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Abstract—Most models of auditory nerve response to electrical
stimulation are deterministic, despite significant physiological evi-
dence for stochastic activity. Furthermore, psychophysical models
and analyses of physiological data using deterministic descrip-
tions do not accurately predict many psychophysical phenomena.
In this paper we investigate whether inclusion of stochastic
activity in neural models improves such predictions. To avoid the
complication of interpulse interactions and to enable the use of a
simpler and faster auditory nerve model we restrict our investiga-
tion to single pulses and low-rate (<200 pulses/s) pulse trains. We
apply signal detection theory to produce direct predictions of be-
havioral threshold, dynamic range and intensity difference limen.
Specifically, we investigate threshold versus pulse duration (the
strength-duration characteristics), threshold and uncomfortable
loudness (and the corresponding dynamic range) versus phase
duration, the effects of electrode configuration on dynamic range
and on strength-duration, threshold versus number of pulses (the
temporal-integration characteristics), intensity difference limen
as a function of loudness, and the effects of neural survival on
these measures. For all psychophysical measures investigated, the
inclusion of stochastic activity in the auditory nerve model was
found to produce more accurate predictions.

Index Terms— Auditory nerve, cochlear implant, dynamic
range, functional electrical stimulation, intensity difference limen
(IDL), psychophysics, stochastic model, threshold, uncomfortable
loudness.

I. INTRODUCTION

M ODELS OF cochlear implant perception have histor-
ically utilized deterministic descriptions of auditory

nerve (AN) response to electrical stimulation. Recently, phys-
iological models of AN response have been developed that
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incorporate stochastic activity [1]–[9], but the consequences
for behavioral performance have not been investigated.

In the normal mammalian auditory system, the AN exhibits
both spontaneous discharges and variance in acoustically-
driven discharge rates. The inner-hair-cell/auditory-nerve
synapse appears to be the primary source of this stochastic
activity [10]. In most cases, profound sensorineural hearing
loss results from the functional loss of all, or nearly all,
hair cells. As a consequence, hair cells are unlikely to be a
significant source of variance (i.e., noise) in neural response
to electrical stimulation of a profoundly deaf ear [11]. A
series of studies by Verveen and colleagues [12] have shown,
however, that random fluctuations in a neuron’s membrane
potential produce a secondary source of noise. The magnitude
of these fluctuations is significantly less than the noise from
the inner hair cells and has consequently been regarded as
unimportant. Hence, neural response to electrical stimulation
has historically been modeled via deterministic descriptions
such as the Hodgkin–Huxley equations. However, significant
variance has been measured in the response of AN fibers to
single biphasic current pulses [1], [5], [13] and pulse trains
[2], [3] that cannot be explained at all by deterministic models.
This stochastic activity should be a significant factor in the
psychophysical performance of cochlear implant users.

Studies of single fiber response using an arbitrary measure
of AN fiber threshold do not accurately predict behavioral
threshold versus phase duration (strength-duration) curves for
sinusoidal stimulation [14] or for pulsatile stimulation [15],
[16]. Indeed, strength-duration curves of cochlear implant
users are not well predicted by deterministic models of AN
response to electrical stimulation [16], [17].

In this paper we investigate whether these and other inac-
curacies in predictions of intensity perception could be due
to ignoring the stochastic response of the AN to electrical
stimulation. In order to avoid the complication of interpulse
interactions and to enable the use of a simpler and compu-
tationally faster AN model, we restrict our investigation in
this paper to single biphasic pulses and low-rate (<200 pps)
pulse trains. We derive a model of intensity perception based
on the model of neural excitation developed in [1] and
compare model predictions for the deterministic and stochastic
descriptions of AN response to electrical stimulation. We
develop the psychophysical section of the model in such a
way that signal detection theory can be applied to predict
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Fig. 1. Cochlear neural model and behavioral intensity-discrimination/loudness model.

directly how behavioral threshold, dynamic range and intensity
difference limen (IDL) change with stimulus parameters and
nerve survival.

