pulse of duration 100 µs/phase (cf. stochastic

model fit to this data plotted in Figure 5-5).

5.3.3 Stochastic model of single-pulse response

In this section the model shown in Figure 5-2 is extended to create a stochastic model of single-pulse

response. From Verveen’s measurement of membrane noise it may seem intuitive to add a noise

source to the stimulus potential Vstim. However, comparison of Hill’s model with Hodgkin–Huxley

type models indicates that Vthr is an approximation of the behaviour of the ionic channels which

are the source of the noise, and is therefore also an appropriate choice for including the noise.

In fact, subtracting a noise potential from Vthr is computationally identical to adding it to Vstim.

Furthermore, the mean of the noise is zero and it has a symmetrical amplitude distribution, so it

makes no difference whether the noise is added or subtracted. In this thesis it is chosen to add the

noise potential Vnoise, which has a 1/f spectrum and a Gaussian distribution, to Vthr, producing

the model shown in Figure 5-4.
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Figure 5-4: Stochastic model of single-pulse response.

Accurate simulation of noise with a 1/f frequency spectrum is quite laborious. However, the

1/f shape of the spectrum is such that the low-frequency content of the noise outweighs the high-

frequency content to such an extent that Vnoise changes slowly enough that it may be considered

to remain constant for the duration of a short current pulse.

Approximation 5.3.3 Vnoise is considered to have a constant value Vnoise(n) for

the duration of pulse n. This noise is normally distributed with a mean of zero and

variance σ2.

Lemma 5.3.1 Given the model of action potential generation described by Fig-

ure 5-4 and Approximations 5.3.1, 5.3.2 and 5.3.3, the probability of discharge in re-

sponse to a single current pulse can be approximated by the equation:

p(n) =
1
2

(
1 + erf

(
Vstim(n)− Vthr(n)√

2σ

))
(5.2)

Proof: see Appendix B.

The function p(n) is dependent on Vstim(n) with two independent variables: Vthr(n) and σ. As

with the deterministic model, Vthr(n) is referred to as the ‘threshold’. From (5.2), this definition

of threshold corresponds to the stimulus level which produces a probability of firing of 0.5 and is

consistent with Verveen’s convention for defining threshold.

Verveen referred to the second variable σ in a normalised form, which he labelled the ‘Relative

Spread’ (RS) (Verveen, 1961; Verveen, 1960):

RS ∆=
σ

threshold
(5.3)
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The greater the value of RS, the shallower the slope of the I/O function.

5.3.4 Prediction of single-pulse response by stochastic model

The integrated-Gaussian (error function) description of single-pulse probability of discharge given

by (5.2) is consistent with both physiological results (Dynes, 1996; Hoopen and Verveen, 1963;

Verveen, 1961; Verveen, 1960) and modelling studies (Rubinstein, 1995; Lecar and Nossal, 1971)

investigating the response of nerve to monophasic pulses. However, it is useful to investigate how

accurately this description predicts data from the cat AN in response to biphasic pulses.

Figure 5-5 shows the stochastic model fit to the same cat data as plotted in Figure 5-3. The

stochastic model predicts the neuron’s I/O function much better than the deterministic version

does, with a correlation coefficient of 0.99. Consequently, this model will better describe informa-

tion encoded in the probability of discharge.
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Figure 5-5: Stochastic model (solid line) fit to probability of discharge data (o) from Neuron 3-

21 of Javel et al. (1987) for a single biphasic pulse of duration 100 µs/phase (cf. deterministic

model fit to this data plotted in Figure 5-3).

Further examples of integrated-Gaussian function fits to cat data from Javel et al. (1987) are

given in Figures 5-6 and 5-7 for single biphasic pulses of durations 200 µs/phase and 400 µs/phase

respectively. The quality of these fits suggests that the assumptions and approximations which

have been made thus far in the development of the model have been reasonable and accurate, at
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least for the range of stimulus parameters investigated in this chapter.

5.4 Total auditory nerve response

In order to model the response of a population of auditory nerve fibres, it is necessary to determine

the model parameters for each neuron in the population, as well as the intensity of the excitatory

current at the initial site of action potential generation in each neuron.

To demonstrate how this may be done, a population model for the total auditory nerve is

developed following the approach used by O’Leary et al. (1995), but using the model of single-fibre

response developed in this chapter. This is achieved by fitting the model parameters to the AN

statistics from cat data and by using a simple model of current spread.

5.4.1 Fitting of model parameters to AN statistics from cat

Javel et al.’s (1987) data from single AN fibres in the cat have been analysed, in order to estimate

the distribution of single-pulse I/O functions present in the cat AN. Stochastic model fits to

15 neurons had a mean correlation coefficient of 0.99, with a minimum of 0.94.

In Figure 5-8 relative spread is plotted against threshold for each neuron in response to a single

biphasic pulse of duration 200 µs/phase or 400 µs/phase. The RS values at a pulse duration

of 200 µs/phase have a mean of 0.12 and a standard deviation of 0.05, and a pulse width of

400 µs/phase yields similar values. This range of RS values is consistent with other data from the

cat AN (Miller et al., 1997).

The distribution of threshold values is confounded by the fact that the distance from the

stimulating electrode to the fibre, or more exactly the distance to the initial site of action potential

generation in the fibre, is unknown. van den Honert and Stypulkowski (1987a) have plotted AN

fibre thresholds to intracochlear electrical stimulation against cochlear place (as inferred from the

AN fibre’s characteristic frequency to acoustical stimulation). Since the cochlear place of the

stimulating electrodes were known, it was therefore possible to estimate the site of each AN fibre

relative to the stimulating electrode. For monopolar and longitudinal bipolar stimulation, the

range of thresholds for fibres close to the stimulating electrode was on the order of 10–14 dB. This

is consistent with the range of thresholds seen in Javel et al.’s (1987) cat data, considering the

effect of distance from the stimulating electrode, and with other data from the cat AN (Miller

et al., 1997).

It has been suggested (see Chapter 6) that changes in the relative spread following electrical

pulses of different durations might be involved in the sharp decrease of human psychophysical

thresholds to pulsatile electrical stimulation (Pfingst et al., 1991; Shannon, 1989). To extend the

model such that it can be used to test this hypothesis, the RS was determined for neural responses
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Figure 5-6: Fits to fibre I/O functions from Javel et al. (1987) for a single pulse of duration

200 µs/phase.
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Figure 5-7: Fits to fibre I/O functions from Javel et al. (1987) for a single pulse of duration

400 µs/phase.
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to symmetric anodic/cathodic biphasic stimuli of differing durations.

Figure 5-9 shows discharge probability versus level curves for three different phase durations in

a single unit. As the phase duration increases, the slope of the curve becomes shallower, indicating

a greater dynamic range. Computing the RS from these curves shows that the RS increases as the

phase duration of the anodic/cathodic biphasic stimulus increases.
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Figure 5-9: Discharge probability versus level functions for single symmetric biphasic an-

odic/cathodic pulses of differing durations. For each duration, several measures of the proba-

bility of discharge were made at different stimulus levels. Individual measures consisted of 100

stimulus presentations and are represented by asterisks. Curves are error function fits deter-

mined by a least-squares method. All data are from a single unit.

Figure 5-10 makes this clear for three units from the same cat. For every unit, the RS increases

as the duration per phase of the stimulus increases. The increase of RS with increasing pulse width

as seen in this figure has also been observed in cat data from a different study (Smith, 1996). Even

earlier evidence of the potential importance of phase duration on auditory input/output slopes

was observed in the anteroventral cochlear nucleus using sinusoidal stimuli (e.g., see Figure 33 of

White, 1984b).

Integrated-Gaussian fits to the complete data set are shown in Figure 5-11. The curves were

generated from (5.2) using the mean values of threshold and RS at each pulse width. Even at some
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Figure 5-10: Relative spread as a function of phase duration for three units from the same cat.

The relative spread was determined as described in the text; individual measures are represented

by symbols.
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of the lower pulse widths, there are significant changes in the slopes of the discharge probability

curves. For example, the slope changes by approximately 1.67:1 when the pulse width is lowered

from 2 000 to 500 µs/phase.
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Figure 5-11: Fits to probability of discharge versus stimulus intensity data for pulse widths of

100 µs/phase to 5 000 µs/phase.

There are insufficient data to examine how the distributions of threshold and RS covary with

pulse width. Therefore it is assumed that the distributions do not change with pulse width. It

may also be feasible that the standard deviation of RS covaries linearly with its mean—further

data would be required to determine this.

The available data (see Figure 5-8) do not support the hypothesis that RS is a function of

threshold. When more data become available it may be possible to detect such a dependency.

Meanwhile, it is assumed that the distribution of single-pulse I/O functions present in the normal

cat cochlea can be well described by two independent random variables, ‘Threshold’ and ‘RS’. The

means of Threshold and RS as functions of pulse width are estimated by fitting appropriate func-

tions3 to the values of threshold and RS of the curves in Figure 5-11, producing the relationships:
3Particular care should be taken in extrapolating (5.5) to points beyond 5 000 µs/phase, because the function

becomes nonmonotonic at pulse widths greater than 6 000 µs/phase, but there is no evidence to suggest that this

effect actually occurs in neurons.
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E[Threshold] = 121.04× PW−0.18 (dB re. 1 µA) (5.4)

and

E[RS] = 0.12 + 9.51×10−5 × PW − 7.90×10−9 × PW 2 (5.5)

where PW is the pulse width (phase duration) in µs/phase.

Taking a conservative estimate of the distribution of thresholds seen in the cat data, threshold

is taken to be uniformly distributed ±5 dB around its mean as given by (5.4). From Figure 5-

8, the standard deviation of RS is approximately half its mean at short pulse widths (200 and

400 µs/phase). Therefore RS is taken to be normally distributed with a standard deviation of 0.06

(half the mean of RS as given by (5.5) at short pulse widths).

5.4.2 Current spread

Following O’Leary et al. (1995), the electrode array is approximated by a point source of current

at the active electrode and the auditory nerve tissue by a homogeneous resistive medium consisting

of a uniform density of single AN fibres. The potential at the site of each auditory neuron can be

calculated for a given stimulus level. From O’Leary et al.’s (1985) data, the current decays at a rate

of 3–6 dB/mm for bipolar stimulation. This model is extended to also give the current spread for

monopolar stimulation. The attenuation is taken to be approximately 0.5 dB/mm for monopolar

stimulation and 4 dB/mm for bipolar stimulation4. These attenuation rates were obtained from

neurophysiological experiments (Merzenich and White, 1977) that measured the spread of excita-

tion across the cochlea as a function of stimulus intensity and electrode configuration. Modelling

an electrode placed 15 mm inside a cochlea 30 mm long produces attenuation curves as shown in

Figure 5-12.

5.4.3 Output of total auditory nerve model

Here the output is presented of a model of 10 000 neurons5 spread uniformly across the auditory

nerve, assuming the statistics of model parameters given in Section 5.4.1 and the model of current

spread given in Figure 5-12. In Figure 5-13 the number of discharges summed across all fibres in re-

sponse to a single biphasic pulse is plotted. For stimulus intensities above approximately 50 dB, the

deterministic model and the stochastic model produce very similar predictions of the mean number
4Bipolar stimulation produces a greater rate of attenuation than monopolar stimulation, because the return

electrode is closer to the active electrode, creating a tighter current path. Note that these linear functions provide

only a rough approximation of the electrode array, current path and cochlear geometries.
5This is a conservative estimate of the number of surviving auditory nerve fibres in a subject with a profound

sensorineural hearing loss (Hinojosa and Marion, 1983).
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Figure 5-12: Attenuation of the stimulus across the cochlea for monopolar (solid line) and bipolar

(dashed line) electrode configurations.
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of discharges. However, below 50 dB the stochastic model predicts a quite different response from

the deterministic model’s. Note that the stochastic model predicts a mean number of discharges

of greater than 70 spikes in response to a single biphasic pulse of intensity 50 dB in bipolar mode

and greater than 630 spikes in monopolar mode. It is very likely that auditory threshold is reached

with an even smaller number of responses, so it is highly feasible that cochlear implants are oper-

ating in the region where the stochastic activity is significant (see Chapter 6). Furthermore, the

deterministic model will predict zero variance in the number of discharges, whereas the stochastic

model will predict non-zero variance (see error bars in Figure 5.13(b)).

The summing of these Bernoulli random variables is called Poissonian binomial sampling (Johnson

et al., 1992), which is similar to a binomial process, except that the probability of success (prob-

ability of discharge in this case) is different, in general, for each neuron. When the number of

neurons is large, the Poissonian binomial distribution is well approximated by a Poisson distribu-

tion if the mean number of responses is less than 15 and by a Gaussian (Normal) distribution for

mean counts greater than or equal to 15, although the distribution will only have discrete integers

values in both cases.

Figure 5-14 illustrates results from 10 000 iterations of Monte Carlo simulations for a very low

amplitude stimulus (Figure 5.14(a)) and a moderate amplitude stimulus (Figure 5.14(b)), with a

Poisson distribution fit to the former and a Gaussian distribution fit to the latter. The fits appear

to be quite good.

5.5 Discussion

The results of this chapter have shown that a deterministic model is a poor description of a neuron’s

response to single electrical pulses, in light of the improvements in the prediction of physiological

data when a stochastic component of response is added to the neural model. Specifically, the

results show that a simple stochastic model can accurately predict discharge probabilities present

in cat data in response to single biphasic pulses. The results suggest that just two parameters

(threshold and RS) can well describe the response of an auditory nerve fibre to single biphasic

pulses.

The analytical descriptions of single fibre response to single electrical pulses which developed

in this chapter provide a simple and computationally efficient method of modelling the response

of a large-scale population of AN fibres to pulsatile electrical stimulation as produced by cochlear

implants. Furthermore, the output of the model, being a probability of discharge for each neuron,

with each neuron described by a Bernoulli process, allows the direct use of signal detection theory

to determine the resolution with which the AN can convey information about an electrical stimulus

(see Chapter 6).
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(a) Deterministic Model
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(b) Stochastic Model

Figure 5-13: Number of discharges versus stimulus intensity from model of 10 000 fibres in re-

sponse to a single biphasic pulse for monopolar (solid line) and bipolar (dashed line) stimulation.

Error bars indicate ± 1 std.
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(b) Moderate-intensity stimulus

Figure 5-14: Distribution of total number of discharges predicted by 10 000 iterations of Monte

Carlo simulations in response to a single biphasic pulse for two different intensities, with a

Poisson distribution fit (o) for the case where the mean count less than 15 and a Gaussian

(Normal) distribution fit (solid line) for the case where the mean count is greater than 15.
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Further physiological and modelling studies would be helpful in refining and extending a number

of aspects of the model.

In this chapter randomness in the discharge probability in response to electrical stimuli has been

investigated. Physiological studies have shown that randomness occurs not only in the probability

of an action potential being generated, but also in its latency (Javel et al., 1987; van den Honert

and Stypulkowski, 1987b; van den Honert and Stypulkowski, 1984; Verveen and Derksen, 1968;

Verveen and Derksen, 1965). The term ‘jitter’ is used qualitatively to describe this phenomenon,

or quantitatively to refer specifically to the standard deviation of the latency (van den Honert and

Stypulkowski, 1984). In developing an analytical description of probability of discharge the model’s

description of the timing of the discharges has been degraded. A separate stochastic description

of action potential latency would be needed to investigate the effects of jitter in theories of coding

which are dependent on the exact timing of discharges.

The approximation that discharges occur only in response to the cathodic phase of the biphasic

pulse (Approximation 5.3.1) has not appeared to degrade the model’s fits of the physiological data.

However, physiological studies have shown that some AN fibres do exhibit a shift in the phase of

the biphasic current pulse to which they respond (van den Honert and Stypulkowski, 1987b).

Such a phenomenon may have an effect on the I/O function of these fibres. For example, the

cause of the increase in RS with increasing pulse width is as yet unknown—in this chapter only a

phenomenological description of this effect is provided. This behaviour is absent in responses to

monophasic pulsatile stimuli (Dynes, 1996; Rubinstein, 1995; Lecar and Nossal, 1971), suggesting

that the effect is in fact due to the addition of the second phase in the stimulus. There are a number

of ways in which the second phase could increase RS. One possibility is that the relative level of

noise increases with pulse width. Figure 5.1(b) shows that the membrane noise tends to increase

when the transmembrane potential deviates from its resting potential. This means that the first

phase of the pulse could change the membrane potential and thereby increase the relative noise

level. If the membrane potential changes more for longer pulse widths, it may explain the increase

in RS. A second possibility is that the initial site of activation changes with alterations in pulse

width. Different activation sites (i.e., nodes of Ranvier) in the one fibre could have significantly

different relative spreads.

The fits given in Figure 5-11 were to data covering a range of probability of discharge from

approximately 0.05 to 0.95. These fits may be invalid for discharge probabilities less than 0.05 at

long pulse widths. Figure 5-15 shows that the probability of discharge asymptotes to a non-zero

value as the stimulus intensity approaches zero and that this value increases with pulse width.

This is not physiologically feasible however, since the pulse width of a non-existent (zero intensity)

current pulse cannot affect the probability of discharge. Consequently, it can be concluded that

the integrated-Gaussian fit is not valid for very low probabilities of discharge. Further data need
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to be collected to show how the probability of discharge changes with pulse width for probabilities

considerably smaller than 0.05.
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Figure 5-15: Figure 5-11 replotted with an extended ordinate.

