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Abstract—Most models of neural response to electrical stimu-
lation, such as the Hodgkin–Huxley equations, are deterministic,
despite significant physiological evidence for the existence of
stochastic activity. For instance, the range of discharge proba-
bilities measured in response to single electrical pulses cannot be
explained at all by deterministic models. Furthermore, there is
growing evidence that the stochastic component of auditory nerve
response to electrical stimulation may be fundamental to func-
tionally significant physiological and psychophysical phenomena.
In this paper we present a simple and computationally efficient
stochastic model of single-fiber response to single biphasic elec-
trical pulses, based on a deterministic threshold model of action
potential generation. Comparisons with physiological data from
cat auditory nerve fibers are made, and it is shown that the
stochastic model predicts discharge probabilities measured in
response to single biphasic pulses more accurately than does the
equivalent deterministic model. In addition, physiological data
show an increase in stochastic activity with increasing pulse width
of anodic/cathodic biphasic pulses, a phenomenon not present
for monophasic stimuli. These and other data from the auditory
nerve are then used to develop a population model of the total
auditory nerve, where each fiber is described by the single-fiber
model.

Index Terms— Auditory nerve, cochlear implant, function-
al electrical stimulation, population response, sensory pros-
thesis, single-pulse response, stochastic threshold model.

I. INTRODUCTION

A CCURATE models of auditory nerve (AN) response
to electrical stimulation may help improve our under-
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standing of how auditory percepts are produced by cochlear
implants and prompt the development of new stimulation
strategies that better code speech for implant users [1], [2].
Historically, neural response to electrical stimulation has been
modeled via deterministic descriptions (exceptions among
cochlear implant groups include [2]–[8]; and in other fields of
neuroscience [9], [10]). Deterministic descriptions specialized
to AN anatomy and physiology include the Colombo and
Parkins [11] and Frijnset al. [12] models. However, a small
amount of stochastic activity was present in the squid giant
axon [13] and frog node [14], [15] data on which many
deterministic models are based [16]. Furthermore, potentially
significant variance has been measured in the responses of
fibers to single-current pulses [7], [17]–[19] and pulse trains
[8], [20], [21], which cannot be explained by deterministic
models.

The amount of varianceis dependent on the stimulus
intensity, and it has generally been assumed that cochlear
implants operate at stimulus intensities that produce extremely
high discharge probabilities (very close or equal to one) in AN
fibers, resulting in very little variance. In contrast, preliminary
evidence is emerging that cochlear implants may be operating
at intensities that produce low to moderate discharge proba-
bilities, resulting in significant variance [22]–[24]. If this is
correct, then there are important consequences for cochlear
implants. For example, i) both temporal and spatial aspects
of speech coding would be impacted [21]–[24], and ii) the
survival of AN fibers subject to high stimulation rates is likely
to be strongly affected [25], [26].

Verveen and Derksen showed that the variance in response
to single-current pulses can be attributed to random fluc-
tuations in the voltage across the membrane of myelinated
fibers at the nodes of Ranvier [27]. They recorded membrane
potentialsin vitro from the sciatic nerve of the frog,Rana tem-
poraria. Fig. 1 shows a number of their membrane-potential
traces at 90 mV, Fig. 1(a), and at a range of depolarized
and hyperpolarized potentials, Fig. 1(b)—resting potential is

70 mV [28].
Verveen and Derksen characterized these fluctuations as

having a Gaussian amplitude distribution for membrane po-
tentials between 70 and 0 mV [29] and a frequency
spectrum [27]. Three of their observations are worth high-
lighting. First, the Gaussian fit is accurate at least between
the probabilities of 0.001 and 0.999, if not for even finer
probabilities. Second, Verveen and Derksen showed that the
variance of the fluctuations increases with depolarization, as
seen in the upper traces of Fig. 1(b). Third, they showed that
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(a) (b)

Fig. 1. Membrane-potential traces from [27] showing fluctuations in nerve
fiber transmembrane potentials at the nodes of Ranvier. (a) Membrane
potential traces at�90 mV. Horizontal scale: 10 ms; vertical scale: 1 mV.
(Reprinted with permission from [27, Fig. 20] 1968 IEEE.) (b) Membrane
potential traces at different levels of membrane potential (given in mV above
each trace). Horizontal scale: 1 ms; vertical scale: 5 mV. (Reprinted with
permission from [27, Fig. 19] 1968 IEEE.)

some nonstationary noise activity (as seen in the middle traces
of Fig. 1(a) and in the lower traces of Fig. 1(b), increasing both
in frequency of occurrence and in amplitude with increasing
hyperpolarization) results in a positively skewed amplitude
distribution for membrane potentials below70 mV, the skew
increasing with increasing hyperpolarization.

Membrane potential fluctuations in squid axons are consid-
ered to be of negligible magnitude [16]. However, Verveen
reported that the magnitude of the membrane potential fluc-
tuations appears to be negatively correlated with the diameter
of the nerve fiber [30]. Mammalian AN fibers have a mean
diameter of 2–4 m [31], [32] and even smaller diameters
(0.1–0.7 m) at the nodes of Ranvier in the myelinated portion
of the peripheral dendrite, proximal to the habenula [33]. This
is two to three orders of magnitude smaller than the mean
diameter of squid giant axons (500 m [34]), which indicates
why membrane potential fluctuations may be of significant
magnitude in mammalian AN fibers.