II. M ETHODS

A. Psychophysical Model

The form of our psychophysical model is given in Fig. 1.
This model follows the approach of [18]–[21], in which
intensity perception is related to the response of the AN
to an electrical stimulus. Such models can be derived from
computational psychophysical models of acoustic stimula-
tion that relate intensity perception to AN response (e.g.,
[22]–[25]). Here, we assume that the peripheral section of
acoustic psychophysical models can be attributed to excitation
of the AN and the remaining components attributed to more
central processing. To construct the model, the excitation
section is replaced by a model of electrical stimulation of
the AN. The central section of the model is similar to the
central section used to model normal hearing. Accordingly,
our model has two major divisions, anauditory nervesection
and apsychophysicalsection.

1) AN Section: In this paper, two models of the AN are
compared: a stochastic model and a deterministic model. For
the AN section of our model we utilize a description of total
AN response to electrical stimulation based on the model of
White [7], [9] that we developed further in [1]. This model
consists of: 1) an input/output (I/O) function for each of an
arbitrary number of AN fibers and 2) a function approximating
the attenuation of the excitatory current as it spreads from the
active electrode to the site of action potential generation in
each neuron.

The I/O function describes the probability of discharge in
response to a single pulse as a function of the stimulus intensity
delivered to the fiber (expressed in absolute units). For the
deterministic model, this is a step function [1, Eq. 2], where the
intensity at which the discharge probability changes from zero
to one is referred to as the fiber’s threshold. For the stochastic
model, the I/O function is an integrated-Gaussian [1, Eq. 3],
where the intensity corresponding to a discharge probability

of 0.5 is referred to as the fiber’s threshold. The slope of
the integrated-Gaussian is determined by the relative spread
(RS), which is the standard deviation of the Gaussian noise
divided by the threshold [1, Eq. 4]. The Gaussian noise is the
underlying mechanism that generates the integrated-Gaussian
I/O function.

Although only minimal physiological data have been col-
lected on the distributions of thresholds and RS’s in a popu-
lation of AN fibers at any cochlear location, there exist just
enough to enable us to set distributions of model parameters
to approximate those seen in the physiological data from cat
[1]. We model the threshold and RS of each fiber as two
independent random variables. Pseudorandom numbers are
generated using the estimated distributions to obtain different
thresholds and different RS’s for each fiber. In order to
maintain the same set of I/O functions across simulations with
the same number of fibers, the seeds of the pseudorandom
number generators are two different fixed values, one for the
generation of the thresholds and one for the RS’s.

For both the deterministic and the stochastic model, fiber
thresholds are uniformly distributed from5 dB to 5 dB
with respect to the mean threshold, which is determined by

Mean Threshold

PW (dB re. A (1)

where PW is the pulse width (phase duration) ins/phase.
Fiber thresholds are uniformly distributed in units of dB re.
1 A.

For the stochastic model, the RS’s are normally distributed,
with the mean determined by

E RS PW PW (2)

and a standard deviation of 0.06.
An integrated-Gaussian function describes a fiber’s proba-

bility of discharge versusabsoluteintensity, not on a relative
(e.g., dB) scale. For each fiber, threshold is expressed in
absolute units and the standard deviation of the Gaussian
noise is the fiber’s RS multiplied by its threshold expressed
in absolute units.
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Following [18], we approximate the electrode array by a
point source of current at the active electrode and the AN
tissue by a homogeneous resistive medium consisting of a
uniform density of single AN fibers. Unless otherwise noted,
the model cochlea is populated with 10 000 fibers. We assume
that the stimulating electrode is placed 15 mm inside a 30 mm
cochlea. To calculate the stimulus intensity at each AN fiber,
we assume that the stimulus is attenuated at the rate of
0.5 dB/mm for monopolar (MP) stimulation [26] and 4 dB/mm
for bipolar (BP) stimulation—the latter value is appropriate
for both radial-BP pairs [26] and closely-spaced longitudinal-
BP pairs [27]. Less closely-spaced BP configurations should
produce a lower rate of attenuation, such that model responses
and the resulting predictions will tend toward those given for
MP configurations.

Note that in order to simplify model-data comparisons,
we ignore such factors as phase order for biphasic stimuli
(anodic/cathodic or cathodic/anodic) and electrode form (shape
and material). Future investigation of such factors may suggest
modifications to the model of [1] that would allow their
inclusion in predictions of psychophysical data.