The small amount of data used in Section 5.4.1 to investigate how the distributions of threshold

and RS vary with stimulus parameters lead to somewhat rough approximations of their behaviour.

A study similar to van den Honert and Stypulkowski’s (1987a), but in which RS values are collected

along with threshold values, would be useful in further refining the statistics of the total AN model.

In particular the relationships between site of the electrode, pulse width, threshold and RS need

to be further examined.

The physiological data presented in this chapter and the models derived from this data were

from cats. Care should be taken in extrapolating the model to other species, including human

cochlear implant users. Furthermore, the physiological data are from normal hearing cats. Other

than assuming zero inner hair cell survival and allowing an arbitrary number of surviving AN fibres,

this model does not take into account the effects which prolonged deafness has on the response of

AN fibres to electrical stimulation (Shepherd and Javel, 1997). An extension to this study could

be to model the effects of various aetiologies on single-fibre I/O functions.

If the normal behavioural operating range of cochlear implants falls totally in the region above

50 dB in Figure 5-13, then the deterministic model will adequately predict the mean number of
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discharges, although it will be unable to predict the variance in the number of discharges. However,

if some or all of the operating range falls in the region below 50 dB, Figure 5-13 indicates that

the two models predict very different responses. Physiological and behavioural studies in the

same animals provide one method of determining the intensities at which the physiological data

should be collected (Smith, 1996). An alternative method is to model how an ideal observer would

behave from the output of the AN model. Such an evaluation is carried out in the next chapter,

where a range of psychophysical measures are predicted using this AN model. The results of this

study suggest that cochlear implants are indeed operating in the region where stochastic activity is

significant. In all the cases investigated, the stochastic model predicted psychophysical performance

significantly better than the deterministic model did. This suggests that the stochastic model is

not just more accurate in its prediction of physiological response, but also in its prediction of the

resulting behavioural performance.



Chapter 6

The effects of stochastic neural

activity in a model predicting

loudness perception with cochlear

implants

6.1 Introduction

Stochastic activity in the Auditory Nerve (AN) will affect what discharge patterns exist in response

to acoustical or electrical stimulation, how these discharges will be processed and propagated

by the various sections of the auditory pathways, and ultimately the perceptual performance of

the auditory system. However, models of cochlear implant perception have historically utilised

deterministic descriptions of AN response to electrical stimulation, which ignore stochastic activity

present in the response. Recently, physiological models of AN response have been developed which

do incorporate stochastic activity (Bruce, Irlicht, White, O’Leary, Dynes, Javel and Clark, 1997a;

Bruce, Irlicht, White, O’Leary, Dynes, Javel and Clark, 1997b; O’Leary et al., 1998; Irlicht and

Clark, 1996; Dynes, 1996; Rubinstein, 1995; White et al., 1987; Hochmair-Desoyer et al., 1984;

White, 1978), but the consequences for behavioural performance have not been investigated.

In the normal mammalian auditory system, the AN exhibits spontaneous firing of fibres in

the absence of acoustical stimulation and also exhibits variance in the timing of discharges in

the presence of acoustical stimulation (Kim et al., 1990; Kiang et al., 1965). The inner-hair-

cell/auditory-nerve synapse appears to be the primary source of this stochastic activity (Sewell,

1996). In most cases, profound sensorineural hearing loss is the result of the functional loss of all,

95



96

or nearly all, hair cells. As a consequence, hair cells are unlikely to be a significant source of noise

in the profoundly deaf (Kiang et al., 1970).

A series of studies by Verveen and Derksen (1968) have shown, however, that random fluctu-

ations in a neuron’s membrane potential produce a secondary source of noise which will become

more apparent after loss of the inner hair cells. The magnitude of these fluctuations is significantly

less than the noise from the inner hair cells and has consequently been regarded as unimportant

for some time. Hence, neural response to electrical stimulation has historically been modelled via

deterministic descriptions such as the Hodgkin–Huxley equations. However, potentially significant

variance has been measured in the response of AN fibres to single current pulses (see Chapter 5)

and pulse trains (see Chapter 7), which cannot be explained at all by deterministic models. This

stochastic activity will affect electrically elicited AN responses and consequently could be a signif-

icant factor in the psychophysical performance of cochlear implant users.

Studies of single fibre response, where only an arbitrary measure of threshold is recorded, do not

accurately predict behavioural threshold versus phase duration (strength-duration) curves for sinu-

soidal stimulation (Pfingst, 1988) or for pulsatile stimulation (Pfingst et al., 1991; Pfingst, 1990).

Indeed, strength-duration curves of cochlear implant users are not well predicted by deterministic

models of AN response to electrical stimulation (Pfingst, 1990; Shannon, 1989).

In this chapter it is investigated whether these and other inaccuracies in predictions of loudness

perception could be due to ignoring the stochastic response of the AN to electrical stimulation.

In order to avoid the complication of inter-pulse interactions and to enable the use of a simpler

and computationally faster single-fibre model, the investigation in this chapter is restricted to low-

rate pulse trains. A model of loudness based on the description of neural excitation developed

in Chapter 5 is derived and model predictions for the deterministic and stochastic descriptions

of single-fibre response to electrical stimulation are compared. The psychophysical section of the

model is developed in such a way that signal detection theory can be applied to directly predict

how behavioural threshold, dynamic range and intensity difference limens change with stimulus

parameters.

In Section 6.2, Methods, the psychophysical model and the sources of the psychophysical data

which appear in the Results section are described. In Section 6.3, Results, model predictions of

behavioural threshold, dynamic range and intensity difference limen in implant users are presented.

The predictive accuracy of the psychophysical model and the effects of stochastic activity on those

predictions are explored. In Section 6.4 the implications of stochastic activity in AN response for

cochlear implant research are discussed.
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6.2 Methods

6.2.1 Psychophysical model

The form of the psychophysical model is given in Figure 6-1. This model follows the approach

of McKay and McDermott (1997), O’Leary et al. (1995), White (1987) and White (1984a), in which

loudness is related to the response of the AN to an electrical stimulus. Such models can be derived

from psychophysical models of acoustical stimulation which relate loudness to AN response (e.g.,

Oxenham and Moore, 1994; Green and Swets, 1973). Here it is assumed that the peripheral sections

of acoustical psychophysical models can be attributed to excitation of the AN and the remaining

sections attributed to more central processing. To construct the model, the excitation sections

are replaced by a model of electrical stimulation of the AN. The central sections of the model

are similar to the central sections used to model normal hearing. Accordingly, the model has two

major divisions, an auditory nerve section and a psychophysical section.

Σ ∫100ms

Neurons Psychophysical Section

Spatial Sum Detection
/Estimation

Process

Temporal Integration

Loudness

Electrodes

C
u
r
r
e
n
t

S
p
r
e
a
d

AN Section

Figure 6-1: Cochlear neural model and behavioural loudness model.

AN section

In this chapter, two models of the AN neurons are compared: a stochastic model and a deterministic

model. For the AN section of the model a description of total AN response to electrical stimulation

based on the model of White et al. (1987) and White (1978) is utilised, which was developed further
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in Chapter 5. Parameters for both the stochastic and the deterministic model were determined. The

distributions of model neuron parameters are set to approximate those seen in physiological data

from cat (see Chapter 5). The output of the total auditory nerve model is a set of probabilities of

discharge, one discharge probability for each neuron in the model cochlea. The central component

(i.e., the spatiotemporal spike counter) of the model is developed in such a way that for a given

stimulus its output is a single mean and a single variance, where the distribution is known. This

allows the direct use of signal detection theory to predict the performance of cochlear implant users

for a range of psychophysical measures of loudness perception.

The neural excitation model is dependent on a range of different stimulus parameters which have

been shown to be important in the perception of loudness. It takes into consideration the stimulus

intensity, phase duration (pulse width), pulse rate and pulse train duration. It also incorporates

the two most common types of electrode configuration, monopolar and narrow-bipolar. Other

configurations could easily be modelled.

Psychophysical section

Following O’Leary et al. (1995) and White (1984a), loudness is considered to be a monotonic func-

tion of the total discharge rate of all auditory nerve fibres activated by the electrical stimulation.

Following White (1984a), from psychophysical measurement of threshold versus stimulus dura-

tion (Shannon, 1993; White, 1984b), a 100 ms rectangular integration window is used1. These two

aspects, the summing of responses across all neurons and the long-term temporal integration, can

be modelled by spatial summation and temporal integration of the output of the neural section.

Remark 6.2.1 If the model were to be extended to investigate psychophysical

results for higher pulse rate stimuli, short-term integration effects could also be included

in the psychophysical section using the approach of McKay and McDermott (1997).

Note also that for higher pulse rates, in order to take into consideration refractory

effects, the pulse-train model derived in Chapter 7 should be used in the AN section

of the model in place of the single-pulse model of Chapter 5 used in this chapter. See

Chapter 7 for a discussion of further inter-pulse effects which may need to be considered

also.

The output of the entire model is therefore a prediction of the mean and variance over a 100 ms

period of the total AN response to a particular electrical stimulus. Signal detection theory can
1If the stimulus is < 100 ms, as is the case for almost all the data presented in this chapter, the integrator’s output

is simply the sum of all spikes that occur during the 100 ms integration period. For the cases where the stimulus is

> 100 ms (Sections 6.3.6, 6.3.7 and 6.3.8), the output is the sum of the responses elicited by the maximum number

of pulses which can appear within the temporal integration window. For a uniform pulse train this is equal to the

elicited response to n pulses, where n is the pulse rate times 100 ms.
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then be used to predict specific detection/estimation tasks, such as behavioural threshold, dynamic

range and Intensity Difference Limen (IDL).

6.2.2 Determination of psychophysical measures

The output of the neural/psychophysical model developed in Section 6.2.1 can be used to predict

psychophysical results by either Monte Carlo or analytical methods. Monte Carlo techniques are

useful because they can use the same paradigm with which psychophysical results are collected.

They are also more accurate because they use the actual response distribution of the model.

Analytical/numerical methods on the other hand are more efficient computationally, but require

approximation of the response distribution.

The following describes the various methods used in determining the model’s performance in a

number of different psychophysical tasks.

From Section 6.2.1, the loudness of two stimuli are deemed to be equal when the output of the

temporal integration section of the model is identical for the two stimuli. The loudness estimated

by the model is assumed to be monotonically related to the output of the temporal integration

section of the model.

Intensity discrimination: Threshold and IDL

A range of psychophysical paradigms were used in the collection of the behavioural thresholds and

IDLs presented in Section 6.3, many of which were not criterion-specific. Therefore, to simplify

the prediction of these data, a two-interval forced-choice (2IFC) paradigm is chosen as a standard

procedure to assess the model’s prediction of these data. Following the definition of equal-loudness,

the decision rule is that the interval creating the greater number of discharges is the one containing

the stimulus, in the case of a threshold measurement, and is the interval containing the louder

stimulus, in the case of an IDL measurement. An ideal observer is assumed. Because it is a forced-

choice paradigm, an unbiased guess is made if the number of discharges is equal for the two stimuli.

Both Monte Carlo and analytical methods can be applied to provide measures of threshold and

IDL for the model.

In Monte Carlo applications of the model, pseudo-random number generation is used to pre-

dict the number of neurons which respond to a given pulse. For each neuron a pseudo-random,

uniformly-distributed number between 0 and 1 is generated, and if the number is less than the

probability of discharge for that neuron, as determined by the model statistics and the stimulus

parameters, the neuron is deemed to have responded. This is repeated for each pulse in the pulse

train. The number of responses to each pulse is then passed through the psychophysical section

of the model to give the total number of responses occurring within the temporal integration pe-

riod. This output can then be used directly in any criterion-specific psychophysical paradigm.



100

In a forced-choice paradigm, this procedure is carried out once for the comparison stimulus and

repeated a number of times for the reference stimulus, the number of repetitions depending on

the number of intervals desired, e.g., once for a two-interval procedure. For a comparison stimulus

of greater intensity than the reference stimulus, if the number of responses to the comparison is

greater than the number of responses to each of the reference intervals, then the model is deemed to

have correctly identified the comparison. If any one of the reference intervals produces a response

greater than the comparison, then the model is deemed to have chosen incorrectly2. Using this

approach, any criterion-specific paradigm, such the up-down procedures reviewed by Levitt (1970),

can be simulated.

In analytical applications of the model, the distribution of the model’s output is approxi-

mated by an analytical expression. Then signal detection theory is used to derive an analyti-

cal expression to predict the model’s performance of any criterion-specific psychophysical detec-

tion/discrimination task. Expressions for predicting the model’s performance of a 2IFC paradigm

are derived.

Lemma 6.2.1 Consider two discrete random variables X1 and X2 which describe

the number of discharges, as predicted by the model developed in Section 6.2.1, pro-

duced in response to stimuli 1 and 2 respectively. X1 and X2 have probability mass

functions f1 and f2 with means of µ1 and µ2 and standard deviations of σ1 and σ2

respectively. f1 and f2 have values for all integers within the bounds [0,Xmax], where

Xmax is the maximum number of discharges possible.

If stimulus 2 has the greater intensity, the probability of the detection/discrimination

system choosing correctly that it has a greater intensity than stimulus 1 is then:

Pr{Choosing correctly} =
Xmax∑
n=0

f1(n)
Xmax∑
m=n+1

f2(m)

+
1
2

Xmax∑
n=0

f1(n)f2(n) (6.1)

Proof: see Appendix C.

Remark 6.2.2 From Chapter 5:

If µi < 15, fi is well approximated by the Poisson probability mass function (p.m.f.):

fi(x;µi) = e−µiµxi
x! x = 0, 1, 2, . . . (6.2)

2If the number of responses is equal for the comparison and all the reference intervals, and consequently no

decision can be made, then another pseudo-random, uniformly-distributed number between 0 and 1 is generated,

and if the number is less than the inverse of the number of intervals (0.5, in the case of the two-interval paradigm),

then the model is deemed to have guessed the correct interval.
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or if µi ≥ 15, fi is well approximated by the Gaussian probability density function

(p.d.f.):

fi(x;µi, σi) = 1√
2πσi

e−(x−µi)2/2σ2
i −∞ < x <∞ (6.3)

Lemma 6.2.1 assumes both X1 and X2 are discrete random variables having integer

values bound by [0,Xmax].

Two possible changes can be made in order to use Equation 6.3 for the case where

µi ≥ 15. Either the appropriate sums in Lemma 6.2.1 can be changed to integrals, or

the Gaussian p.d.f. can be discretised such that it only has values for integers within

the bounds [0, Xmax], forming a p.m.f. with the same formula as Equation 6.3. These

methods produce practically identical results, but the second method has been used in

the model predictions, because it is computationally faster.

Sample psychometric functions of behavioural threshold generated using this method are plot-

ted in Figure 6-2. These were obtained from a model of 10 000 neurons (see Section 6.2) in

response to a single 100 µs/phase biphasic pulse generated with a monopolar electrode configu-

ration. The deterministic version of this model produces a step-shaped psychometric function,

which, because of the lack of any variance in the response, corresponds to one more neuron re-

sponding to the comparison stimulus than to the reference stimulus (no stimulus when determining

behavioural threshold). In contrast, the stochastic model produces a psychometric function which

rises smoothly from 50% (chance performance level) to 100% discrimination, as the neural re-

sponses become more discriminable, i.e., as the overlap of the response distributions of the two

stimulus conditions decreases.

A point on the psychometric function which is defined as the threshold (or difference limen)

can then be chosen to match the paradigm which was used in the collection of the psychophysical

data which are to be predicted. However, not all of experimental methods used to collect the data

presented in the Results were criterion-specific. In such cases 70.71% is used as the criterion3.

In order to test the accuracy of the analytical estimate, Monte Carlo simulations of a stan-

dard up-down threshold procedure (Levitt, 1970) were conducted using the psychophysical model.

For each threshold measurement the simulation was run until 10 turning points were reached.

Threshold was taken to be the mean of the final 8 turning points. Plotted in Figure 6-3 are the

means of 4 threshold measurements (o) for four different pulse durations, with error bars indicating

± 1 standard deviation. Thresholds obtained via the analytical method (lines) accurately estimate

the simulation results.
370.71% is the point on a psychometric function which is estimated by a two-down, one-up procedure (Levitt,

1970).
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Figure 6-2: Psychometric functions for behavioural threshold predicted by the deterministic

(dotted line) and stochastic (solid line) auditory nerve models.
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Dynamic range

Dynamic range is defined as the intensity difference in dB between behavioural threshold and un-

comfortable loudness. Here it is assumed that uncomfortable loudness corresponds to the loudness

reaching some fixed level. Because we assume that loudness is monotonically related to the neural

response, a fixed loudness corresponds to a fixed number of neural discharges for the whole AN

within the period of temporal integration, i.e., the output of the model’s temporal integrator sec-

tion. The number of discharges required to reach uncomfortable loudness will be referred to as

Nucl. There is no plausible way of determining how many responses correspond to uncomfortable

loudness4, so predictions for three different values of Nucl are therefore presented, which appear to

best account for the psychophysical data.