Further physiological [28], [35] and modeling [6] studies
suggest that these membrane fluctuations are likely to be
caused by random transitions in the state of single ionic
channels at the nodes of Ranvier. This is consistent with the
magnitude of the fluctuations being negatively correlated with
the diameter of the axon, since the larger the diameter of the
axon, the more single ionic channels there will be at each
node. The more channels, the less significant the fluctuations
of any one channel will be when compared to the total ionic
conductance. Indeed, introduction of the correct single-channel
conductance statistics to models such as the Hodgkin–Huxley
equations has produced the correct prediction of membrane
potential fluctuations and the resulting response to single
pulses and pulse trains [6], [9].

However, detailed stochastic descriptions of AN response
to electrical stimulation based on Hodgkin–Huxley-type mod-
els [4], [6], [7] are too computationally intensive to permit

simulation of a large number of neurons over hundreds of
milliseconds, which may be required for the simulation to be
psychophysically relevant. An alternative statistical approach
is to apply a point process description of neural response
to electrically elicited responses [2], [8]. This description
is more computationally efficient, but since it is entirely
phenomenological it is not easily related to stimulus and
neural parameters. Furthermore, i) it is not clear how this
model specializes to an equivalent deterministic model, and
ii) the point process description is not easily generalized to a
population of fibers.

In this paper, we present an alternative model of AN
response to electrical stimulation, following the conceptual ap-
proach of [3], [5], and [27]. Based on the Hill threshold model
[36], our model includes a number of significant components
of action potential generation, including membrane noise as
characterized by Verveen and colleagues. Threshold models
are much simpler conceptually and are more computationally
efficient than Hodgkin–Huxley-type models and provide a
good approximation to such models [37]. Additionally, our
model can be fitted easily to the statistics of AN parameters
collected from physiological studies. It is, therefore, suitable
for the calculation of large-scale population responses. Such
responses are required for the investigation of sound coding
in ensembles of nerve fibers, for the explanation or prediction
of psychophysical results, and for the development of speech
processing strategies for cochlear implants. Furthermore, many
aspects of the stimulus and neural properties are common to
functional electrical stimulation of other sensory and motor
systems. Consequently, the model developed here may be
useful for other prosthetic devices.

In Section II, we describe the physiological methods. In
Section III we present the model of AN response to single
biphasic electrical pulses and investigate response properties of
the model. In particular, we compare the behavior of the model
with and without the stochastic component. In Section IV, we
demonstrate the model’s suitability for describing large-scale
population responses by developing a model of total AN re-
sponse. We show how the parameters of an arbitrary number of
AN neurons can be fitted to the statistics of AN data collected
from physiological studies and how the output of the resulting
total AN model varies with stimulus and model parameters.
Finally, in Section V we discuss further physiological and
modeling studies that would help in refining and extending
the model and some implications of the stochastic behavior of
AN response for cochlear implant research.

II. M ETHODS

The first set of physiological data presented in this paper
are single-fiber cat AN data from [38]. Adult cats with normal
hearing and no evidence of external or middle ear disease
were anesthetized with sodium pentobarbital (40 mg/kg) and
mounted in a rigid headholder. Supplemental anesthesia was
given as necessary throughout the experiment. Core tempera-
ture was held at 37C using a DC heating pad.

After the bulla was opened and the round window mem-
brane reflected, a custom-built intracochlear electrode array
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was inserted into the scala tympani for a distance of approxi-
mately 6 mm. The electrode array possessed 12 circumferential
platinum bands, each having a width of 0.3 mm. The bands
were positioned on a silicone rubber carrier at 0.75-mm cen-
ters. Once the electrode array had been installed, cyanoacrylate
cement and polyester mesh were used to fix it in position.

The procedures used to expose the AN and record from sin-
gle fibers were the same as those described in [39]. Electrical
stimuli were biphasic charge-balanced current pulses delivered
by an optically isolated current source. Pulse width (phase
duration), amplitude, and repetition rate could be set under
computer control. The data presented here were obtained using
the most apical electrode band as the current source and the
adjacent band as the current sink.

To asses the hearing status of the cat during the experi-
ment, acoustic stimuli were synthesized digitally and presented
by a condenser microphone through a calibrated distortion-
compensating network and custom-made hollow speculum.
Following implantation, AN fibers initially exhibited normal-
appearing spontaneous activity and acoustic responses. How-
ever, spontaneous activity and acoustic responses typically
deteriorated as experiments proceeded past the first day and
were gradually lost as experiments proceeded past the second
day [38].

In this paper we present a previously unpublished analysis
of the electrically elicited data set, in which we estimate the
discharge probability in response to single biphasic current
pulses. The discharge probability for a single biphasic pulse
is estimated from the fraction of trials in which an action
potential is generated in response to the first pulse of a pulse
train. Because the first pulse of each pulse-train occurs at least
50 ms after the end of the preceding pulse-train, the response
to the first pulse should closely approximate the response to
a single pulse in isolation [21]. For each neuron we pool data
of the same stimulus intensity and pulse width across trains
of different pulse rates.

The method for suppressing the stimulus artifact meant that
little data was collected for stimuli with pulse widths above
400 s/phase and none above 600s/phase. Pulse width has
a significant effect in a range of psychophysical measures,
and we would, therefore, like the model to be accurate over
a greater range of pulse widths. Thus, we also present a
post hocanalysis of previously unpublished data collected by
Dynes from single AN fibers of cats, where a pair of closely
spaced micropipettes were used in differential-like recording
to produce a high signal-to-artifact ratio even at long pulse
widths. Due to the time and difficultly involved in collecting
sufficient data over the whole dynamic range of a fiber, it was
not possible to collect data with an exhaustive set of stimulus
parameters. It was, therefore, decided to use only monopolar
stimulation, such that fibers should respond preferably to the
cathodic phase [36], [40]. A cathodic “search” pulse was used
to find AN fibers responsive to cathodic stimulation, and then
responses to anodic/cathodic biphasic pulses were recorded—it
was believed from Verveen and colleagues’ data that i) the
anodic phase may act as a “conditioner” stimulus [7] that
would affect the fiber’s response to the cathodic phase, and
ii) such effects may be dependent on the pulse width.

Fig. 2. Stochastic model of single-pulse response. See text for explanation
of circuit components.

For data collected by Dynes, animal preparation and tech-
niques to record from single AN fibers are essentially as
described in Kianget al. [41]. In brief, adult cats were
deafened with kanamycin and ethacrynic acid and injected
peritoneally with diallyl barbituric acid in urethane solution
(dosage 75 mg/kg weight).

Electrical stimulation was provided through a single Teflon-
coated platinum wire (0.005 in wire diameter). The apical tip
of platinum wire electrodes passed about 4–5 mm through the
round window. In all cases, the indifferent electrode was an
18-gauge needle placed in the ipsilateral forelimb.

The electrical search stimulus was a train of 100–s ca-
thodic pulses presented at a rate of 10/s. The search stimulus
amplitude was varied but was typically 15 dB below 1 mA.
Single fibers were detected by monitoring the neural potentials
on an oscilloscope. The experimental stimuli consisted of sym-
metric anodic/cathodic biphasic pulses of durations between
100 and 5000 s/phase, presented at a rate such that there was
at least an 80-ms interval between stimuli. The estimate of
discharge probability for each stimulus intensity was based on
100 stimulus presentations.

III. SINGLE-PULSE RESPONSE

We define asingle pulse as any pulse whose response
properties are not dependent on any previous pulses. The
model will, therefore, be valid for any single pulse presented
in isolation, for the first pulse in a pulse train, and for all
pulses in a pulse train of sufficiently low pulse rate. Inter-
pulse effects will be considered in [21], where we use the
model of single-pulse response as the basis for a model of
pulse-train response.

A. Model of Single-Pulse Response

Fig. 2 shows an electrical circuit representation of our sto-
chastic single-pulse model. This model is Hill’s deterministic
threshold model of action potential generation [36], extended
by inclusion of a Gaussian noise source.

Hill’s model utilizes two “potentials,” which he labels the
“local potential” and the “threshold potential.” We use ,
the “stimulus potential,” to refer to Hill’s “local potential”
and to refer to the threshold potential. responds
to the injection of electrical current with a process Hill calls
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“excitation.” When the stimulus potential crosses the
threshold potential , an action potential is generated. To
model the membrane potential fluctuations characterized by
Verveen, we add to a noise potential , which has a
Gaussian amplitude distribution and a spectrum.

In order to increase the ease and efficiency with which we
can calculate whether or not an action potential occurs in
response to a pulse, we make a series of approximations. Note
that as a consequence of these approximations, the model’s
prediction of the exact latency of the response is degraded.

1) For biphasic current pulses, discharges may occur in
response to the onset and offset of both the cathodic
and the anodic phases. However, the thresholds are
lower for the onset of the cathodic phase [36], [40]
and we, therefore, approximate the response to biphasic
pulses by the response to the onset of the cathodic
phases. Furthermore, inner hair cell loss is assumed to
be near complete, such that extremely little spontaneous
activity exists1 [42], and consequently discharges are
very unlikely to occur between pulses. We, therefore,
consider that discharges may only occur in response to
the cathodic phase of a biphasic current pulse and may
not occur between pulses. We refer to a discharge in
response to the cathodic phase of any biphasic pulse
as havingoccurred during pulse .

2) We ignore any change in with the stimulating cur-
rent (e.g., “accommodation” [36]), i.e., , a
constant value, for the duration of the cathodic phase of
pulse . We also approximate by its asymptotic
value, i.e., is considered to increase instanta-
neously in response to a current pulse and remain at a
constant value for the duration of the cathodic
phase of pulse .