6.2.3 Psychophysical data

In Section 6.3.2 threshold versus pulse width data from Pfingst et al. (1991) are presented. In

Section 6.3.3 dynamic range versus pulse width data from White (1984b) are presented. In Sec-

tion 6.3.4 dynamic range versus electrode configuration data from Battmer et al. (1993) are pre-

sented, plus previously unpublished data collected by White (Bruce, White, Irlicht, O’Leary and

Clark, 1997). In Section 6.3.5 threshold versus electrode configuration data from Smith and Finley

(1997) and Miller et al. (1995) are presented. In Section 6.3.6 previously unpublished threshold

versus number-of-pulses data collected by White (Bruce, White, Irlicht, O’Leary and Clark, 1997)

are presented. In Section 6.3.7 IDL data from Nelson et al. (1996) are presented.

The implant type, experimental setup and methods used by White to collect the previously

unpublished data were identical to those used in White (1984b). In summary, subjects were im-

planted with scala tympani intracochlear electrode arrays of sixteen wires, which were connected to

a stimulus generator via a percutaneous link. Bipolar electrode pairs were oriented approximately

radially relative to the axis of the cochlea. A monopolar electrode configuration was achieved by

using just one electrode from the bipolar pair as the active electrode and an ear-clip located on

the ipsilateral earlobe as the return electrode. Thresholds were measured with a modified Békésy

tracking procedure using a minimum of 6 threshold crossings for each threshold estimate. The

average of the stimulus minima and maxima was computed to determine the estimated threshold

stimulus current. Uncomfortable loudness was determined by initiating the stimulus at an am-

plitude slightly above threshold and gradually increasing the stimulus level on a linear amplitude

scale until the subject indicated that the stimulus had reached the maximum loudness desired.
4Unfortunately, signal detection theory cannot be used to explain the nature or behaviour of uncomfortable

loudness. It is possible that other neural mechanisms contribute to the sensation of uncomfortable loudness.
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6.3 Results

Using the model and methods described in Section 6.2 it is possible to determine threshold, dynamic

range and intensity difference limen as a function of stimulus parameters such as phase duration

(pulse width), electrode configuration and number of pulses. Before the model’s predictions of

psychophysical data are presented, it will help to understand the model’s neural response as a

function of these parameters.

6.3.1 Model response properties

Neural response versus stimulus intensity predicted by a model of 10 000 fibres in response to a

single pulse of duration 100 and 2 000 µs/phase is plotted in Figure 6-4. The number of discharges

is a monotonic function of the stimulus intensity, where there is horizontal shift of the function

dependent on the phase duration.

Plotted with a linear ordinate (Figures 6.4(a) and 6.4(c)), the deterministic model and the

stochastic model appear to predict similar mean response growth curves. However, when plotted

with a log ordinate (Figures 6.4(b) and 6.4(d)), it can be seen that the models predict different

neural mean response for pulses that elicit fewer than 1 000 spikes. Not only is there a horizontal

shift, but there is also a difference in the slopes of the functions and in the amount of variance. It is

likely that auditory threshold is reached with a much smaller number of responses, and hence some

or all of a cochlear implant’s operating range may be in the region where the stochastic activity

is significant. From this it can be expected that the deterministic and the stochastic models will

have differing predictions of loudness perception as a function of phase duration and that these

differences will be greater at lower stimulus intensities.

Neural response to a single pulse predicted for monopolar (solid line) and bipolar (dashed line)

stimulation is plotted in Figure 6-5. For the deterministic model, the recruitment of fibres is steeper

for a monopolar stimulus than for a bipolar stimulus, because of the comparatively wider current

spread (see Figure 5-12). However, for the stochastic model, this effect is limited to high stimulus

intensities and is less pronounced. Again, a significant proportion of a cochlear implant’s operating

range may lie within the region below 50 dB, where the mean responses of the models diverge and

where the variance is significant in the stochastic model. From this it can be expected that the

deterministic and the stochastic models will have differing predictions of loudness perception as

a function of electrode configuration and that these differences will be greater at lower stimulus

intensities.

Furthermore, because of the difference in the response growth curves of the deterministic and

stochastic models, (i) predictions of perception as a function of the number of pulses will differ for

the two models, and (ii) predictions of intensity difference limen will differ.
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(a) Deterministic model: linear vertical scale
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(b) Deterministic model: logarithmic vertical

scale
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(c) Stochastic model: linear vertical scale
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(d) Stochastic model: logarithmic vertical scale

Figure 6-4: Neural response versus stimulus intensity from model of 10 000 fibres in response to

a single pulse of duration 100 and 2 000 µs/phase (solid lines and dashed lines respectively).
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(b) Stochastic Model

Figure 6-5: Neural response versus stimulus intensity from model of 10 000 fibres in response to

a single pulse for monopolar (solid line) and bipolar (dashed line) stimulation.
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The model’s predictions of loudness perception are now compared directly with actual psy-

chophysical data.

6.3.2 Threshold versus phase duration (pulse width): Strength-duration

Pfingst et al. (1991) investigated how behavioural thresholds in adolescent or adult male macaques

(M. mulatta and M. radiata) vary as a function of pulse duration for single biphasic pulses. Their

data are plotted in Figure 6.6(a) (solid lines), along with a line indicating a 6 dB/octave change in

threshold (dotted line) which corresponds to equal charge per pulse. They noted that threshold in

some subjects changed by more than 6 dB/octave in the region from 1 000 to 2 000 µs/phase, more

than would be expected if it was assumed that threshold corresponds to a certain level of charge

delivered by an implant. Such steep slopes are commonly observed in human subjects (e.g., see

Figure 6.7(a)).

Model prediction of these data are plotted in Figure 6.6(b). Note that the deterministic model

predicts slopes of 6 dB/octave at short pulse durations but shallower slopes in the region from

1 000 to 2 000 µs/phase. The stochastic version of the model, in comparison, accurately predicts

slopes greater than 6 dB/octave in that region.

6.3.3 Threshold and uncomfortable loudness versus phase duration: Dy-

namic range

Behavioural threshold and uncomfortable loudness versus phase duration data (White, 1984b) from

a human subject are plotted in Figure 6.7(a). The threshold versus phase duration curve has a

slope greater than 6 dB/octave in the region from 1 000 to 10 000 µs/phase, which is consistent

with the data of Pfingst et al. plotted in Figure 6.6(a). In contrast, the uncomfortable loudness

curve has a slope of less than 6 dB/octave in this region, causing the corresponding dynamic range,

plotted in Figure 6.7(b), to increase with increasing phase duration.

The model predictions of these data are plotted in Figure 6-8. The deterministic model predicts

that the threshold and uncomfortable loudness curves will have identical slopes at each phase

duration (Figure 6.8(a)), such that the behavioural dynamic range will not change with phase

duration (Figure 6.8(b)). In contrast, the stochastic model accurately predicts the changes in

slopes of the threshold and uncomfortable loudness curves at each phase duration (Figure 6.8(c))

and the corresponding increase in dynamic range with increasing phase duration (Figure 6.8(d)).

It appears that uncomfortable loudness for these data corresponds to an Nucl for the model in the

region of 100 to 1 000 spikes.

In Figure 6.8(d), the model prediction of uncomfortable loudness for Nucl = 100 spikes begins to

converge with it’s prediction of threshold. This indicates that threshold for the model corresponds

to a higher number of discharges for long pulse durations than for short pulse durations. It can
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Figure 6-6: Threshold versus phase duration (pulse width) from Figure 2 of Pfingst et al.

(1991), and deterministic and stochastic model predictions of these data for monopolar and

bipolar stimulation.
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dynamic range versus phase duration.
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be postulated that this arises from the inaccuracy of the stochastic single-fibre model at very low

stimulus intensities for long pulses. Specifically, it can be postulated that discharge probabilities

at very low stimulus intensities for long pulses are considerably lower than those predicted by the

model integrated-Gaussian function (see Chapter 5).

6.3.4 Effect of electrode configuration on dynamic range

Behavioural dynamic range data for different electrode configurations are presented here. White (Bruce,

White, Irlicht, O’Leary and Clark, 1997) measured behavioural dynamic ranges in response to

1, 2, 4 and 8 pulses of duration 100 µs/phase presented at 50 pps for monopolar and bipolar

electrode configurations. Battmer et al. (1993) measured behavioural dynamic ranges in response

to pulses of widths 25, 50, 75, 100, 200 and 400 µs/phase for monopolar and bipolar electrode

configurations.

These data are plotted in Figures 6-9 and 6-10 respectively, along with model predictions of

these data, as BP dynamic range divided by MP dynamic range. All of these data have a ratio

of around 1 or less. The deterministic model predicts ratios between 2.7–3.9. In contrast the

stochastic model predicts ratios of 0.6–1.2, depending on the value of Nucl, which are much closer

to the ratios observed in the psychophysical data. Like the dynamic range versus pulse width

predictions of Section 6.3.3, it appears that uncomfortable loudness for these data corresponds to

an Nucl for the model in the region of 100 to 1,000 spikes.

The phenomenon of similar dynamic ranges for monopolar and bipolar electrode configurations

has also been observed for stimuli very different from those presented and modelled here. Shannon

(1983a) measured behavioural dynamic ranges in response to a 1 000 Hz, 300 ms sinusoidal stimulus

for a number of electrodes in a multi-electrode array, using both monopolar and bipolar electrode

configurations. Over the entire electrode array the dynamic ranges for monopolar and bipolar

stimulation were approximately equal.

6.3.5 Effect of electrode configuration on strength-duration

In Figure 6-11, psychophysical strength-duration curves from Miller et al. (1995) and Smith and

Finley (1997) for different electrode configurations are plotted. In both data sets the mean thresh-

olds are similar for bipolar and monopolar stimulation at short phase durations, but diverge as

phase duration increases. This effect has also been observed in nonhuman primates (Pfingst, Morris

and Miller, 1995; Pfingst, Miller, Morris, Zwolan, Spelman and Clopton, 1995).

The change in slope and relative position of the threshold curves with the change in electrode

configuration is well predicted by the stochastic model, but not by the deterministic model (see

Figure 6.6(b)). Sensitivity testing of the model indicates that the electrode configuration has a

larger effect on the predicted threshold curve than either (i) number of fibres or (ii) criterion for the
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from White (Bruce, White, Irlicht, O’Leary and Clark, 1997) and model predictions, for
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psychophysical decision. The range of auditory thresholds in Figure 6.6(a) is also well explained

by the range of modes of stimulation used in the collection of those data.

6.3.6 Threshold versus number of pulses: Temporal integration

Plotted in Figure 6-12 are thresholds versus number of pulses collected by White (Bruce, White,

Irlicht, O’Leary and Clark, 1997) for four different pulse durations, along with deterministic and

stochastic model predictions of these data. Unlike the psychophysical data, the slope of the tem-

poral integration curves predicted by the deterministic model (6.12(b)) do not increase with pulse

duration, but rather remain at approximately zero. In contrast, the stochastic model (6.12(b)) pre-

dicts temporal integration curves with non-zero slopes which increase with phase duration (pulse

width).

For the longest pulse durations in the psychophysical data (Figure 6.12(a)), there is a sharp

increase in the slope of the temporal-integration curves for the larger pulse counts. This is not

predicted by the model. This may be due to the inaccuracy of the stochastic single-fibre model

at very low discharge probabilities for long pulse durations. For these very long pulses, model

responses for 4 and 16-pulse thresholds are reached at discharge probabilities which it can be

hypothesised (see Chapter 5) are not fitted well by the integrated-Gaussian function used in the

stochastic model.

6.3.7 Intensity Difference Limen (IDL)

Nelson et al. (1996) measured IDLs in eight cochlear implant users, for 200 µs/phase biphasic pulse

trains delivered at 125 pps using a bipolar electrode configuration. The psychophysical paradigm

used estimated the difference in current level (∆IµA) from the reference current (IµA) producing a

79.4% correct discrimination. Difference limen were collected and Weber fractions expressed in dB

(= 10 log10 (∆IµA/IµA)) calculated for reference current levels spanning each subject’s dynamic

range. Linear Weber functions (= αIdB + b) were fitted to each subject’s data collected over a

range of electrode pairs. The reference intensity was expressed as a percentage of the dynamic

range (%DR = IdB/DRdB × 100).

The linear Weber function fits to the psychophysical data of Nelson et al. (dotted lines) are

plotted in Figure 6.13(a), along with the deterministic model predictions (dot-dashed, dashed and

solid lines) of these data. In contrast to the observed behaviour, the deterministic model predicts

very erratic Weber functions, with the magnitudes of the predicted Weber fractions all lower than

the those seen in the psychophysical data. In agreement with the data, the deterministic model

predicts an ∼ 8 dB reduction in the Weber fraction over the dynamic range.

The linear Weber function of Figure 6.13(a) are replotted in Figure 6.13(b), along with the

stochastic model predictions (dot-dashed, dashed and solid lines) of these data. In comparison to
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Figure 6-12: Threshold versus number of pulses: psychophysical data and model predictions.
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Figure 6-13: Intensity difference limen (Weber fractions) versus stimulus intensity (percentage

of dynamic range): linear Weber function fits to psychophysical data from 8 subjects (dotted

lines) and model predictions for Nucl = 100 spikes (dot-dashed line), 500 spikes (dashed line)

and 1 000 spikes (solid line).
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the deterministic model, the magnitudes of the predicted Weber fractions are in better agreement

with the psychophysical data. Furthermore, the stochastic model predicts smooth but nonlinear

Weber functions, which may provide an even more accurate description of the psychophysical data

than a linear Weber function (e.g., see Figures 2 and 6 of Nelson et al. (1996)). Like the dynamic

range versus pulse width predictions of Section 6.3.3 and the dynamic range versus electrode

configuration predictions of Section 6.3.4, it appears that uncomfortable loudness for these data

corresponds to an Nucl for the model in the region of 100 to 1 000 spikes.

The stochastic model approximately predicts the slopes of the Weber functions. The reduction

in the Weber fraction over the dynamic range is on the order of 10 dB, or greater. Nelson et al.

found that the average reduction in the Weber fraction over the dynamic range was 8 dB. However,

the reduction in the Weber fraction may actually be greater, since shallow Weber functions which

contributed to this mean value have been caused by limitations in the intensity resolution of the

implanted receiver/stimulators (Nelson et al., 1996).

These predictions can be better understood by observing each model’s neural response growth

function. In Figure 6-14 neural response predicted by the deterministic model (dashed line) and

by the stochastic model (solid line) is plotted as a function of stimulus intensity (percentage of

dynamic range, with Nucl = 500 spikes). It can be seen that:

1. The improvement in intensity discrimination (reduction in Weber fraction) of ∼ 8 dB over the

behavioural dynamic range is due primarily to the increase in the slopes of the neural response

growth curves at uncomfortable loudness when compared with their slopes at threshold.

Although the stochastic model has slightly steeper neural response growth at uncomfortable

loudness than the deterministic model does, the presence of variance in the loudness indicated

by the error bars (± 1 std.) causes the discrimination to be worse than if no variance were

present, resulting in a difference limen similar to that predicted by the deterministic model.

2. The erratic Weber functions predicted by the deterministic model result from the discrete

steps in neural response created by the step-function fits to single fibre I/O functions (see

Chapter 5), i.e., the difference limen is purely the increase in intensity required to reach

one more fibre’s threshold. Therefore, the minimum IDL is practically zero if the reference

intensity is immediately below the threshold of the next most sensitive fibre. The maximum

IDL corresponds to the widest step in the neural response growth function, i.e., the greatest

difference in consecutive thresholds. The smoothness of the Weber functions predicted by

the stochastic model is due to the smoothness the stochastic model’s neural response growth

function, caused by the integrated-Gaussian fits to single fibre I/O functions (see Chapter 5).

3. The increased magnitude of the Weber fractions predicted by the stochastic model, when

compared with those predicted by the deterministic model, is due to the variance in the
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number of discharges in the stochastic model, indicated by the error bars (± 1 std.).
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Figure 6-14: Number of neural discharges versus stimulus intensity (percentage of dynamic

range, with Nucl = 500 spikes) predicted by the deterministic model (dashed line) and by the

stochastic model (solid line) for a pulse rate of 125 pps. Error bars indicate ± 1 std.

In Figure 6-14, both the deterministic model and the stochastic model have a lower growth of

response near threshold than at higher intensities. If loudness is approximately a linear function of

neural response, then the model predicts that loudness growth will be lower at low intensities than

at high intensities. This matches the psychophysical data reviewed in Zeng and Shannon (1992).

6.3.8 Effect of number of fibres on threshold, dynamic range and inten-

sity difference limen

One of the major forms of inter-subject variability in cochlear implant users is the number of

surviving AN fibres. All the model predictions plotted thus far in this chapter were obtained from

a model of 10 000 neurons, which is a conservative estimate of the number of surviving auditory

nerve fibres in a subject with a profound sensorineural hearing loss (Hinojosa and Marion, 1983).

In this section it is investigated how the number of surviving AN fibres affects threshold, dynamic

range and IDLs.
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Plotted in Figure 6-15 are deterministic and stochastic model predictions of dynamic range (left

panes) and Weber fraction (right panes) versus threshold, for bipolar (top panes) and monopolar

(bottom panes) stimulation, from models of 1 000 to 30 000 fibres, in response to a 125 pps pulse

train. These plots show that both the deterministic and the stochastic model predict changes

in dynamic range and Weber fraction with the number of surviving fibres. However, (i) the

deterministic model, in contrast to the stochastic model, predicts practically no change in threshold

with the number of fibres, and (ii) the deterministic model predicts decreases in dynamic range

and Weber fraction with increasing neural survival, whereas the stochastic model predicts the

reverse, except for small numbers of surviving fibres in bipolar mode with a high Nucl. For the

deterministic model, the intensity required to reach uncomfortable loudness decreases with the

number of surviving neurons and threshold remains unchanged, producing a net decrease in the

dynamic range. In contrast, both the threshold and the uncomfortable loudness of the stochastic

model decrease with increasing neural survival and the rate of decrease of threshold is greater than

that of uncomfortable loudness, producing a net increase in the dynamic range.