3) Accurate simulation of noise with a frequency
spectrum is quite laborious. However, the shape
of the spectrum is such that the low-frequency content
of the noise outweighs the high-frequency content to
such an extent that changes slowly enough that it
may be considered to remain constant for the duration of
a short current pulse, i.e., we consider to have a
constant value for the duration of pulse . This
noise is normally distributed with a mean of zero and
variance . Note that this approximation will decrease
in accuracy with increasing pulse width.

Given these approximations, Monte Carlo simulation of the
model is very simple. A normally distributed (mean zero,
variance ) pseudorandom number is generated to give a
value for . If is less than ,
then no discharge is said to have occurred; if it is equal or
greater than , then a discharge is said to
have occurred. Unfortunately this method is computationally
laborious, because the stochastic version of the model re-
quires many simulation iterations to accurately describe the
distribution of responses.

1This is supported by the data presented in Section III.B—extrapolation of
these data indicates very low levels of spontaneous activity.

However, the Monte Carlo simulation described above is in
effect a Bernoulli process [43], where a discharge in response
to a pulse is considered to be a success and no discharge
a failure. This permits the development of an analytical
expression for the discharge probability in response to any
single pulse .

We define the output of this model as a Bernoulli random
variable that is dependent on the parameters of pulse
and the parameters of the neural model.

discharge during pulse (1)

For the deterministic model, i.e., for of ,
only two possible values of exist, zero and one. If the
stimulus intensity is great enough to cause to rise
to or above, an action potential will always result. If
the stimulus intensity is less than this critical value, no action
potential will ever result. That is

for
for

(2)

The discharge probability versus stimulus intensity relation-
ship can be referred to as an input/output (I/O) function.

For the stochastic model, i.e., for a nonzeroof ,
the I/O function is

(3)

The function is dependent on with two in-
dependent variables: and . As with the deterministic
model, we refer to as the “threshold.” From (3), this
definition of threshold corresponds to the stimulus intensity
that produces a discharge probability of 0.5 and is consistent
with Verveen’s convention for defining threshold.

Verveen referred to the second variablein a normalized
form, which he labeled the “relative spread” (RS) [17], [18]

threshold
(4)

The greater the value of RS, the shallower the slope of the
I/O function [see Fig. 4(a) and (b)].

A full mathematical derivation of (2) and (3) is provided in
[23, Ch. 5]. Predictions of single-fiber response can be com-
puted simply and efficiently using these analytical descriptions,
and multiple iterations are not required. Predictions of the
physiological single-pulse data by the analytical expressions
are presented in the next section.

B. Model Predictions of Single-Pulse

The integrated-Gaussian (error function) description of
single-pulse discharge probability given by (3) is consistent
with both physiological results [7], [17]–[19] and modeling
studies [6], [9] investigating the response of nerve to
monophasicpulses. However, we wish to investigate how
accurately this description predicts data from the cat AN in
response to biphasic pulses.

Fig. 3 shows the stochastic and deterministic model least-
squares fit to [38, Neuron 3-21]. For the stochastic model the
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Fig. 3. Stochastic (solid line) and deterministic (dashed line) model fits to
discharge probability data (o) [38, Neuron 3-21] for a single biphasic pulse
of duration 100�s/phase.

variables being fitted are and RS—the values of these for
Neuron 3-21 are given in the figure legend, as is the correlation
coefficient. The deterministic model fit is achieved by setting
the noise term to zero, producing a step function at the
of the stochastic model fit. The correlation coefficient for the
deterministic model is also given in the figure legend.

Note:

1) The 6-dB width of the horizontal scale is chosen to
correspond to typical behavioral dynamic ranges of
cochlear implant users in response to a single pulse [44].

2) The step-function prediction is not due to the simplicity
of Hill’s model—because of the level detector involved
in spike generation, even the most complex deterministic
models are only able to provide a step-function fit to
these data.

The step-function fit is a relatively poor representation of the
data, and the practical implications of fitting a step-function are
significant. Information that is encoded in the discharge proba-
bility will not be accurately described by the step function. For
example, the step-function can only code intensity levels as be-
ing above or below some “threshold” value, whereas the phys-
iological data indicate that the discharge probability in a single
AN fiber could be used to code intensity levels over some 3-dB
to 4-dB range. Typical behavioral dynamic ranges in cochlear
implant users in response to single short-duration pulses are
6–10 dB [44], and the fiber’s actual I/O function covers at
least half of that range. These practical implications, along
with the difference in correlation coefficients, suggest that the
stochastic model provides a much better description of the I/O
function with the addition of only one extra parameter, RS.

Further examples of integrated-Gaussian function least-
squares fits to cat data from [38] are given in Fig. 4(a) and
(b) for single biphasic pulses of durations 200s/phase and
400 s/phase, respectively. Again, for the stochastic model the
variables being fitted are and RS, and the values of these
for the four neurons are given in the figure legends, as are
the correlation coefficients. Note that the abscissa is stimulus

(a)

(b)

Fig. 4. Fits to fiber I/O functions from [38] for a single pulse. (a) 200
us/phase and (b) 400 us/phase. Note that the abscissa is stimulus intensity
relative to the fiber’s threshold.

intensity relative to the fiber’s threshold, to highlight that RS
values can vary quite widely for a particular phase duration.
See Section IV-A for further analysis of the distribution of
RS values.

IV. TOTAL AUDITORY NERVE RESPONSE

In order to model the response of a population of AN fibers
we need to determine the model parameters for each neuron in
the population, as well as the intensity of the excitatory current
at the initial site of action potential generation in each neuron.

To demonstrate how this may be done, we develop a
population model for the total AN following the approach used
in [45], but using the model of single-fiber response presented
in this paper. This is achieved by fitting the model parameters
to the AN statistics from cat data and by using a simple model
of current spread.
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Fig. 5. Relative spread versus threshold for neurons from [38] as labeled,
in response to a single biphasic pulse of durations 200�s/phase (x) or 400
�s/phase (o).

A. Fitting of Model Parameters to AN Statistics from Cat

We have analyzed Javelet al.’s cat data from [38] in order to
estimate the distribution of single-pulse I/O functions present
in the cat AN. Stochastic model fits to 15 neurons had a mean
correlation coefficient of 0.99, with a minimum of 0.94.

In Fig. 5, relative spread is plotted against threshold for each
neuron in response to a single biphasic pulse of duration 200

s/phase or 400 s/phase. The RS values at a pulse duration
of 200 s/phase have a mean of 0.12 and a standard deviation
of 0.05, and a pulse width of 400s/phase yields similar
values (0.11 and 0.04, respectively). This range of RS values
is consistent with other data from the cat AN [46].

The distribution of threshold values is confounded by the
fact that the distance from the stimulating electrode to the
fiber, or more exactly the distance to the initial site of
action potential generation in the fiber, is unknown. Van den
Honert and Stypulkowski have plotted AN fiber thresholds
to intracochlear electrical stimulation against cochlear place
(as inferred from the AN fiber’s characteristic frequency to
acoustic stimulation) [47]. Since the cochlear place of the
stimulating electrodes was known, it was, therefore, possible
to estimate the site of each AN fiber relative to the stimulating
electrode. For monopolar and longitudinal bipolar stimulation,
the range of thresholds for fibers close to the stimulating
electrode was on the order of 10–14 dB. This is consistent
with the range of thresholds seen in our cat data, considering
the effect of distance from the stimulating electrode, and with
other data from the cat AN [46].

To extend the model such that we can use it to investigate
pulse widths greater than those used in collecting the Javelet
al. data, the previously unpublished data collected by Dynes
was analyzed, and RS was determined for neural responses to
symmetric anodic/cathodic biphasic stimuli of durations up to
5000 s/phase.

Fig. 6 shows discharge probability versus stimulus intensity
curves for three different pulse widths from Cat 76: Unit 2

Fig. 6. Discharge probability versus stimulus intensity for single symmetric
biphasic anodic/cathodic pulses of durations 100, 500, and 2000�s/phase,
from Cat 76: Unit 2 in the Dynes data set. Plotted are individual measures
(asterisks) and stochastic model fits (solid lines).

Fig. 7. Relative spread as a function of pulse width for three fibers (as listed
in the legend) from the same cat in the Dynes data set. Corresponding values
of threshold in dB re. 1�A are given for each data point.

in the Dynes data set. As the pulse width increases, the slope
of the curve becomes shallower, indicating a greater dynamic
range. Computing the RS from these curves shows that the RS
increases as the pulse width of the anodic/cathodic biphasic
stimulus increases.

Fig. 7 shows this effect in three fibers from the same cat.
For every fiber, the RS increases as the duration/phase of the
stimulus increases. The increase of RS with increasing pulse
width as seen in Fig. 7 has also been observed in cat data from
a different study [48]. Even earlier evidence of the potential
importance of phase duration on auditory I/O slopes was
observed in the anteroventral cochlear nucleus using sinusoidal
stimuli (e.g., see [44, Fig. 33]).
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Fig. 8. Fits to discharge probability versus stimulus intensity from the Dynes
data set for pulse widths of 100–5000�s/phase.

Integrated-Gaussian fits to the complete data set are shown
in Fig. 8. The curves were generated from (3) using the mean
values of threshold and RS at each pulse width. Even at some
of the medium pulse widths, there are significant changes in
the slopes of the discharge probability curves. For example, the
slope changes by approximately 1.67:1 when the pulse width
is lowered from 2000 to 500 s/phase.

There are insufficient data to examine how the distributions
of threshold and RS covary with pulse width. Therefore, we
assume that the distributions do not change with pulse width. It
may also be feasible that the standard deviation of RS covaries
linearly with its mean—further data would be required to
determine this.

The available data (see Fig. 5) do not support the hypothesis
that RS is a function of threshold. When more data become
available, it may be possible to detect such a dependency.
Meanwhile, we assume that the distribution of single-pulse
I/O functions present in the normal cat cochlea can be well
described by two independent random variables, “Threshold”
and “RS.”