It is not possible to determine the number of surviving fibres in live implant subjects, so

it is infeasible to compare these model predictions directly to psychophysical results. However,

from Hinojosa and Marion (1983) and similar studies it can be assumed that nerve survival would

vary considerably in any reasonably-sized sample of implant subjects. In Fig. 7 of Nelson et al.

(1996), Nelson et al. plotted dynamic range and Weber fraction versus threshold for eight human

implant patients, using either a bipolar (adjacent electrodes) or a wide bipolar (one separating

electrode) configuration. In Figure 6-16 their linear fits to these data are replotted. If it is assumed

that neural survival varies in these eight subjects and there are no other significant differences,

then it would be expected the linear fits to the psychophysical data to lie somewhere between

those predicted for bipolar stimulation and those for monopolar stimulation. Comparison of the

model predictions with the psychophysical data suggests that the stochastic model, in contrast

to the deterministic model, can account for the psychophysical data reasonably well. If different

distributions of single-fibre I/O functions exist in these eight subjects, as suggested by studies of

deafened animals (Shepherd and Javel, 1997), this may further explain the range of psychophysical

data5.

6.4 Discussion

6.4.1 Using the model to understand psychophysical behaviour

The relationship between cochlear response and behaviour is defined by the central component

of the model. A spike-counting model (i.e., perfect spatiotemporal summation) is used, as used

5Other factors such as electrode placement and the cochlea’s anatomy can cause threshold to vary among subjects.
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(a) Bipolar stimulation: Dynamic range
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(b) Bipolar stimulation: Weber fraction
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(c) Monopolar stimulation: Dynamic range
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(d) Monopolar stimulation: Weber fraction

Figure 6-15: Deterministic and stochastic model predictions of dynamic range (left panes) and

Weber fraction at 75% of dynamic range (right panes) versus threshold, for bipolar (top panes)

and monopolar (bottom panes) stimulation, from models of 1 000 to 30 000 fibres, in response

to a 125 pps pulse train. The number of fibres used in the model to generate each point are as

labelled. Curves are plotted for two different values of Nucl, as indicated in the figure legend.
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Figure 6-16: Linear fit to psychophysical data from Fig. 7 of Nelson et al. (1996): corresponding

dynamic range (left pane) and Weber fraction at 75% of dynamic range (right pane) functions

for a 125 pps pulse train.
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in some models of normal hearing. This model is relatively simple to use. For example, (i) by

adjusting the amplitude of a stimulus until the elicited cochlear output is equal to that elicited by

another stimulus, the two stimuli can be made to evoke the same loudness; and (ii) the output is

a single mean and a single variance for each stimulus, so relatively simple statistical methods can

be used to measure detectability or discriminability of stimuli.

Understanding how the cochlear response is affected by stimulus parameters, electrode config-

uration, nerve pathology, and nerve survival is necessary for understanding how these variables

control behavioural response. The cochlear response is controlled by 3 primary factors: (i) The

individual fibre I/O functions—it has been shown that model predictions for a step-function (de-

terministic model) and for an integrated-Gaussian function (stochastic model) are very different6;

(ii) Differences in fibres—the distribution of fibre I/O slopes is broad and unimodal. The determin-

istic model cannot incorporate the slopes of I/O functions, let alone their distribution. In contrast,

the stochastic model is able to describe the distribution of slopes, such that fibres with shallow

slopes contribute the majority of cochlear activity at low stimulus intensities. In sharp contrast,

fibres with steep slopes contribute the majority of cochlear activity at high stimulus intensities. In

addition, thresholds also vary (independently of the slope) among fibres. (iii) The large impact of

phase duration (pulse width) on the fibre’s discharge probability function.

The impact of the 3 primary factors, plus other factors such as the number of pulses, electrode

configuration and nerve survival, can be understood and predicted. For example, in order to

maintain the same level of audibility when the number of stimulus pulses is halved, pulse amplitude

must be increased so that the average discharge probability is doubled. In a similar manner, in

order to maintain the same loudness when switching from monopolar to bipolar stimulation, pulse

amplitude must be increased to exactly compensate for the reduction in discharge probability

across the cochlea. Similarly, a cochlea with poor nerve survival requires a compensatory increase

in pulse amplitude. Furthermore, the relative noise level of fibres may be quite different for different

cochlear pathologies (Shepherd and Javel, 1997). This directly impacts the slope of individual fibres

and therefore the slope of total cochlear response. For example, in subjects with a pathology that

causes fibres to be relatively noisy, one would expect dynamic ranges to be larger and intensity

discrimination to be poorer, particularly at low loudness.

6.4.2 Applicability of the model

The results presented in this chapter have important consequences for physiological studies, for

investigation of neural sound coding and for speech processing strategies. For physiological studies,
6Because AN fibres may only discharge in response to only a fraction of the pulses in the stimulus, discharge

probabilities for individual fibres are best visualised using a 2-3 decade logarithmic scale. Cochlear response functions

(e.g., Figure 6-4) should be viewed over a much larger range (e.g., 6 decades)!
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the results suggest that a simple deterministic threshold measurement is not a sufficient description

of neural response to electrical stimulation, but rather discharge probability functions are required.

Such measurements not only provide a more accurate description, but also emphasise how stimulus

intensity significantly affects what spatiotemporal patterns of response are occurring in the AN and

how information could be coded by these patterns. For psychophysical studies, the results indicate

that a number of perceptual measures are better predicted by the stochastic model. The source of

this improvement is in the description of the most peripheral section of the auditory pathways. It

is therefore suggested that consideration of stochastic activity in AN response may produce better

predictions and explanations of a range of other psychophysical measures not investigated in this

chapter.

An independent group (Ferguson et al., 1998) has implemented the model developed in this

chapter and compared the predictions of threshold as a function of pulse duration for monopolar and

bipolar stimulation modes with experimental data. Analysis of data from three species indicated

that variance of behavioural thresholds is an increasing function of pulse duration, and that these

results are corroborated by the predictions of the stochastic version of the model. The results are

not predicted if the stochastic component is not included. This indicates that the importance of

stochastic activity in the AN extends beyond the psychophysical data investigated in this chapter.

6.4.3 Model extensions

In this chapter a model of loudness in cochlear implants users based on physiological data has been

derived and been used to investigate a number of different psychophysical phenomena. In all the

cases examined so far, the model predicts the perceptual performance of cochlear implant users

significantly better when stochastic activity is included in the neural section of the model.

However, although most of the psychophysical data investigated in this chapter are well pre-

dicted by the stochastic model, extensions or revisions of this model may significantly improve

predictions and the understanding of the functional significance of the physiology.

As was raised in Chapter 5, the neural section of the model is derived from physiological data

collected in cats. Despite this, the model closely predicts psychophysical data from monkeys,

guinea pigs, cats and human cochlear implant users. Further physiological data will be collected

from humans using cochlear implant telemetry and non-invasive electrophysiology which should

prove useful in refining the simple model of current spread and neural response. A model of current

spread in the human cochlea constructed from human cochlear sections (Cohen et al., 1997) may

also help to this end.

Another extension to the model would be to allow for other sources of noise. For instance, the

survival of inner hair cells in some subjects could result in some remaining spontaneous activity in

the AN. This would affect the amount of noise present in the total AN response. Other sources of
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noise may also be present in more central sections of the auditory pathways. The effects of both

of these potential noise sources can be included in the psychophysical model if their behaviour is

known. Initial investigations into such effects have been conducted, where it was assumed that the

additional noise is unaffected by stimulus parameters, which could occur if the noise resulted from

spontaneous activity in fibres not excited by the electrical stimulus or from some constant source

of central neural noise. The consequence of such noise is that thresholds increase with increasing

noise levels. If noise levels are high, the stochastic model enters the region where its output

approaches the deterministic model predictions. This may account for those strength-duration

curves in Figure 6.6(a) which are higher and flatter. Central noise may account for the relatively

high Weber fractions produced by loud stimuli.

Other model deviations which effectively reduce the amount of stochastic activity may also

account for such data which lies somewhere between the deterministic model and the stochastic

model predictions. For instance, particularly focused current fields or extremely low neural density

may cause higher probabilities of firing at stimulus intensities within the behavioural operating

range. Because neural responses at high discharge probabilities exhibit relatively little variability,

stochastic and deterministic model predictions are similar under such conditions.

The physiological data on which the model is based are from normal hearing animals. This

model does not take into account the effects which prolonged deafness and aetiology have on

the response of AN fibres to electrical stimulation (Shepherd and Javel, 1997). An extension to

this study could be to model the effects of various aetiologies on current spread and single-fibre

I/O functions and the resulting effects on predictions of psychophysical performance. It must

be stressed here that these proposed extensions should be applied to the stochastic model, since

the amount of noise in the stochastic model can always be reduced or increased appropriately.

The significance of the single-fibre input/output functions was also investigated by Ferguson et al.

(1998). In their investigation, based on the model derived in this chapter, they also utilised raw

input/output data gathered from cats tested in their lab who had also performed the behavioural

threshold measures. The results of this analysis indicated that the model predictions are more

closely matched to the behavioural data when the raw input/output functions are used than when

the integrated-Gaussian fits are used.

In the model developed in this chapter, no nonlinearities are present in the central process-

ing, i.e., the psychophysical section of the model. Introduction of nonlinear models of central

processing (e.g., Gregson, 1988) may produce better predictions of some psychophysical data. Fur-

thermore, the approach taken in this chapter has been to avoid “curve fitting”, i.e., finding model

parameters which produce the best predictions. This has been done in order to demonstrate that

parameter values inferred directly from physiological data may be sufficient to produce reason-

able qualitative predictions of psychophysical data from many cochlear implant users. However,
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because of the reasonable qualitative accuracy of the model predictions, the next step in these

comparisons would be to conduct more quantitative evaluations. These could involve fitting the

models to psychophysical data of individual cochlear implant users, in order to investigate how

model parameters and the corresponding physiology may explain inter-subject variability.

Only responses to stimulation from a single electrode have been investigated in this chapter.

In order to model responses to stimulation from multiple electrodes, refractory effects should be

incorporated (using the model derived in the next chapter) when the electrodes are stimulating

overlapping populations of fibres, and other loudness summation effects may need to be considered

when the neural populations excited do not overlap (McKay et al., 1995; Tong and Clark, 1986;

Shannon, 1983b). Furthermore, in this chapter the investigation has been limited to low pulse-

rate stimuli. With the pulse-train model developed in the next chapter, an appropriate tool is

available for extending this investigation to the prediction of psychophysical data for moderate

stimulation rates. However, to develop the model for high pulse rate (> 1 000 pps) stimulation,

neurophysiological data must be collected for a range of discharge probabilities at such high pulse

rates. It is possible that stochastic activity in the AN will play an even more important role in

predicting and understanding behavioural responses to high pulse-rate stimuli.



Chapter 7

A stochastic model of the

electrically stimulated auditory

nerve: Pulse-train response

7.1 Introduction

In Chapter 5, a stochastic model of AN response to single electrical pulses was developed, following

the conceptual approach used in White et al. (1987), White (1978), and Verveen and Derksen

(1968). In contrast to the poor performance of the deterministic model, the stochastic model

accurately predicted discharge probabilities measured in response to single biphasic pulses. In

Chapter 6 this model was applied in a psychophysical model of loudness in cochlear implant users.

The results showed that the stochastic single-pulse model better predicts a range of psychophysical

measures of loudness than the equivalent deterministic model does. In this chapter the model is

extended to describe responses to pulse-train stimuli.

The final model, although more complex than the single-pulse model, is still computationally

efficient and can be fitted easily to the statistics of AN parameters collected from physiological

studies. It is therefore suitable for the calculation of large-scale population responses which could

be required for the investigation of sound coding in ensembles of nerve fibres, for the explanation

or prediction of psychophysical results, or for the development of speech processing strategies for

cochlear implants. Furthermore, this simple model is particularly valuable because it is composed

of several ‘conceptual components’ (e.g., a stochastic component, a refractory component). The

impact of various modifications or exclusions of the components can be easily explored with such

models. In a later section the utility of this feature will be illustrated.

The Methods section provides a description of the analysis of the physiological data and the

124
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methods used to derive the neural model. In Section 7.3 the model developed in Chapter 5 is

extended to describe responses to pulse-train stimuli. An analytical approximation of the model is

derived for trains of evenly-timed, uniform electrical pulses, and response properties of the model

at a range of pulse rates are investigated. In particular, the behaviour of the stochastic model

is compared to the same model without the stochastic component. In Section 7.4, the effects of

pulse-train stimulation on the model of total AN response developed in Chapter 5 are discussed.

Finally, in the Discussion the implications of the stochastic behaviour of AN response for cochlear

implant research are discussed.

7.2 Methods

7.2.1 Physiological data

The physiological data presented in this chapter are single-fibre cat AN data from Javel et al. (1987).

Along with that paper’s analysis of mean discharge rate in response to trains of evenly-timed,

uniform, biphasic current pulses, a previously unpublished analysis of this data set is presented.

The variance in discharge rate is estimated by calculating the variance in the number of discharges

recorded in response to repeated presentation of a 100 ms pulse train. This analysis is examined

further in O’Leary et al. (1998).

7.2.2 Model of AN response

The various single-fibre models are defined in the form of electrical circuits. Monte Carlo simula-

tions of these circuits can be carried out on a computer and the response of the model recorded

directly. This method requires the least number of simplifying assumptions and approximations,

producing the most accurate description of the model’s response properties, but is computationally

laborious. This is because the stochastic version of the model requires many simulation iterations

to accurately determine the distribution of responses.

In order to overcome this problem, appropriate simplifying assumptions and approximations

have been determined to enable the development of analytical approximations of the electrical

circuit descriptions, without significantly changing the response characteristics. Predictions of

single-fibre response can be computed simply and efficiently using these analytical approximations

and multiple iterations are not required.

7.3 Pulse-train response

In Chapter 5 a stochastic model of single-fibre response to single biphasic electrical pulses was

developed. Although investigation of single-pulse responses is useful in the development and ver-
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ification of a neural model (see Chapter 5), single-pulse stimuli are not the usual output from

cochlear implants. Most cochlear implant speech processing strategies typically utilise trains of

pulses at rates higher than 100 pulses per second (pps) and train durations up to hundreds of

milliseconds. Therefore, a practical model must accurately describe the neural response to trains

of current pulses at a range of pulse rates and train durations.

7.3.1 Stochastic model of pulse-train response

In the case of pulse trains, the time-dependent nature of neural response to current pulses means

that the response to any one pulse in the train will be dependent on how the neuron has responded

to the previous pulses in the pulse train. Such dependencies are commonly referred to as inter-pulse

interactions.

The major form of inter-pulse interaction seen in physiological data is known as the refractory

effect, whereby after an action potential is generated there is some time over which the neuron is

either unable or less able to be driven to discharge again (Dynes, 1996; Parkins, 1989; Stypulkowski

and van den Honert, 1984; White, 1978). The time over which the neuron is subject to refractory

effects is notionally divided into the absolute refractory period and the relative refractory period.

The former occurs immediately after action potential generation, and during this time it is not

possible to produce another discharge. Following the absolute refractory period is the relative

refractory period, during which the neuron is harder to drive to discharge than when it is outside

the refractory period. After the relative refractory period the neuron has returned to its ‘normal’

state and its response is no longer dependent on previous activity.

It is possible to approximate this behaviour by introducing a phenomenological mechanism to

the model which describes the end result of the refractory effects on the probability of discharge. A

refractory potential Vrefr is added to the single-pulse model of Chapter 5, as shown in Figure 7-1.

Following an action potential, the ‘threshold’ with which the stimulus potential is compared is

raised over the refractory period by some chosen function.

The refractory function Vrefr will have a value of infinity for the absolute refractory period,

and will then generally fall smoothly to zero over the relative refractory period. Therefore two

assumptions are made regarding the behaviour of the refractory function.

Assumption 7.3.1 Vrefr is assumed to be monotonically decreasing, i.e., it falls

from its maximum value at the beginning of the refractory period to its minimum

value at the end of the refractory period without any transitory increases.

Assumption 7.3.2 The refractory effects are assumed to be of finite duration,

i.e., Vrefr returns to a value of zero within a finite time.
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Figure 7-1: Stochastic model of pulse-train response.

Refractory effects may also change the behaviour of the membrane noise. It appears that the

magnitude of Vnoise may increase with small depolarisations (see Figure 5.1(b)). The behaviour of

the membrane noise during the larger depolarisation which occurs as a result of an action potential

is not well understood. This requires a more thorough investigation of the behaviour of ionic chan-

nels during and after action potential generation. Some physiological data and modelling results

indicate that the noise only increases significantly during depolarisations which do not generate an

action potential (see Figure 5-7 of Dynes, 1996), whereas others suggest that the membrane noise

could increase greatly during a segment of the refractory period under some conditions (Rubinstein,

Matsuoka, Abbas and Miller, 1997; Miller et al., 1997). Due to the uncertainty about the exact

nature of these phenomena, two cases will be investigated which are referred to as Case 1, where

these effects are ignored, and Case 2, where the increase in noise during the refractory period is ap-

proximated, but only to the extent where the relative noise remains constant during the refractory

period.

Case 1 : Vnoise is proportional to the resting threshold, i.e., σ = RS× Vthr.

Case 2 : Vnoise is proportional to the refractory-modified threshold, i.e., σ = RS× (Vthr + Vrefr).

where Relative Spread (RS) is defined as the standard deviation of the noise (σ) divided by the

threshold. Refer to Chapter 5 for further explanation of the nomenclature.

An excitatory inter-pulse effect has also been observed if the depolarisation caused by a pulse is

not great enough to produce an action potential. In this case, any pulse following this subthreshold

‘conditioner’ pulse will have a reduced threshold (Dynes, 1996; Butikofer and Lawrence, 1979).

These excitatory effects generally last for approximately half a millisecond, but may have longer
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time constants in small diameter fibres (e.g., Frijns, 1995, Chapter IV). This effect requires further

investigation, and could be added to the model when sufficient information becomes available.

Auto-correlation of the membrane noise could also produce inter-pulse interactions, i.e., the

noise potential during one pulse may be correlated with the noise potential during the preceding

and following pulses in the pulse train, such that their responses are not independent. Such effects

could be investigated electrophysiologically or by using a Hodgkin–Huxley type model including

stochastic activity (Rubinstein, 1995; Hochmair-Desoyer et al., 1984; Lecar and Nossal, 1971), but

such an investigation would be extremely difficult either experimentally or computationally and is

beyond the scope of this chapter. Therefore a simplifying approximation is used.

Approximation 7.3.1 Vnoise is considered to be uncorrelated between pulses.

Finally, for the purpose of numerical evaluation the model is discretised, i.e., each pulse n is

divided into a number of discrete bins of equal time. The level of discretisation, i.e., number of

bins per pulse, will have an effect at higher pulse rates where a number of pulses fall within the

relative refractory period. The number of bins required is dependent on the slope of the refractory

function. 10 bins per pulse are used for discretisation level in computing the simulation results,

because it was found that increasing the number of bins beyond 10 had negligible effect.

7.3.2 Analytical approximation of stochastic model

In this section expressions are developed for the mean and variance of the discharge rate in re-

sponse to a train of evenly-timed, uniform pulses. In the course of developing these descriptions,

an expression for calculating the Interspike Interval (ISI) histogram is also derived. Rather than

developing descriptions for the deterministic and stochastic models separately as was done in Chap-

ter 5, it is simpler to derive an expression for the stochastic model and to treat the deterministic

model as a special case of the stochastic model, i.e., the case where the noise variance equals zero.

The stochastic model developed in the previous section can be described as a renewal pro-

cess (Feller, 1968; Cox, 1962). In a renewal process, the waiting times between successive occur-

rences of an event are mutually independent random variables having the same distribution (Feller,

1968, p. 303). The model qualifies as a renewal process, because after each discharge it begins anew

without any ‘memory’ of prior discharges. The theory of renewal processes was originally devel-

oped to predict failure times for mechanical or electrical components, or conversely how often a

component needs to be replaced or renewed. Hence the time between events is called the renewal

time ‘r’. In this case it is used to model the ISI, which describes the time between consecutive

discharges.

Given the mean and variance of the renewal time it is possible to calculate the mean and

variance of the discharge rate. Exact expressions for all of these can be derived for the stochastic
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model in the case of a pulse train of infinite duration. Therefore, the following approximation is

made.

Approximation 7.3.2 The actual finite pulse train of evenly-timed, uniform pulses

is approximated by a pulse train of infinite duration.

Remark 7.3.1 This approximation constitutes the only difference between the

stochastic model suitable for Monte Carlo simulation and the analytical description

thereof. The sensitivity of the analytical results to this approximation is examined

in Section 7.3.3, where the analytical approximation is compared to results of Monte

Carlo simulations.

Following Approximations 5.3.1, 5.3.2 and 5.3.3, all values in the pulse-train model remain

constant across pulse n except the refractory potential Vrefr for Case 1, and also the noise potential

Vnoise for Case 2. The values of Vrefr and Vnoise will depend on the time ‘t’ in the pulse train that

the last discharge occurred. Therefore, E[r] and var[r] in turn will be dependent on the time of

the last discharge. The mean and variance of the renewal time can be calculated using Bayes’

Theorem (Devore, 1987), if the mean and variance of the renewal time dependent on the time of

the last discharge can first be determined and the probability distribution is calculated for all the

times the previous discharge may have occurred.

That is:

E[r] =
∫
∀t

E[r|last discharge occurred at time t]

×Pr {last discharge occurred at time t}dt

and

var[r] =
∫
∀t

var[r|last discharge occurred at time t]

×Pr {last discharge occurred at time t}dt

For a pulse train of infinite duration consisting of evenly-timed, uniform pulses, the process will

reach a state where, from that point on, the probability of response to each pulses does not change.

This is known as the equilibrium state (Cox, 1962). The mean and variance of the renewal time

taken over an infinite pulse train will be exactly equal to the mean and variance of the renewal

time in the equilibrium state.

Therefore, under Approximation 7.3.2, the case is considered where a discharge has occurred

during a pulse while the process is in an equilibrium state. If the discharge has occurred in bin j of
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that pulse, then the expected time to the next discharge is labelled as E[r|j]. The average renewal

time across all values of j is then:

E[r] =
∑
j

E[r|j] Pr {last discharge in bin j} (7.1)

and the variance is:

var[r] =
∑
j

var[r|j] Pr {last discharge in bin j} (7.2)

First the mean and variance of the renewal time dependent on the time of the last discharge is

calculated.

From Feller (1968):

E[r|j] =
∞∑
k=0

kf(k|j) (7.3)

where f(n|j) is defined as the probability of the first subsequent discharge occurring during pulse

n, given that the last discharge occurred n pulses previously in bin j. This scheme is illustrated

in Figure 7-2.

Discharge

Pulse 0 Pulse 1 Pulse n

Bin j Bin iDischargeBin
1 2 3 4 5 6

Renewal time
r

Figure 7-2: Schematic of pulse and bin numbering for calculation of the renewal time r, where

a discharge has occurred in bin j of pulse 0 and the next subsequent discharge occurs in bin i

of pulse n. A discretisation level of 6 bins per pulse is shown.

f(n|j) can be calculated by first determining the probability of a discharge occurring during

pulse n, given that the last discharge occurred n pulses previously in bin j, which is labelled p(n|j).

Lemma 7.3.1 Given the model of action potential generation described by Fig-

ure 7-1; Approximations 5.3.1, 5.3.2, 5.3.3 and 7.3.1; and Assumption 7.3.1: an action

potential will occur during pulse n if Vstim(n) is greater than or equal to the refractory

(and, in Case 2, noise) modified threshold by the end of pulse n.
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Define g (ni|j) as the probability that Vstim(n) is greater than or equal to the re-

fractory (and, in Case 2, noise) modified threshold in bin i of pulse n, given that the

last discharge occurred n pulses previously in bin j. g (ni|j) can be expressed as:

Case 1:

g(ni|j)=
1
2

(
1+erf

(
Vstim(n)−Vthr(n)−Vrefr(ni|j)√

2σ

))
(7.4)

Case 2:

g(ni|j)=
1
2

(
1+erf

(
Vstim(n)/m(ni|j)− Vthr(n)√

2σ

))
(7.5)

where

m(ni|j)
∆=
Vthr(n) + Vrefr (ni|j)

Vthr(n)

Then, for both cases:

p(n|j) = g (nfinal|j) (7.6)

where nfinal denotes the final bin of pulse n.

Proof: see Appendix D.

Given (7.6), it is possible to calculate the probability of the first subsequent discharge occurring

during pulse n, given that the last discharge occurred n pulses previously in bin j.

Lemma 7.3.2 Consider a discrete renewal process, where p(n|j) is defined as the

probability of a discharge occurring during pulse n, given that the previous discharge

occurred n pulses previously in bin j.

The probability of the first subsequent discharge occurring during pulse n, given

that the last discharge occurred n pulses previously in bin j, is then:

f(n|j) =

 p (0|j) for n = 0

Q (n− 1|j) p(n|j) for n > 0
(7.7)

where Q(n|j) is defined as the probability of no discharge occurring up to and including

pulse n, given that the last discharge occurred n pulses ago in bin j, and is described

by the equation:

Q(n|j) =
n∏

m=0

1− p (m|j)

Proof: see Appendix D.
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Remark 7.3.2 When RS is zero, the model behaves deterministically, and (7.4)

and (7.5) become:

g(ni|j) =

 0 for Vstim(n)<Vthr(n)+Vrefr (ni|j)

1 for Vstim(n)≥Vthr(n)+Vrefr (ni|j)
(7.8)

It is possible to reduce the number of values of n for which it is necessary to evaluate the

expressions in Lemmas 7.3.1 and 7.3.2, and thus simplify the calculation of (7.3), because the

monotonically decreasing refractory function falls to a value of zero within a finite time (Assump-

tions 7.3.1 and 7.3.2) and the pulse train is of infinite duration (Approximation 7.3.2).

Lemma 7.3.3 Following Approximation 7.3.2 and Assumption 7.3.2, consider the

case where the pulse train is of infinite duration and there exists some time L such that

refractory effects are negligible for all times k ≥ L such that p(k|j) = p,∀k ≥ L. Then:

E[r|j] =
L−1∑
k=0

kf(k|j) + Q(L− 1|j)
(
L− 1 +

1
p

)
(7.9)

and

var[r|j]=
L−1∑
k=0

k2f(k|j)

+Q(L−1|j)
((
L−1+

1
p

)2

+
1− p
p2

)
−E[r|j]2 (7.10)

Proof: see Appendix D.

Next the probability distribution is calculated for all the times the previous discharge may have

occurred. To do this, a matrix B is introduced, where the elements of the matrix, Bij , are defined

as:

Bij
∆= Pr

{
next discharge occurs in any bin i

| last discharge occurred in any bin j
}

Lemma 7.3.4 For the renewal process described by Lemmas 7.3.1, 7.3.2 and 7.3.3,

the elements of B can be calculated via:

Bij =
L−1∑
k=0

Q(k − 1|j)p (ki|j) + Q(L− 1|j)δi=1 (7.11)
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where p (ni|j) is defined as the probability of a discharge in bin i of pulse n, given that

the previous discharge occurred n pulses previously in bin j, and δi=1 is one where

i = 1 and zero otherwise.

Following Assumption 7.3.1:

p (ni|j) = g (ni|j)− g (ni−1|j) (7.12)

Proof: see Appendix D.

Next two column vectors ~x and ~y are introduced, where the elements of these vectors, xj and

yi respectively, are defined by:

xj
∆= Pr {last discharge occurred in any bin j}

and

yi
∆= Pr {next discharge occurs in any bin i}

Following Bayes’ Theorem:

~y = B~x (7.13)

In the equilibrium state the probability that the a spike occurs in bin i of any pulse is on average

equal to the probability that the last spike occurred in bin j of any pulse when i = j. Therefore a

vector ~v is defined:

~v
∆= ~y = ~x

Thus (7.13) becomes:

~v = B~v (7.14)

Lemma 7.3.5 Given that the probability of discharge is non-zero for all pulses and

that the pulse train is of infinite duration (Approximation 7.3.2), the sum of all the

elements in each column of B equals one, and B has at least one eigenvalue of one.

Proof: see Appendix D.

Thus, ~v is the eigenvector of B corresponding to the eigenvalue of one. Given that the prob-

ability of discharge is non-zero for all pulses and that the pulse train is of infinite duration (Ap-

proximation 7.3.2), both
∑
j xj and

∑
i yi must equal one, and therefore ~v should be scaled so that∑

j

vj = 1.
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(7.1) then becomes:

E[r] =
∑
j

E [r|j] vj (7.15)

and (7.2) likewise becomes:

var[r] =
∑
j

var [r|j] vj (7.16)

All the expressions required to evaluate (7.15) and (7.16) are now available: E [r|j] can be found

from (7.9), var [r|j] from (7.10), and the eigenvector ~v from the values of B given by (7.11).

From page 321 of Feller (1968), the mean and variance of the number of discharges D in a given

time window can be calculated from the mean and variance of the renewal time, if the time window

is long enough for the distribution of the number of discharges to be well approximated by a normal

distribution. For an pulse train of infinite duration, the limiting case given by (6.8) of Feller (1968)

will be reached. Therefore, given Approximation 7.3.2, the mean (E[D]) and the variance (var[D])

of the discharge rate can be described exactly by:

E[D] =
1

E[r]
(7.17)

var[D] =
var[r]
E[r]3

(7.18)

7.3.3 Analysis of the analytical approximation’s accuracy

In order to test the accuracy of this analytical approximation, Monte Carlo simulations of the

stochastic model were conducted. Responses to 10, 20 and 100 ms pulse trains of rates 200 pps and

600 pps were simulated and compared with the results of the analytical approximation. Estimates

of discharge rate mean and variance computed by 500 iterations of the simulations and by the

analytical approximation for 10, 20 and 100 ms pulse trains are plotted in Figures 7-3, 7-4 and 7-5

respectively.

For a 10 ms pulse train, the analytical description approximates the response at 600 pps rea-

sonably accurately and the response at 200 pps very well. Extending the pulse train duration to

just 20 ms (4 pulses at 200 pps and 12 pulses at 600 pps) improves the accuracy significantly. For

a 100 ms pulse train, the analytical expressions provide an almost exact description of the model.

This indicates that the accuracy of the analytical descriptions is relatively insensitive to the length

of the pulse train, i.e., to the accuracy of Approximation 7.3.2.

Furthermore, the analytical approximation takes just 0.04% of the time required by the Monte

Carlo simulation to compute 500 iterations for a 100 ms pulse train. While the mean of the Monte

Carlo stimulation output converges rapidly, giving an accurate estimate after only 100 iterations,
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(a) Mean discharge rate versus stimulus intensity.
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(b) Discharge rate variance versus stimulus intensity.

Figure 7-3: 10 ms pulse train: Comparison of discharge rate mean and variance predicted by

500 iterations of Monte Carlo simulations for pulse rates of 200 pps (4) and 600 pps (2) and

by the analytical approximation (solid lines).
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(a) Mean discharge rate versus stimulus intensity.
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(b) Discharge rate variance versus stimulus intensity.

Figure 7-4: 20 ms pulse train: Comparison of discharge rate mean and variance predicted by

500 iterations of Monte Carlo simulations for pulse rates of 200 pps (4) and 600 pps (2) and

by the analytical approximation (solid lines).
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(b) Discharge rate variance versus stimulus intensity.

Figure 7-5: 100 ms pulse train: Comparison of discharge rate mean and variance predicted by

500 iterations of Monte Carlo simulations for pulse rates of 200 pps (4) and 600 pps (2) and

by the analytical approximation (solid lines).
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the variance has still not converged completely after 500 iterations. The sample mean from the

Monte Carlo simulations will converge at a rate of
√
N , where N is the number of iterations, and the

sample variance will converge more slowly, at a rate of approximately
√

(N + 1)/2 (Keeping, 1962,

pp. 108). To double the accuracy of the estimate of the variance would take 7 times the number

of iterations, such that the analytical approximation, which does not require multiple iterations,

would take just 0.006% of the computational time.

Therefore, no further results of the Monte Carlo simulations are presented here. Instead,

predictions of the physiological pulse-train data by the analytical approximation are presented in

the next section.

Remark 7.3.3 An expression for the probability distribution of renewal times, or

ISI histogram, can also be directly calculated via the equation:

f(n) =
∑
j

f(n|j)vj (7.19)

where f(n) is defined as the probability that the next discharge will occur in pulse n,

given that the last discharge occurred n pulses previously.

Remark 7.3.4 The modification of the threshold by the refractory function means

that contrary to Approximation 5.3.2, the threshold with which Vstim is compared will

change during pulse n and, depending on the time-course of the refractory function,

the time-course of Vstim may become significant. From this, a case could be made for

utilising a stimulus potential which rises monotonically over the duration of the pulse

to its asymptotic value. As long as the refractory function follows Assumption 7.3.1,

i.e., is monotonically decreasing, only one adjustment would need to be made to the

preceding method of finding the mean and variance of the discharge rate. Substituting

a monotonically increasing stimulus potential Vstim (ni|j) for Vstim(n|j) in calculating

g (ni|j) in (7.4) and (7.5) will change the value of p (ni|j) as calculated via (7.12),

and in turn the value of Bij as calculated via (7.11). This could give a more accurate

description of the probability of an action potential occurring in a particular bin of a

pulse, and consequently could give a more accurate prediction of the mean and variance

of the renewal time.

7.3.4 Prediction of pulse-train response

Following the method derived in the previous section, both the mean and variance of the discharge

rate can be predicted for the pulse train model when RS is equal to zero (Deterministic Model), as

well as for Case 1 and Case 2 as defined in Section 7.3.1. Taking the values for threshold and RS
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from fits to the single-pulse response done in Chapter 5, it simply remains to choose an appropriate

refractory function.