The mean single-fiber threshold and RS in a population
of fibers are estimated by fitting appropriate functions to the
values of threshold and RS of the curves in Fig. 8, producing
the relationships

[Threshold] (dB re. 1 A) (5)

and

RS

(6)

for PW , where PW is the pulse width in
s/phase.
Note that we cannot assume that does actually remain

constant for the duration of a long pulse, as stated in the
approximations listed in the first column of page 620, and that
the discharge probability is well described by an integrated-
Gaussian. Therefore, for longer pulse widths these equations
form a more phenomenological description of the I/O function.

Additionally, (5) corresponds to an average chronaxy on the
order of 1000 s, which is somewhat longer than most other
AN data and models [11]. This may be an artifact of the small
amount of data used to derive (5)—more data may be required
to improve its accuracy.

Taking a conservative estimate of the distribution of thresh-
olds seen in the cat data, Threshold is taken to be uniformly
distributed 5 dB around its mean as given by (5). From
Fig. 5, the standard deviation of RS is approximately half
its mean at short pulse widths (200 and 400s/phase).
Therefore, we take RS to be normally distributed with a
standard deviation of 0.06 [half the mean of RS as given by
(6) at short pulse widths].

In simulations using the total AN model, pseudorandom
numbers with the correct distributions are generated to obtain
values of threshold and RS for each fiber. In order to maintain
the same set of I/O functions across simulations with the
same number of fibers, the seeds of the pseudorandom number
generators are two different fixed values, one for the generation
of the thresholds and one for the RS’s.

B. Current Spread

The two electrode configurations that we will investigate in
this paper are commonly known asmonopolarand bipolar.
In the case of monopolar stimulation, the active electrode is
one of the electrodes on the array within the cochlea and the
return electrode is an electrode external to the cochlea. In the
case of bipolar stimulation, both the active electrode and the
return electrode are on the electrode array within the cochlea.

Following [45], we approximate the electrode array by
a point source of current at the active electrode and the
AN tissue by a homogeneous resistive medium consisting
of a uniform density of single AN fibers. We can then
calculate the potential at the site of each auditory neuron
for a given stimulus intensity. From [49], the current decays
at a rate of 3–6 dB/mm for bipolar stimulation. We extend
this model to also give the current spread for monopolar
stimulation. The attenuation is taken to be approximately 0.5
dB/mm for monopolar stimulation and 4 dB/mm for bipolar
stimulation—the latter value is appropriate for both radial-
bipolar pairs [50] and narrowly focused longitudinal-bipolar
pairs [49]. Modeling an electrode placed 15 mm inside a
cochlea 30-mm long produces attenuation curves as shown
in Fig. 9.

Note that this simple description of current spread may be
modified to take into account nonsymmetrical current spread
[51] and/or nonmonotonic current spread effects such as cross-
turn stimulation in the modiolus [12].

C. Output of Total Auditory Nerve Model

Here we present the output of a model of 10 000 independent
neurons2 spread uniformly3 across the AN, assuming the

2This is a conservative estimate of the number of surviving AN fibers in a
subject with a profound sensorineural hearing loss [52].

3A nonuniform distribution would further increase the importance of
differences in single-fiber I/O functions within a local population. See [23]
and [24] for a discussion of these effects.
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Fig. 9. Attenuation of the stimulus across the cochlea for monopolar (solid
line) and bipolar (dashed line) electrode configurations.

statistics of model parameters given in Section IV-A and the
model of current spread given in Fig. 9. In Fig. 10 the mean
number of discharges summed across all fibers in response
to a single biphasic pulse is plotted. For stimulus intensities
above approximately 50 dB, the deterministic model and the
stochastic model produce very similar predictions of the mean
number of discharges. However, below 50 dB the stochastic
model predicts a quite different response from the deterministic
model’s. Note that the stochastic model predicts a mean
number of discharges of greater than 70 spikes in response to
a single biphasic pulse of intensity 50 dB in bipolar mode and
greater than 630 spikes in monopolar mode. It is very likely
that auditory threshold is reached with an even smaller number
of responses, so it is highly feasible that cochlear implants
are operating in the region where the stochastic activity is
significant [22]–[24]. Furthermore, the deterministic model
will predict zero variance in the number of discharges, whereas
the stochastic model will predict nonzero variance [see error
bars in Fig. 10(b)].

The summing of these Bernoulli random variables is called
Poissonian binomial sampling[53], which is similar to a bino-
mial process, except that the probability of success (discharge
probability in our case) is different, in general, for each neuron.
When the number of neurons is large, the Poissonian binomial
distribution is well approximated by a Poisson distribution
if the mean number of responses is less than 15 and by a
Gaussian (Normal) distribution for mean counts greater than
or equal to 15, although the distribution will only have discrete
integer values in both cases.

Fig. 11 illustrates results from 10 000 iterations of Monte
Carlo simulations for a very low amplitude stimulus
[Fig. 11(a)] and a moderate amplitude stimulus [Fig. 11(b)],
with a Poisson distribution fit to the former and a Gaussian
distribution fit to the latter. The fits appear to be quite good.