The single-pulse response was calculated by investigating the response of each neuron to the

first pulse in a pulse train. It is therefore possible to directly calculate the refractory function which

produces the best fit to the discharge rate data for the remainder of the pulse train. However,

discharge rate data at a range of stimulation rates were collected for only a few neurons in this data

set. Consequently, it is infeasible to estimate the statistics of refractory functions in AN fibres, for

use in the total AN model. Therefore, a standard refractory function is used for all neurons which

is derived by fitting an exponential function to the cat data from Figure 3-5 of Dynes (1996). These

data were collected using monophasic pulses, but are consistent with biphasic pulse data (e.g., see

Fig. 20 of Parkins, 1989). The standard refractory function is plotted in Figure 7-6 as the relative

increase in threshold, i.e., (Vthr + Vrefr) /Vthr, along with its analytical description. Note that the

absolute refractory period lasts 0.7 ms, after which the relative refractory period begins with a

time-constant of 1.32 ms, with the refractory effects lasting for a total period of 20 ms. The effect

of refractory function choice is investigated in the next section.
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Figure 7-6: Relative increase in threshold due to refractory effects: physiological data (o) and

exponential least-squares fit (solid line).
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Mean discharge rate

Plotted in Figure 7-7 are mean discharge rates for Neuron 3-21 of Javel et al. (1987) at pulse

rates of 100, 200, 300, 400, 600 and 800 pps with a pulse duration (pulse width) of 100 µs/phase.

There were a good deal of responses at the higher stimulus levels for which no data were collected.

As the stimulus amplitude was increased, the neurophysiologists would stop collecting data once

the discharge rate equalled the stimulus’s pulse rate. This was done because they had previously

found that the spike rate would remain nearly constant and equal to the pulse rate at these higher

stimulus levels. The resulting extrapolations are plotted as dashed lines.
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Figure 7-7: Mean discharge rates for Neuron 3-21 of Javel et al. (1987) at pulse rates from 100

to 800 pps with a pulse width of 100 µs/phase. Dashed lines indicate assumed extrapolations

of the data.

The data from Figure 7-7 are replotted in Figure 7-8, along with the first-pulse data of Neuron 3-

21 (dotted lines) scaled to indicate what the pulse-train response would be if inter-pulse interactions

were not present. This comparison shows that the slopes of the I/O functions in response to pulse

trains are flattened due to inter-pulse interactions.

Plotted in Figure 7-9 are the deterministic pulse-train model predictions of these data (solid

lines). The dotted lines represent the same predictions without refractory effects, obtained from

the deterministic single-pulse model developed in Chapter 5. When compared with the data in
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Figure 7-8: Mean discharge rates for Neuron 3-21 of Javel et al. (1987) at pulse rates from 100 to

800 pps with a pulse width of 100 µs/phase. Dotted lines are the first-pulse data of Neuron 3-21

scaled to indicate what the pulse-train response would be if inter-pulse interactions were not

present.
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Figure 7-7, the inclusion of the refractory mechanism is seen to improve the model’s prediction of

the I/O function slope for each pulse rate, but it still does not reach the slope of the physiological

data and the shapes of the curves are inaccurate.
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Figure 7-9: Mean discharge rates for the deterministic version of the model at pulse rates of

100, 200, 300, 400, 600 and 800 pps with a pulse width of 100 µs/phase. Dotted lines indicate

mean discharge rates without refractory effects.

Plotted in Figure 7-10 are predictions of the mean discharge rates for the Case 1 version of the

stochastic pulse-train model. The dotted lines represent the same predictions without refractory

effects, obtained from the stochastic single-pulse model developed in Chapter 5. Both the shape

of the curves and their slopes better predict the physiological data than the deterministic model

does.

The effects of the choice of refractory function have also been investigated. Plotted in Figure 7-

11 are mean discharge rates where the refractory function has been modified to have an absolute

refractory period of 1 ms and a time-constant of 2 ms. For comparison, the discharge rate functions

for the standard refractory function from Figure 7-10 (dashed lines) have been overlaid. The

modified refractory function produces a slightly better prediction of the overlap of the physiological

discharge rate versus intensity curves at discharge rates below approximately 200 spikes/s than

the standard refractory function does. However, the shapes of the curves and the slopes appear to
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Figure 7-10: Mean discharge rates for the standard version of the stochastic model (i.e., Case 1 )

at pulse rates of 100, 200, 300, 400, 600 and 800 pps with a pulse width of 100 µs/phase. Dotted

lines indicate mean discharge rates without refractory effects.
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be less accurate.
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Figure 7-11: Mean discharge rates for the stochastic model with a modified refractory function

(absolute refractory period = 1 ms; time-constant = 2 ms) at pulse rates of 100, 200, 300, 400,

600 and 800 pps with a pulse width of 100 µs/phase. Dashed lines indicate mean discharge rates

for the standard refractory function (from Figure 7-10).

Plotted in Figure 7-12 are mean discharge rates for the Case 2 version of the stochastic model.

Dashed lines indicate mean discharge rates for the Case 1 version. The Case 2 version of the model

may provide a slightly better prediction of the shapes and slopes of the physiological discharge rate

versus intensity curves than the Case 1 version does.

Mean discharge rate data at stimulation rates of 100, 200, 300 and 400 pps from neurons 3-10

(see Figure 7-13) and 3-29 of Javel et al. (1987) were also investigated, yielding very similar results.

7.3.5 Variance of discharge rate

In Figure 7-14 discharge rate variances (o) are plotted for Neuron 3-21 of Javel et al. (1987) at

pulse rates of 200 and 600 pps. To allow comparison across different pulse rates, both the mean

and variance discharge-rate data are normalised (divided by the pulse rate). This normalisation

produces the probability of discharge per pulse and the variance per pulse respectively. It can be

seen that with increasing pulse rate the variance is compressed around the point of 0.5 probability
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Figure 7-12: Mean discharge rates for the Case 2 version of the stochastic model at pulse rates

of 100, 200, 300, 400, 600 and 800 pps with a pulse width of 100 µs/phase. Dashed lines indicate

mean discharge rates for the Case 1 version (from Figure 7-10).
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(a) Mean discharge rate data (solid lines) from Neuron 3-10. Dotted

lines are the first-pulse data of Neuron 3-10 scaled to indicate what

the pulse-train response would be if inter-pulse interactions were not

present.
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(b) Stochastic model predictions (solid lines) of mean discharge rate

data from Neuron 3-10. Dotted lines indicate mean discharge rates

without refractory effects.

Figure 7-13: Mean discharge rate data and model predictions for Neuron 3-10 of Javel et al.

(1987) at pulse rates from 100 to 400 pps with a pulse width of 200 µs/phase.
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of discharge per pulse. The single-pulse version of the stochastic model (dotted line) overestimates

the variance, the error increasing with pulse rate. The deterministic model (dashed line) on the

other hand cannot predict the variance at all. The Case 1 version of the pulse-train stochastic

model (solid line) provides the best prediction of the variance data. This was found to be true also

for pulse rates of 100, 300, 400 and 800 pps.

Just as the effects of refractory function choice and of Case 1 versus Case 2 on the mean

discharge rate were investigated, their effect on the prediction of the variance data are also in-

vestigated. In Figure 7-15 the discharge rate variance data (o) are plotted again, along with the

Case 1 model predictions with the standard refractory function (dotted lines). Also plotted are

the predictions of the stochastic model (solid lines) with a modified refractory function (absolute

refractory period = 1 ms; time-constant = 2 ms) and the predictions of the Case 2 version of

the stochastic model (dashed lines). It can be seen that the change in refractory function time-

constants improves the model predictions of the variance data more than the change from Case 1

to Case 2 does. These improvements are seen to occur specifically in the range from 0.1 to 0.6

probability of discharge per pulse.

Variance of discharge rate data at stimulation rates of 200 and 400 pps from neurons 3-10 (see

Figure 7-16) and 3-29 of Javel et al. (1987) were also investigated, yielding very similar results.

7.4 Total auditory nerve response

The output of the model of total auditory nerve response developed in Chapter 5 is the mean and

variance in discharge rate for each neuron. Although for responses to pulse trains the individual

neurons are described by renewal processes rather than Bernoulli processes, as was the case for

the single-pulse model, application of the Central Limit Theorem (Devore, 1987) shows that the

total response will still be well approximated by a Gaussian distribution if the mean is large

enough (≥ 15). If the mean is less than 15, the Poisson distribution approximation of the total

response will worsen if one or more fibres diverge from behaving like a Bernoulli process. As is

evident from Figures 7-14 and 7-15, the renewal process model of a fibre’s behaviour (stochastic

pulse-train model) differs from a Bernoulli process (stochastic single-pulse model) only when its

discharge probability per pulse becomes larger than about 0.05. For total cochlear spike counts of

less than 15, fibre discharge probabilities above 0.05 could only occur: (i) if the density of surviving

AN fibres is very low, or (ii) if the stimulating electrode is very selective and therefore effectively

stimulates only a small number of fibres.
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(a) Variance per pulse at 200 pps
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(b) Variance per pulse at 600 pps

Figure 7-14: Variance per pulse versus probability of discharge per pulse (o) for Neuron 3-21

of Javel et al. (1987) with a pulse width of 100 µs/phase. Also plotted are the single-pulse

stochastic model predictions (dotted lines) of these data, the stochastic model (Case 1 version)

predictions (solid lines) and the deterministic model predictions (dashed lines).
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Figure 7-15: Variance data (o) from Figure 7-14 are replotted, as are the stochastic model

predictions of these data with the standard refractory function (dotted lines). Also plotted

are the Case 2 model predictions (dashed lines) and the stochastic model predictions with a

modified refractory function (solid lines).
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Figure 7-16: Variance per pulse versus probability of discharge per pulse (o) for Neuron 3-10

of Javel et al. (1987) with a pulse width of 100 µs/phase. Also plotted are the single-pulse

stochastic model predictions (dotted lines) of these data, the stochastic model (Case 1 version)

predictions (solid lines) and the deterministic model predictions (dashed lines).
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7.5 Discussion

The results of this chapter show that a deterministic model is a poor description of a neuron’s

response, in light of the improvements in the prediction of physiological data when a stochastic

component of response is added to the neural model. Specifically, the results show that a simple

stochastic model can accurately predict the mean and variance of the discharge rate in response to

pulse trains. The results suggest that in the case where a uniform refractory function is assumed

across all neurons, just two parameters (threshold and RS) can well describe the response of an

auditory nerve fibre to single biphasic pulses and pulse trains. The results show that an even more

precise description may be achieved by estimating a specific refractory function for each neuron.

However, the improved accuracy gained by estimating refractory functions for each neuron may

not justify the additional parameters required to describe each neuron in the total auditory nerve

model.

The analytical descriptions of single fibre response to pulse trains developed in this chapter

provide a simple and computationally efficient method of modelling the response of a large-scale

population of AN fibres to trains of evenly-timed, uniform pulses. Furthermore, the output of

the model, being a mean and a variance for each neuron with a known distribution, allows the

direct use of signal detection theory to determine the resolution with which the AN can convey

information about an electrical stimulus.

The analytical approximation was developed to describe responses to trains of evenly-timed,

uniform pulses, as are commonly used in psychophysical and physiological investigations. However,

current speech processing strategies used in cochlear implants may produce trains of pulses which

vary in amplitude over the duration of the train. Consequently, rather than the stationary process

produced by a uniform pulse-train, neural response to non-uniform pulse trains would need to be

modelled by a nonstationary process. Neither the analytical descriptions, nor the methods used

in deriving them, can be directly applied to nonstationary processes. Analytical expressions for

nonstationary processes may also be tractable, but if not, Monte Carlo simulations of the model

illustrated in Figure 7-1 may be used to estimate the neural response.

Further physiological and modelling studies would be helpful in refining and extending a number

of aspects of the model.

In this chapter randomness in the discharge rate in response to electrical stimuli has been

investigated. In developing an analytical description of discharge rate, the model’s description of

the timing of the discharges has been degraded. As was the case in Chapter 5, a separate stochastic

description of action potential latency would be needed to investigate the effects of jitter in theories

of coding which are dependent on the exact timing of discharges.

Discharge rate data at a range of stimulation rates were only available for three neurons in

the cat data analysed in this chapter. It would be desirable to compare the model with more
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physiological data, for further verification of the model. Additional data could also help in further

refining the model. In particular, an estimate of the distribution of refractory functions in the cat

AN could be obtained if more data were available.

The stimulation rates investigated in this chapter were all 800 pps or lower. Development

of speech processing strategies utilising significantly higher stimulation rates is currently being

investigated by a number of cochlear implant research groups. It would therefore be useful to

extend the model to describe physiological data collected at these higher stimulation rates when

such data become available.

Furthermore, much of the neurophysiology and, as a consequence, much of the modelling in

this chapter emphasises moderate to high discharge probabilities per pulse. Implant users may

be operating at considerably lower discharge probabilities, particularly when receiving continuous

stimulation from a multi-channel speech processor (see Chapter 6). It may therefore be useful to

collect further data at stimulus intensities which produce low discharge probabilities per pulse.

Further investigation into the behaviour of membrane noise following both subthreshold and

suprathreshold stimulation is required. Single-fibre data from the cat AN and one stochastic

model (see Figure 5-7 of Dynes, 1996) indicate that the standard version of the stochastic model

(Case 1 ) is the more likely description of membrane noise following a suprathreshold pulse, i.e., the

membrane noise does not change significantly during the refractory period. However, membrane

noise was seen to increase following a subthreshold pulse, i.e., in response to a depolarisation

which does not generate an action potential. This may explain why, for mid to high pulse rates,

the variance per pulse in Javel et al.’s (1987) cat data is slightly greater for probabilities of dis-

charge per pulse below 0.5 than for discharge probabilities above 0.5 (e.g., see Figure 7.16(b)):

for probabilities of discharge per pulse below 0.5, the majority of the pulses in a pulse train are

effectively subthreshold, producing greater membrane noise and consequently greater variance in

the response. This phenomenon could be very significant if cochlear implants are operating at

intensities which produce low discharge probabilities, such that many pulses in a pulse train will

effectively be subthreshold.

A different stochastic model (Rubinstein, Matsuoka, Abbas and Miller, 1997) showed that in

some cases membrane noise may increase significantly during a portion of the refractory period.

Single-fibre data from the cat AN (Miller et al., 1997) also revealed that some neurons exhibit

double-spiking and that the stochastic component of the second spike is significantly increased.

This may be a result of the membrane noise increasing by such an amount during the refractory

period following the first spike that a second spike is spontaneously generated (Miller et al., 1997).

These phenomena could also be significant for cochlear implant speech processing strategies and

therefore further investigation of these phenomena is desirable.

As well as choice of refractory function and the effects of subthreshold and suprathreshold
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stimulation on noise levels, the other inter-pulse interactions discussed in Section 7.3.1, but not

included in this model, may account for some of the differences seen between the variance data at

mid to high discharge rates and the model’s predictions of these data (e.g., see Figures 7-14 and 7-

16). However, the efficiency of characterising nonlinearities using uniform, evenly-timed pulse trains

may be limited—inter-pulse interactions may be better investigated using non-uniform pulse trains

as used in engineering methods of nonlinear system identification (e.g., Shi and Hecox, 1991).

As was the case for the single-pulse model, the physiological data presented in this chapter and

the models derived from this data were from cats. Care should be taken in extrapolating the model

to other species, including human cochlear implant users. Furthermore, the physiological data are

from normal hearing cats. Other than assuming zero hair cell survival and allowing an arbitrary

number of surviving AN fibres, this model does not take into account the effects which prolonged

deafness has on the response of AN fibres to electrical stimulation (Shepherd and Javel, 1997). An

extension to this study could be to model the effects of various aetiologies on single fibre I/O and

refractory functions.

In Chapter 6 the stochastic single-pulse model of Chapter 5 was used to predict a range of

psychophysical measures. The results of that study suggest that cochlear implants are indeed

operating in the region where stochastic activity is significant. In all the cases investigated, the

stochastic model predicted psychophysical performance significantly better than the deterministic

model did. This suggests that the stochastic single-pulse model is not just more accurate in its

prediction of physiological response, but also in its prediction of the resulting behavioural perfor-

mance. With the pulse-train model developed in this chapter, an appropriate tool is now available

for extending this investigation to the prediction of psychophysical data for higher stimulation

rates. The pulse-train model could also be used in psychophysical models of temporal frequency

coding, such as those investigated in Chapters 2 to 4, to investigate how the pitch percept related

to the stimulation rate may arise.



Chapter 8

Conclusions

8.1 Summary

It is known that in a single fibre the predominant interval between action potentials is the same

as the period of a pure-tone acoustical stimulus for frequencies up to around 600 Hz, and this is a

possible mechanism by which the brain codes frequency. For higher frequencies, refractory effects

prohibit a single fibre from firing every cycle, such that the predominant peak in the interspike

interval histogram becomes a multiple of the period of the stimulus. However, the difference

between the interspike intervals in single fibres represents the period of the stimulus for frequencies

up to 1.5–3.0 kHz. This suggests that interspike intervals in groups of fibres could be used for coding

frequency in this higher frequency range. In Chapter 2 interspike intervals across a pair of auditory

nerve fibres were investigated to determine how they may code the stimulus frequency. Computer

models of the cochlea and the hair-cell/auditory-nerve transduction were used to investigate the

cross-fibre interspike interval probability distribution in different areas in the cochlea. The response

to pure tones was simulated by the composite model which provides a spatiotemporal excitation

pattern representing the fluctuating firing probability of the auditory nerve fibres. The cross-fibre

interspike interval probability distribution for fibres innervating different areas in the cochlea was

then calculated from their temporal firing probabilities using an integral expression. The results

of this study showed that temporal frequency coding can take place across fibres, but it can be

affected by factors such as the frequency of the stimulus and the phase delay due to the travelling

wave. The synchronisation between fibres showed that temporal frequency coding may occur across

fibres only for frequencies below 1–3 kHz, if the fibres originate from sites nearby enough in the

cochlea for their phase difference to be smaller than 6–8 radians.

In Chapter 3 this investigation was extended to spatiotemporal combination of activity in more

than two fibres, specifically spatiotemporal summation of auditory nerve firings. Anatomical and

physiological studies have found a number of different cell types in the cochlear nucleus which

154
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appear to perform such summations. In Chapter 3 it was determined theoretically how various

degrees of auditory nerve fibre convergence onto summing-neurons in the cochlear nucleus would

affect estimation and discrimination of stimulus features from the summing-neurons’ outputs. To

achieve this, an analytical model, based on a point process representation of auditory nerve activity,

was derived. This model included parameterised measures of stimulus properties. The summing-

neuron model allows for an arbitrary degree of auditory nerve fibre convergence, thus facilitating

an investigation of the feasibility of theories of neural coding of sound for different summing-

neuron types. Results obtained from the model indicated that for coding of the stimulus frequency

in the periodicity of firings could occur for frequencies below 1–3 kHz. To reach such limits,

the optimal spread of input fibres is very narrow and temporal integration is very short. This

suggests that auditory nerve fibres which converge onto cochlear nucleus cells exhibiting enhanced

synchronisation originate from sites on the basilar membrane very close together. In contrast,

cochlear nucleus cell types which exhibit reduced synchronisation could be useful in performing

estimation and discrimination tasks based on the average discharge rate. The model indicated that

this could be achieved by a very wide spread of inputs and/or long-term temporal integration. It

was postulated that a wide spread of inputs would be preferential to long-term temporal integration,

because this would enable the neuron’s output to follow rapid changes in the average discharge

rate of a population of fibres. Consequently, transients in the stimulus intensity which produce

rapid changes in the average discharge rate of a population of fibres could be detected by a rapid

change in the output of such a summing neuron.

In Chapters 2 and 3 models of auditory nerve response to acoustical stimulation were utilised

which assumed identical auditory nerve fibres, and only responses to pure-tone stimuli were in-

vestigated. However, auditory nerve fibres do differ in their spontaneous (zero input) response,

and also in their onset and saturation thresholds. Experiments have shown that fibres with low

spontaneous rates show enhanced responses to the envelopes of complex sounds, while fibres with

higher spontaneous rates respond to the temporal fine structure. In Chapter 4, an expression was

determined for the Cramer–Rao bound for frequency estimation of the envelope and fine structure

of complex sounds by groups of fibres with parameterised response properties. The estimation

variances were calculated for some typical estimation tasks, and it was demonstrated how, in the

examples studied, a combination of low and high threshold fibres may improve the estimation

performance of a fictitious ‘efficient’ observer. Also, combining neurons with different thresholds

may improve the estimation performance of neural systems which are based on the detection of

dominant interspike times.

In the case of electrical stimulation, spatiotemporal combination of auditory nerve activity has

also been postulated to explain why single-fibre physiological data have been unable to account for

some important psychophysical phenomena observed in cochlear implant users. This hypothesised
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effect of spatiotemporal combination of auditory nerve activity may require that stochastic compo-

nents of the single-fibre response to electrical stimulation be considered. However, most models of

neural response to electrical stimulation, such as the Hodgkin–Huxley equations, are deterministic

and do not naturally describe stochastic activity, for which there is significant physiological evi-

dence. For instance, the range of discharge probabilities measured in response to single electrical

pulses cannot be explained at all by deterministic models. In Chapter 5 a stochastic model of

single-fibre response to single electrical pulses was developed. Both single-fibre and population

responses can be calculated for a range of stimuli. Direct comparisons were made between this

model and the same model without the stochastic component. The stochastic model accurately

predicted probabilities of discharge measured in response to single biphasic pulses. The results

showed that this aspect of stochastic activity in auditory nerve response to electrical stimulation

can be described by a simple, computationally efficient model.

As was investigated in Chapter 5, most models of auditory nerve response to electrical stimula-

tion are deterministic, despite significant evidence of stochastic activity in the neurophysiological

data. Further to this, psychophysical models and analyses of physiological data using entirely

deterministic descriptions of the input and the neural response have been unable to accurately

predict many important psychophysical phenomena. In order to determine whether or not inclu-

sion of stochastic activity in neural models improves these predictions, in Chapter 6 a model of

loudness—including spatiotemporal summation of auditory nerve firings as investigated in Chap-

ter 3—was derived, which can incorporate either the deterministic or the stochastic description of

auditory nerve response from Chapter 5. The application of signal detection theory permits direct

prediction of how behavioural threshold, dynamic range and intensity difference limens change

with stimulus parameters. In order to avoid the complication of inter-pulse interactions and to

enable the use of the model developed in Chapter 5, the investigation in this chapter was restricted

to low-rate pulse trains. For all parameters investigated, the inclusion of stochastic activity in the

model was found to produce more accurate predictions of behavioural performance than when it

was not included. These results indicated that stochastic activity in auditory nerve response is

significant for loudness perception of low-rate electrical stimulation.

Stochastic activity is not only present in auditory nerve responses to single pulses, but has also

been recorded in responses to trains of electrical pulses. For instance, the variance in discharge rate

measured in response to regular pulse trains cannot be explained at all by deterministic models. In

Chapter 7 the stochastic model of auditory nerve response to electrical stimulation was extended

to describe responses to regular pulse-train stimuli. The extended model accurately predicted

means and variances of discharge rates measured in response to pulse trains. These results showed

that many aspects of stochastic activity in auditory nerve response to electrical stimulation can be

described by a simple, computationally efficient model. The pulse-train stochastic model provides
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a means for extending the investigation carried out in Chapter 6 to higher pulse rates, and provides

a more precise prediction of the spatiotemporal patterns of response produced by cochlear implant

speech processing strategies.

8.2 Implications for sound coding by cochlear implants

8.2.1 Spatiotemporal combination of auditory nerve activity

In Chapter 2 it was shown how cross-fibre interspike intervals may code stimulus frequencies below

1–3 kHz. In Chapter 3 it was shown how spatiotemporal summation of auditory nerve firings could

also be used to code stimulus frequencies over a similar range. These results suggest that using the

timing of pulses to code frequency, in addition to the place of stimulation, may be an improvement

on fixed-rate, spectral-analysis speech processing strategies (Clark, 1997b). One pilot study has

investigated the effects of using the timing of pulses to code the envelope of each frequency band

in a spectral-maxima speech processor, but no improvement in speech perception was found in

the three subjects tested (Vandali et al., 1995). However, further investigation of such schemes

is certainly warranted, particularly the introduction of coding of speech features other than the

envelope.

The existence of cochlear nucleus neurons receiving inputs for auditory nerve fibres originating

from different sites in the cochlea, and therefore having the possibility of performing spatiotem-

poral summation or cross-fibre interspike interval analysis, may have significant consequences for

electrical stimulation via a cochlear implant. It was shown in Chapters 2 and 3 that spatiotemporal

combination of auditory nerve activity is highly dependent on the phase relationship of firings in

populations of fibres caused by the travelling wave. In the case of electrical stimulation, the phase

relationship arising from the basilar membrane vibration is not present, with the consequence that

responses to individual pulses will all be very well phase-locked, producing relatively coincident

firing in a population of fibres.

Recordings from the anteroventral cochlear nucleus show that neurons which have similar re-

sponses to acoustical stimulation can have quite different responses to electrical stimulation (Hocking

et al., 1997). Hocking et al. found a number of neurons which had primary-like (sustained) re-

sponses to acoustical stimulation over a wide range of intensities and frequencies, but only some of

these neurons exhibited sustained firing at all stimulus intensities for electrical stimulation rates

up to 1 000 pulses per second. Such behaviour could occur if an electrically stimulated neuron

receives more input from auditory nerve fibres than it normally would with acoustical stimula-

tion, forcing it into an absolute refractory state which is sustained by continuous input. Cochlear

nucleus summing-neurons which receive input from a narrow spread of auditory nerve fibres, as

described in Chapter 3, would normally receive very coincident inputs and should not necessarily
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receive more input from electrical stimulation than for acoustical stimulation. This may account

for neurons which can respond in a sustained manner at all stimulus intensities and rates for both

acoustical and electrical stimulation. In contrast, cochlear nucleus summing-neurons which receive

input from a wide spread of auditory nerve fibres would receive a staggered input of auditory nerve

firings in response to acoustical stimulation because of the cochlear travelling wave. With elec-

trical stimulation this staggering of inputs is not present, so that the amount of coincidence may

be increased significantly in response to individual pulses, particularly at high intensities where

more fibres respond to each pulse (see Chapter 5). Such behaviour could account for those neurons

which cannot respond in a sustained manner at all stimulus intensities and rates. However, from

Chapter 6 it appears that cochlear implants may operate at relatively low stimulus intensities

under most conditions, such that the effect of ‘increased coincidence’ may be minimal.

Some staggering of pulses on different electrodes is used in most speech processing strategies to

avoid simultaneous stimulation (Clark, 1987; White et al., 1984; Eddington et al., 1978). One pilot

study has shown that speech perception can be improved slightly when using a spectral maxima

processing scheme, if the ordering of stimulation on different electrodes follows the direction in

which the travelling wave would propagate in a healthy cochlea (Vandali et al., 1995), rather

than following the order (ascending or descending) of the maxima’s amplitudes. Implementation

of a cochlear model to mimic more precisely the phase relationships produced by the travelling

wave (Clark, 1997b; Clark, 1996; Clark, Carter, Maffi and Shepherd, 1995) may improve speech

perception further.

In Chapter 6 it was shown that spatial summation of auditory nerve responses to electrical

stimulation could help in the prediction of loudness perception in cochlear implant users, if the

stochastic component of auditory nerve response is considered. Recordings from inferior colliculus

neurons in guinea pigs (Montney et al., 1998) show strength-duration curves which match psy-

chophysical data and the stochastic model predictions, unlike the deterministic model predictions.

This suggests that the spatial summation described by the psychophysical model is occurring at

or before the inferior colliculus, which is consistent with the results of Chapter 3.

8.2.2 Effect of neural thresholds on frequency estimation

In Chapter 4 it was shown that auditory nerve fibres with different thresholds are theoretically

useful in conveying different components of a complex acoustical stimulus in the periodicity of

their firings. In Chapter 5 it was shown that the auditory nerve also exhibits a range of single-fibre

thresholds (and input/output function slopes) in response to electrical stimulation. In application

to cochlear implants, these results suggest the possibility of encoding different components of com-

plex acoustical stimuli in the firing periodicities of different fibres, by amplitude modulation of the

stimulating electrical pulse-train. If the thresholds for electrical stimulation have a strong positive
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correlation with those for acoustical stimulation, then amplitude modulation of the pulse train

which mimics the amplitude modulation of the basilar membrane vibrations, scaled to compensate

for the different range of thresholds and input/output function slopes for electrical and acoustical

stimulation, should produce the correct encoding of different components of an acoustical signal

in the same auditory nerve fibres as for acoustical stimulation.

However, the factors contributing to single-fibre thresholds in acoustical and electrical stimu-

lation are quite different, and it can be expected therefore that such a strong positive correlation

does not exist. This means that although it may be possible to encode different components of a

complex signal in different auditory nerve fibres, they may not be encoded in the same fibres as for

acoustical stimulation. If the mechanisms in the brain used to decode this information are ‘hard-

wired’, then this may limit the applicability of amplitude modulation of electrical pulse-trains to

convey complex sounds. However, if these mechanisms have some degree of plasticity, they may

be able to adapt themselves to the change in which auditory nerve fibres are conveying different

components of an amplitude modulated electrical pulse-train.

From Chapter 6 it appears that, because of the broad spread of electrical current generated

by a cochlear implant, the saturation level of the input/output function is reached in very few

auditory nerve fibres, even at relatively high listening levels. Consequently, not every pulse in a

train of evenly-timed, uniform pulses elicits a response from a single fibre. However, amplitude

modulation of a pulse-train could be used to lower or raise the discharge probability for particular

pulses, without necessarily increasing the average rate of discharge. Under such a scheme the

modulation frequency would be well coded by the periodicity of the firings. Furthermore, the

present generation of electrode arrays can only be inserted into the basal turns of the cochlea,

the region of the cochlea which responds to high frequency acoustical stimuli. Fibres innervating

this region of the cochlea are unable to maintain synchronisation to their characteristic frequency

and consequently only phase-lock to low-frequency components and/or the envelope of complex

stimuli. This too suggests that a cochlear implant with its electrode array inserted into the basal

turns may be better at coding low-frequency and envelope information in the periodicity of firings.

8.2.3 Stochastic auditory nerve response to electrical stimulation

An application of the analysis of stochastic auditory nerve response to electrical stimulation in

Chapters 5 to 7 concerns both the effectiveness and the safety of high-rate pulsatile stimulation

in cochlear implant stimulation strategies. Unless the inherent stochastic nature of the auditory

nerve is taken into consideration, stimulus pulse-rates higher than an auditory fibre’s maximum

discharge-rate appear to be without value. Moreover, it is possibly dangerous to the nerve—nerve

damage studies have found that stimulation at high pulse-rates and high amplitudes does induce

serious injury to the nerve (Tykocinski et al., 1995c; Tykocinski et al., 1995a). However, at lower
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Table 8.1: Number of fibres with a discharge probability per pulse above 0.5 and number of fibres

with a discharge probability above 0.9, from a model of 10 000 fibres, at intensities corresponding

to different definitions of Nucl.

Mode = Bipolar Monopolar

Nucl = 100 500 1 000 100 500 1 000

pr > 0.5 1 32 77 0 0 6
100 pps

pr > 0.9 0 5 29 0 0 0

pr > 0.5 0 18 47 0 0 0
150 pps

pr > 0.9 0 3 13 0 0 0

stimulus amplitudes which are within the animal’s normal loudness range, nerve damage is not

observed (Xu et al., 1997). One plausible explanation for these results is directly related to the

importance of the stochastic nature of auditory nerve. If the nerve is stimulated with a high pulse-

rate, low amplitude stimulus it would be expected that each fibre’s discharge probability per pulse

would be low, i.e., the fibre’s discharge rate would be much lower than the stimulus’s pulse rate (see

Chapter 7). As a consequence, no damage to the fibres would occur. However, if the stimulus was

high in amplitude, fibre discharge probabilities per pulse would become high, i.e., fibre discharge

rates would indeed become so high (see Chapter 7) that they would cause injury to the nerve.

The stochastic model output has been analysed to determine what discharge probabilities per

pulse are reached on individual fibres in what can be considered to be relatively extreme cases.

Examples of discharge probability distributions are shown in Figure 8-1, for stimulation with a

single electrode at intensities corresponding to ‘uncomfortable loudness’. In Chapter 6 uncom-

fortable loudness was defined as a fixed number of neural discharges (Nucl) occurring within the

temporal integration window of 100 ms. Table 8.1 shows the number of fibres with a discharge

probability per pulse above 0.5 and the number of fibres with a discharge probability above 0.9,

from a model of 10 000 fibres, for pulse trains of 100 and 150 pps at intensities corresponding to

Nucl = 100, 500 and 1 000 spikes, for bipolar and monopolar electrode configurations. From the

predictions of dynamic range and intensity difference limen presented in Section 6.3 it would appear

that uncomfortable loudness (Nucl) is on the order of 100 to 1 000 spikes for the model. Normal

listening levels are typically set somewhat below uncomfortable loudness levels, such that, even for

continuous stimulation at high levels, speech processors are probably only producing discharges on

the order of 100 to 500 spikes per 100 ms.

For bipolar stimulation, a 100 pps pulse-train of duration greater than 100 ms (i.e., 10 pulses

occur within the temporal integration window) causes just 1 fibre out of 10 000 to have a discharge

probability per pulse above 0.5 at Nucl = 100 spikes and just 32 fibres at Nucl = 500 spikes (out of
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(a) Nucl = 100 spikes
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(b) Nucl = 500 spikes

Figure 8-1: Discharge probability histograms for a model of 10 000 fibres in response to a 100 pps

pulse-train with a bipolar electrode configuration, at intensities corresponding to Nucl = 100

and 500 spikes. Insets zoom in on the region of the histogram for discharge probabilities greater

than zero.
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these 32 fibres only 5 have a discharge probability above 0.9). Increasing the pulse rate to 150 pps

(15 pulses within the temporal integrator window) reduces the number of fibres above 0.5 discharge

probability at Nucl = 500 spikes to 18 and out of these 18 fibres only 3 have a discharge probability

above 0.9. For monopolar stimulation, no fibres have a discharge probability above 0.5 for a 100 pps

pulse train, even at Nucl = 500 spikes.