V. DISCUSSION

We have shown that a deterministic model is a poor de-
scription of a neuron’s response to single electrical pulses, in

(a)

(b)

Fig. 10. Mean number of discharges versus stimulus intensity from model
of 10 000 fibers in response ot s single biphasic pulse for monopolar (solid
line) and bipolar (dashed line) stimulation. (a) Deterministic model and (b)
stochastic model. Error bars indicate+�1 std.

light of the improvements in the prediction of physiological
data when a stochastic component of response is added to
the neural model. Specifically, we have found that a simple
stochastic model can accurately predict discharge probabilities
present in cat data in response to single biphasic pulses. Our
results suggest that just two parameters (threshold and RS) can
well describe discharge probabilities in AN fibers in response
to single biphasic pulses. As mentioned in Section I, the model
methodology may also be suitable for functional electrical
stimulation of other types of nerve fibers. However, use of this
model for a paradigm other than stimulation of the AN by a
cochlear implant would require validation of the assumptions
and approximations of this paper for the particular stimulus
and neural properties of that paradigm.

The analytical descriptions of single fiber response to single
electrical pulses presented in this paper provide a simple and
computationally efficient method of modeling the response of
a large-scale population of AN fibers to pulsatile electrical
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(a)

(b)

Fig. 11. Distribution of total number of discharges predicted by 10 000
iterations of Monte Carlo simulations in response to a single biphasic pulse for
two different intensities, with a Poisson distribution fit (o) for the case where
the mean count less than 15 and a Gaussian (Normal) distribution fit (solid
line) for the case where the mean count is greater than 15. (a) Low-intensity
stimulus and (b) moderate-intensity stimulus.

stimulation as produced by cochlear implants. Furthermore, the
output of the model permits the direct use of signal detection
theory to determine the resolution with which the AN can
convey information about an electrical stimulus [22]–[24].

Further physiological and modeling studies would be help-
ful in refining and extending a number of aspects of our
model—specific suggestions follow.

In this paper, we have investigated randomness in the
probability of response to electrical stimuli. Physiological
studies have shown that randomness occurs not only in the
probability of an action potential being generated, but also in
its latency [16], [27], [38], [54], [55]. The term “jitter” is used
qualitatively to describe this phenomenon, or quantitatively to
refer specifically to the standard deviation of the latency [54].
In developing an analytical description of discharge probability
we have degraded the model’s description of the timing of the

discharges. A separate stochastic description of action potential
latency would be needed to investigate the effects of jitter in
theories of coding that are dependent on the exact timing of
discharges.

Our approximation that discharges occur only in response
to the cathodic phase of the biphasic pulse (see the approx-
imations listed in the first column on page 620) has not
appeared to degrade our model’s fits of the AN data. However,
physiological studies have shown that some AN fibers do
exhibit a shift in the phase of the biphasic current pulse to
which they respond [55]. Such a phenomenon may have an
effect on the I/O function of these fibers. For example, the
cause of the increase in RS with increasing pulse width is
as yet unknown—in this paper, we have only provided a
phenomenological description of this effect. This behavior is
absent in responses to monophasic pulsatile stimuli [6], [7],
[9], suggesting that the effect is in fact due to the addition of
the leading anodic phase in the stimulus. There are a number
of ways in which the anodic phase could increase RS. One
possibility is that the relative level of noise at the initial site
of activation increases with pulse width. Verveen and Derksen
[29] showed that the membrane noise tends to increase when
the transmembrane potential deviates from its resting potential
[see Fig. 1(b)]. This means that the anodic phase of the pulse
could change the membrane potential and, thereby, increase
the RS of a following suprathreshold cathodic phase, if the
relative noise level changes more for longer pulse widths and
is sustained until the presentation of the cathodic phase. A
second possibility is that the initial site of activation changes
with alterations in pulse width in a way that does not occur
for monophasic stimuli. Different activation sites (i.e., nodes
of Ranvier) in the one fiber could have different diameters and
different channel densities, producing different relative spreads
[5], [30]. However, the model does not take into account the
spatial distribution of the stimulus potential along the nerve
fiber, and it, therefore, cannot predict the node of Ranvier
where the initial excitation takes place. Further physiological
investigation with a combination of monophasic (cathodic and
anodic) and biphasic (anodic/cathodic and cathodic/anodic)
stimuli may be required to come to a proper understanding of
such effects. For instance, fibers close to the passive electrode
in bipolar stimulation may respond preferentially to the anodic
phase and therefore, like responses to monophasic pulses, may
not exhibit the same pulse-width effects as fibers responding
to the cathodic phase.

The fits given in Fig. 8 were to data covering a range
of discharge probabilities from approximately 0.05 to 0.95.
For biphasic pulses of short duration, Verveen and Derksen’s
data [29] suggest that this accuracy may extend at least as
far as 0.001 to 0.999. However, the integrated-Gaussian fit
is probably a poor approximation for discharge probabilities
lower than 0.05 forbiphasic pulses of long duration. First,
Fig. 12 shows that as the stimulus intensity goes to zero the
discharge probability goes to different values for different
pulse widths. This is not possible however, since the pulse
width of a nonexistent (zero intensity) current pulse cannot
affect the discharge probability. Second, Verveen and Derksen
showed that the noise distribution departs from a Gaussian
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Fig. 12. Fig. 8 replotted with a linear abscissa and an extended ordinate.

(i.e., is skewed) when the membrane is hyperpolarized. If
the increase in RS for longer pulse durations results from
hyperpolarization of the membrane by the anodic phase of
a biphasic pulse, then not only may the relative noise level
be increased, but the noise distribution may also become non-
Gaussian. These two observations suggest that further data
need to be collected to show how the discharge probability
changes with pulse width for probabilities considerably smaller
than 0.05.

The small amount of data used in Section IV-A to inves-
tigate how the distributions of threshold and RS vary with
stimulus parameters lead to somewhat rough approximations
of their behavior. A study similar to van den Honert and Sty-
pulkowski’s [47], but in which RS values are collected along
with threshold values, would be useful in further refining the
statistics of our total AN model. In particular, the relationships
between site of the electrode, pulse width, threshold and RS
need to be further examined.

The physiological data presented in this paper and the mod-
els derived from this data were from cats. Care should be taken
in extrapolating the model to other species, including human
cochlear implant users. Furthermore, other than assuming zero
inner hair cell survival and allowing an arbitrary number of
surviving AN fibers, this model does not take into account
the effects that prolonged deafness has on the response of
AN fibers to electrical stimulation [56]. An extension to this
study could be to model the effects of various etiologies on
single-fiber I/O functions.

An application of this work concerns both the i) effective-
ness and the ii) safety of high-rate pulsatile stimulation in
cochlear implant stimulation strategies. Unless the stochastic
nature of the AN is considered, stimulus pulse-rates much
higher than an auditory fiber’s maximum discharge-rate appear
to be without value and very possibly dangerous to the nerve.

Nerve damage studies have found that stimulation at high
pulse-rates and high amplitudes does induce serious injury to
the nerve [25], [57]. However, at lower stimulus amplitudes
that are within the animal’s behavioral range nerve damage is
not observed [26]. One plausible explanation for these results
is directly related to the importance of the stochastic nature

of AN. If we stimulate the nerve with a high pulse-rate,
low-amplitude stimulus, we would expect that each fiber’s
discharge rate could be much lower than the stimulus’s high
pulse rate [21], [38]. As a consequence, no damage to the fibers
would occur. However, if the stimulus were high in amplitude,
fiber discharge rates would indeed become too high [21], [38]
and cause injury to the nerve.

Until the stochastic nature of AN was considered plausible,
stimulation with high-rate pulse trains for conveying fine-
grain temporal information [58] appeared to be nearly futile.
Interestingly, the high-rate interleaved pulsatile stimulation
processor was proposed [50, see page 334],4 and constructed in
1985 at the same laboratory that first introduced the stochastic
nature of the AN to the cochlear implant community [3].

Several cochlear implant research groups have suggested
that increasing the relative noise level of nerve fibers may
improve the “temporal representation” of the stimulus. It is
argued that: i) noisier fibers will reduce the occurrence of
highly synchronous discharge patterns that are not seen in
responses to acoustic stimulation and ii) noisier fibers will
reduce refractory effects that distort the temporal represen-
tation of the stimulus. This may be a very useful strategy.
Our recent work (this paper, and [21]–[24]) suggests several
methods for increasing the relative noise level of fibers.
However, such a strategy may be entirely unnecessary. If an
implant user’s nerve fibers discharge only at low probabilities
during multichannel continuous stimulation, refractory effects
will be negligible because discharge rates will be low. Also,
abnormally high synchronization of discharges across fibers
will not occur. For example, with a 1000 pulses/s stimulus
and fiber discharge probabilities less than 0.1, relatively little
“temporal distortion due to refractory effects” will occur. This
is because the average interval between discharges within any
fiber will be greater than 10 ms.

If the normal behavioral operating range of cochlear im-
plants falls totally in the region above 50 dB in Fig. 10,
then the deterministic model will adequately predict the mean
number of discharges, although it will be unable to predict the
variance in the number of discharges. However, if some or all
of the operating range falls in the region below 50 dB, Fig. 10
indicates that the two models predict very different responses.
Physiological and behavioral studies in the same animals
provide one method of determining the intensities at which
the physiological data should be collected [48]. An alternative
method is to model how an ideal observer would behave from
the output of the AN model. We carry out such an evaluation
in [23] and [24], where we predict a range of psychophysical
measures using this AN model. The results of this study
suggest that cochlear implants are indeed operating in the
region where stochastic activity is significant. In all the cases
investigated, the stochastic model predicted psychophysical
performance significantly better than the deterministic model
did. This suggests that the stochastic model is not just more

4Interleaved stimulation for cochlear implants was first proposed by Ed-
dington [personal communication 1976], [59] for the purpose of eliminating
interchannel interactions due to electric field summation at the electrode-nerve
interface.
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accurate in its prediction of physiological response, but also
in its prediction of the resulting behavioral performance.
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