From this analysis it appears that even in the most extreme cases individual spike probabilities

are low except on a very few fibres. This means that the vast majority of fibres will not respond at

all or only respond at a small fraction of the pulse rate. Furthermore, cochlear implants generally

operate under far less extreme conditions. Firstly, most speech processing strategies stimulate

using multiple electrodes within the 100 ms temporal integration window, such that the excitation

contributing to the loudness of the stimulus is distributed between more fibres than when only a

single electrode is used, i.e., discharge probabilities on individual fibres are lower in the case of

multi-electrode stimulation. Secondly, pulse rates between 200 and 800 pps are typically being used

in implants. Increasing the pulse rate causes more pulses to fall within the temporal integrator

window such that uncomfortable loudness is reached at even lower individual discharge probabili-

ties. Thirdly, these results are for a model of 10 000 fibres, which is a conservative estimate of the

neural survival in implant users (Hinojosa and Marion, 1983). Greater neural survival also leads to

a greater distribution of excitation amongst the fibres, again leading to reduced discharge proba-

bilities on individual fibres. Finally, speech signals vary in their spectrum and envelope amplitude

over time, such that continuous stimulation of the one population of AN fibres is unlikely to oc-

cur for extended periods of time. These results suggest that continuous, multi-electrode, pulsatile

stimulation at moderate rates does not drive AN fibres beyond their normal physiological limits.

Several cochlear implant research groups (e.g., Rubinstein, Matsuoka, Miller and Abbas, 1997)

have suggested that increasing the relative noise level of nerve fibres may improve the ‘temporal

representation’ of the stimulus. It is argued that: (i) noisier fibres will reduce the occurrence of

highly-synchronous discharge patterns which are not seen in responses to acoustical stimulation

and (ii) noisier fibres will reduce refractory effects that distort the temporal representation of the

stimulus. The results obtained in Chapters 5, 6 and 7, suggest several methods for increasing

the relative noise level of fibres. This appears be a very useful strategy, but may be entirely

unnecessary. If an implant user’s nerve fibres discharge only at low probabilities during multi-

channel continuous stimulation, refractory effects will be negligible because discharge rates will be

low. Also, abnormally high synchronisation of discharges across fibres will not occur. For example,

with a 1 000 pps stimulus and fibre discharge probabilities less than 0.1, relatively little temporal

distortion due to refractory effects will occur, because the average interval between discharges

within any fibre will be greater than 10 ms.
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8.2.4 Future directions

The results of this thesis indicate the utility of mathematical and computational models in in-

vestigating the spatiotemporal coding of sound in the auditory nerve. In some cases the results

suggest what hypothetical neural structures may be useful in processing and decoding certain

sound features, prompting anatomical and physiological investigation of existing structures within

the auditory pathways. In particular, the innervation of the cochlear nucleus by auditory nerve

fibres needs further experimental investigation. Experimental data which reveal more about neural

connectivity between auditory nerve fibres and cochlear nucleus neurons may help to validate the

models or suggest improvements to them. Comparison of responses to acoustical and electrical

stimulation in the same experimental animal may be particularly useful in this task, because the

two modes of stimulation provide quite different patterns of spatiotemporal response.

Some of the results of this thesis have been tested by direct comparison to psychophysical data,

while others have only been subjected to theoretical considerations. Development of psychophysical

models such as the one derived in Chapter 6 for perception of loudness with a cochlear implant

would permit direct prediction of further psychophysical data. For instance, the models of temporal

frequency coding developed in Chapters 2 to 4, and other models proposed by theories of frequency

coding, could be extended and combined with the model of auditory nerve response to electrical

pulse trains derived in Chapter 7 to predict the effects of pulse rate on the pitch of electrical

stimuli.

The approach taken in this thesis in comparing model predictions with psychophysical data has

been to avoid “curve fitting”, i.e., finding model parameters which produce the best predictions.

This has been done in order to demonstrate that parameter values inferred directly from phys-

iological data may be sufficient to produce reasonable qualitative predictions of psychophysical

data from many subjects. However, because of the reasonable qualitative accuracy of the model

predictions, the next step in these comparisons would be to conduct more quantitative evaluations.

These could involve fitting the models to psychophysical data of individual subjects, in order to

investigate how model parameters and the corresponding physiology may explain inter-subject

variability. Furthermore, the psychophysical models utilised have been for relatively simple central

processing and an ideal or efficient observer—more complex psychophysical models of detection,

discrimination and estimation by human subjects may improve the model predictions.

Extensions and improvements could certainly be made to the modelling methods, and have

been discussed in some of the individual chapters. Great scope exists particularly for mathemati-

cal and computational modelling of stochastic and nonlinear properties of auditory nerve response

to electrical stimulation. However, their usefulness may be limited by the conceptual and com-

putational complexity introduced and by what experimental data is available to validate them.

In particular, the results of the investigation of stochastic activity in auditory nerve response to
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electrical stimulation suggest that much of the available physiological data may have been collected

for stimulus intensities which are higher than those typically produced by cochlear implant speech

processing strategies. Physiological data collected at appropriate intensities may assist further in

understanding the relationship between perception of stimuli generated by cochlear implants and

the underlying spatiotemporal patterns of auditory nerve response.



Appendix A

Proofs for Chapter 3

A.1 Proof of Claim 3.2.1

Let the absolute difference between µI(t) and µS(t) equal θ.

∣∣∣∣∣Nd
∫ d

0

λ(x, t)dx−
N−1∑
n=0

λn(t)

∣∣∣∣∣ = θ (A.1)

Multiplying both sides of (A.1) by d
N gives:

∣∣∣∣∣
∫ d

0

λ(x, t)dx−
N−1∑
n=0

d

N
λn(t)

∣∣∣∣∣ =
d

N
θ (A.2)

The left hand side of (A.2) is the difference between the integral over distance d of a function

continuous in space and the sum of N rectangles each of width d
N and of height λn(t). The greatest

difference will occur where the absolute slope of the rate λ(x, t) is at a maximum. The absolute

slope of the rate is bound by
∣∣∣∣δλ(x, t)

δx

∣∣∣∣ ≤ |αB|, and summing the maximal errors of the individual

rectangles then dividing by the mean gives (3.15).

2

A.2 Proof of Lemma 3.2.2

Equations (3.8) and (3.9) arise from Vannucci and Teich (1978).

Proof of (3.7)

From Cox (1962):

E[Nn(t, τ)] =
s0

1 + as0
τ (A.3)
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and

var[Nn(t, τ)] = Ψn(t, τ)− E[Nn(t, τ)]− E2[Nn(t, τ)] (A.4)

where

Ψn(t, τ) = L−1 {Ψ∗n(t, s); s→ τ}

= L−1

{
2s0

s2(1 + as0)[1− s0e−as

s+s0
]
; s→ τ

}

Thus:

Ψ∗n(t, s) =
2s0

1 + as0

1
s2

s+ s0

s+ s0 (1− e−as)

=
2s0

1 + as0

1
s2

∞∑
k=0

(
s0e
−as

s+ s0

)k
=

2s0

1 + as0

∞∑
k=0

(
s0e
−as)k 1

s2

1
(s+ s0)k

(A.5)

Taking the inverse Laplace transform of (A.5) gives:

Ψn(t, τ) =
2s0

1 + as0

∞∑
k=1

sk0
(k − 1)!

U(τ − aj)
∫ τ−ak

0

[τ − ak − γ]γk−1e−s0γdγ

+
2s0

1 + as0
τ (A.6)

Substituting for (A.3) and (A.6) in (A.4) gives (3.7).

2

A.3 Proof of Lemma 3.3.1

Follows immediately from the Tchebycheff Inequality—see (5-57) in Papoulis (1991) for instance.



Appendix B

Proofs for Chapter 5

B.1 Proof of Lemma 5.3.1

The probability of discharge during pulse n is equal to the probability that Vstim(n) is greater than

the noise modified threshold during pulse n.

p(n) = Pr {Vstim(n) ≥ Vthr(n) + Vnoise(n)}

= Pr {Vnoise(n) ≤ Vstim(n)− Vthr(n)}

=
∫ Vstim(n)−Vthr(n)

−∞
f(x)dx

where f(x) is the probability distribution of Vnoise(n).

For Vnoise(n) distributed normally with a mean of zero and standard deviation σ
(
f(x)= 1√

2πσ
e−x

2/2σ2
)

:

p(n) =
∫ Vstim(n)−Vthr(n)

−∞

1√
2πσ

e−x
2/2σ2

dx

=
1
2

(
1 + erf

(
Vstim(n)− Vthr(n)√

2σ

))
where erf is the integrated-Gaussian, or Error Function:

erf(x) ∆=
2√
π

∫ x

0

e−t
2
dt

2
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Appendix C

Proofs for Chapter 6

C.1 Proof of Lemma 6.2.1

Consider the detection/discrimination system described in Lemma 6.2.1. The probability of choos-

ing correctly is equal to the probability that the neural response to the stimulus with the greater

intensity (X2) is greater than that to the lower intensity stimulus (X1), plus the probability that

a correct guess is made if the responses are identical. That is:

Pr{Choosing correctly} = Pr {X2 > X1}

+
1
2

Pr {X2 = X1}

For the random variables X1 and X2 with integer values bound by [0, Xmax] and probability

mass functions f1 and f2:

Pr {X2 > X1} =
Xmax∑
n=0

f1(n)
Xmax∑
m=n+1

f2(m)

and

Pr {X1 = X2} =
Xmax∑
n=0

f1(n)f2(n)

2
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Appendix D

Proofs for Chapter 7

D.1 Proof of Lemma 7.3.1

An expression for g (ni|j) follows directly from (5.2), for Case 1 where Vnoise is not affected by the

refractory function, and Case 2 where Vnoise increases during the refractory period proportional to

the refractory modified threshold potential divided by the resting threshold potential (m (ni|j)).

Case 1:

Substituting Vthr(n) + Vrefr (ni|j) for Vthr(n) in (5.2) gives (7.4).

Case 2:

g (ni|j) = Pr{Vstim(n)≥Vthr(n)+Vrefr(ni|j)+Vnoise(ni|j)}

= Pr{Vstim(n)≥Vthr(n)+Vrefr(ni|j)+Vnoise(n)×m(ni|j)}

= Pr{Vnoise(n)≤Vstim(n)/m(ni|j)− Vthr(n)}

=
∫ Vstim(n)/m(ni|j)−Vthr(n)

−∞
f(x)dx

=
1
2

(
1 + erf

(
Vstim(n)/m(ni|j)− Vthr(n)√

2σ

))

For a monotonically decreasing refractory (and, in Case 2, noise) modified threshold, a discharge

will occur during pulse n if Vstim(n) is greater than the refractory (and, in Case 2, noise) modified

threshold by the final bin of pulse n. Therefore p(n|j) is equal to g (ni|j) when i is the final bin of

pulse n, giving (7.6).

2
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D.2 Proof of Lemma 7.3.2

If f(n|j) is the probability that the first subsequent discharge occurs during pulse n, given that

the last discharge occurred n pulses ago in bin j:

For n = 0:

f(n|j) =Pr
{

next discharge occurs during same pulse

| last discharge occurred in bin j
}

= p(0|j)

For n > 0:

f(n|j) = Pr
{

no discharge before n

| last discharge occurred n pulses ago in bin j
}

×Pr
{

discharge during pulse n

| last discharge occurred n pulses ago in bin j
}

= Q(n− 1|j)p(n|j)

2

D.3 Proof of Lemma 7.3.3

E[r|j] =
∞∑
k=0

kf(k|j)

Consider the case where the pulse train is of infinite duration and there exists some time L

such that refractory effects are negligible for all times k ≥ L such that p(k|j) = p,∀k ≥ L. Then:

E[r|j] =
L−1∑
k=0

kf(k|j) +
∞∑
k=L

kf(k|j)

For k ≥ L,

f(k|j) = Pr {no discharge before L}

×Pr {no discharge between L and k}

×Pr {discharge during k}

= Q(L− 1|j)(1− p)k−Lp
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Then:

E[r|j] =
L−1∑
k=0

kf(k|j) +
∞∑
k=L

kQ(L− 1|j)(1− p)k−Lp

=
L−1∑
k=0

kf(k|j) +Q(L− 1|j)
(
L− 1 +

1
p

)
Likewise:

var[r|j] = E
[
r2|j

]
− E[r|j]2

=
∞∑
k=0

k2f(k|j)− E[r|j]2

=
L−1∑
k=0

k2f(k|j) +
∞∑
k=L

k2f(k|j)− E[r|j]2

=
L−1∑
k=0

k2f(k|j)

+
∞∑
k=L

k2Q(L− 1|j)(1− p)k−Lp− E[r|j]2

=
L−1∑
k=0

k2f(k|j)

+Q(L−1|j)

((
L−1+

1
p

)2

+
1− p
p2

)
−E[r|j]2

2

D.4 Proof of Lemma 7.3.4

Bij = Pr
{

next discharge occurs in any bin i

| last discharge occurred in any bin j
}

=
∞∑
k=0

Pr {no discharge before k |j}

×Pr {discharge occurs in bin i of pulse k |j}

=
∞∑
k=0

Q(k − 1|j)p (ki|j)

Consider the case where the pulse train is of infinite duration and there exists some time L

such that refractory effects are negligible for all times k ≥ L such that p(k|j) = p,∀k ≥ L. Then:
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Bij =
L−1∑
k=0

Q(k − 1|j)p (ki|j) +
∞∑
k=L

Q(k − 1|j)p (ki|j)

For k ≥ L,

Vrefr (ki) is zero for all values of i, and therefore if a discharge occurs it will always occur in the

first bin of pulse k. Thus, the probability that a discharge occurs in the first bin is equal to the

probability of a discharge occurring in that pulse, i.e., p (k1|j) = p (k|j).

It follows that:

∞∑
k=L

Q(k−1|j)p (ki|j) =
∞∑
k=L

Q(k−1|j)p(k|j)

=
∞∑
k=L

Q(k−1|j)

−
∞∑
k=L

Q(k−1|j)×(1−p(k|j))

=
∞∑
k=L

Q(k−1|j)−
∞∑
k=L

Q(k|j)

=
∞∑
k=L

Q(k−1|j)−
∞∑

k=L+1

Q(k−1|j)

= Q(L−1|j)

For all i:

∞∑
k=L

Q(k − 1|j)p (ki|j) =

 Q(L− 1|j) for i = 1

0 for i 6= 1

Thus:

Bij =
L−1∑
k=0

Q(k − 1|j)p (ki|j) +Q(L− 1|j)δi=1

With a monotonically decreasing refractory and noise modified threshold, the probability of

discharge in bin i of pulse n, given that the last discharge occurred n pulses previously in bin j, is

equal to the probability that Vstim(n) is greater than the refractory and noise modified threshold

in bin i of pulse n, but was less than the modified threshold in the previous bin, i− 1.

For Case 1 :

p (ni|j) = Pr
{
Vthr(n) + Vrefr (ni|j) + Vnoise(n) ≤ Vstim(n)

≤ Vthr(n) + Vrefr (ni−1|j) + Vnoise(n)
}

= Pr
{
Vstim(n)−Vthr(n)−Vrefr(ni−1|j) ≤ Vnoise(n)
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≤ Vstim(n)−Vthr(n)−Vrefr(ni|j)
}

=
∫ Vstim(n)−Vthr(n)−Vrefr(ni|j)

Vstim(n)−Vthr(n)−Vrefr(ni−1|j)
f(x)dx

=
∫ Vstim(n)−Vthr(n)−Vrefr(ni|j)

−∞
f(x)dx

−
∫ Vstim(n)−Vthr(n)−Vrefr(ni−1|j)

−∞
f(x)dx

= g (ni|j)− g (ni−1|j)

For Case 2 :

p(ni|j) =Pr
{
Vthr(n)+Vrefr(ni|j)+Vnoise(ni|j)≤Vstim(n)

≤Vthr(n)+Vrefr(ni−1|j)+Vnoise(ni−1|j)
}

=Pr
{
Vthr(n)+Vrefr(ni|j)+Vnoise(n)×m(ni|j)≤Vstim(n)

≤Vthr(n)+Vrefr (ni−1|j)+Vnoise(n)×m(ni|j)
}

=Pr
{
Vstim(n)/m(ni−1|j)− Vthr(n)≤Vnoise(n)

≤Vstim(n)/m(ni|j)−Vthr(n)
}

Following Assumption 7.3.1, Vrefr (ni−1|j) > Vrefr (ni|j) ≥ 0. Therefore:

1
m(ni|j)

>
1

m(ni−1|j)

and

p (ni|j) =
∫ Vstim(n)/m(ni|j)−Vthr(n)

−∞
f(x)dx

−
∫ Vstim(n)/m(ni−1|j)−Vthr(n)

−∞
f(x)dx

= g (ni|j)− g (ni−1|j)

Thus, for both Case 1 and Case 2 :

p (ni|j) = g (ni|j)− g (ni−1|j)

where g (ni|j) is described by (7.4) for Case 1 and by (7.5) for Case 2.

2
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D.5 Proof of Lemma 7.3.5

Given that the probability of discharge is non-zero for all pulses and that the pulse train is of infinite

duration, a discharge must occur at some stage in the pulse train. Consequently, the probability

of the next discharge occurring in any bin i summed over all bins must equal one, i.e., the sum of

all elements in each column of B equals one.

The sum of all elements in each row of BT is then equal to one. Therefore, defining ~1 as a

column vector whose elements are all equal to one:

BT~1 = ~1

BT must therefore have an eigenvalue which is equal to one.

The eigenvalues of B are equal to the eigenvalues of BT, and therefore B must also have an

eigenvalue which is equal to one.

2
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