2) Psychophysical Section:Following [18] and [21], inten-
sity discrimination is based on the total discharge rate of all
AN fibers activated by the electrical stimulation. Following
[21], from psychophysical measurement of threshold versus
stimulus duration [28], [29], we use a 100-ms rectangular inte-
gration window.1 These two aspects, the summing of responses
across all neurons and the long-term temporal integration, can
be modeled by spatial summation and temporal integration of
the output of the neural section.

Note that if our model were to be extended to investigate
psychophysical results for higher pulse-rate stimuli, short-term
integration effects could be included in the psychophysical
section using the approach of McKay and McDermott [19] or
included in the AN section [5], [29], [30]. Such short-term
integration effects may be particularly apparent in amplitude
modulated pulse trains [31]. Note also that for higher pulse
rates, in order to take into consideration refractory effects, the
pulse-train model of [2] should be used in the AN section
of the model in place of the single-pulse model of [1] used in
this paper. See [2] for a discussion of further interpulse effects
that may need to be considered.

B. Determination of Psychophysical Measures

Signal detection theory refers to statistical methods for
determining when a signal may be detected in the presence
of some confounding signal (e.g., background noise). The
signal to be detected and the confounding signal may also
be considered as a pair of signals to be distinguished, and thus
such methods will equally apply to signal discrimination tasks.
Statisticalmethods are required when either one or both of the

1If the stimulus is <100 ms, as is the case for almost all the data presented
in this paper, the integrator’s output is simply the sum of all spikes that
occur during the 100-ms integration period. For cases where the stimulus is
>100-ms, we sum the responses elicited by the maximum number of pulses
that can appear within the temporal integration window. For a uniform pulse
train this is equal to the elicited response ton pulses, wheren is the pulse
rate times 100 ms.

signals contain some variability. Signal detection theory has
formed the basis of many successful psychophysical models
of the normal auditory system (e.g., [22]–[25]). Indeed, signal
detection theory is the basis for models of many sensory
systems. We believe that signal detection theory will also be
required in electrical stimulation of the auditory nerve where
stochastic activity results from membrane noise. Although
statistical methods are unnecessary for the deterministic model,
we consider it as a specialized case of the stochastic model
where the variances are equal to zero.

The output of the neural/psychophysical model developed
in Section II-A can be used to predict psychophysical results
using either Monte Carlo or analytical signal detection theory
methods. Monte Carlo techniques are useful because they can
incorporate the same paradigm with which psychophysical
results are collected. They are also more accurate because
they can incorporate the actual measured response distribution.
Analytical methods on the other hand are more efficient
computationally, but require approximation of the response
distribution.

In the following two sections we describe the methods
used in determining our model’s performance on a number
of different psychophysical tasks.

1) Threshold and Intensity Difference Limen:In the Monte
Carlo implementation of the model, a pseudorandom
uniformly-distributed number between zero and one is
generated for each neuron. If the number is less than the
probability of discharge for that neuron [as determined by the
model neuron’s I/O function and the stimulus parameters],
the neuron is deemed to have discharged. This is repeated for
each pulse in the pulse train. The total number of discharges
for all neurons to each pulse is then passed through the
psychophysical section of the model to give the total number
of discharges occurring within the temporal integration period.
This output can then be used directly in any criterion-specific
psychophysical paradigm.

A range of psychophysical paradigms were used in the
collection of the behavioral thresholds and IDL presented in
Section III, some of which were not criterion-specific. For
consistency and simplicity, we use a standard two-interval
forced-choice paradigm [32] to determine the model’s pre-
diction of the psychophysical data. From Section II-A, two
stimuli are perceived to be equal in intensity when the output
of the temporal integration section of the model is identical
for the two stimuli. If we assume an ideal observer, then the
stimulus interval eliciting the greater number of discharges
is chosen as the one containing the stimulus, in the case of
a threshold measurement. In the case of an IDL measure-
ment, the interval with the larger spike-count is chosen as
the interval containing the higher intensity stimulus. In the
rare case when the number of discharges is equal for the
two intervals an “unbiased coin is flipped” to generate the
decision.

In analytical applications of the model, the distribution of
the model’s output is approximated by an analytical function.
Then signal detection theory is used to derive an analytical ex-
pression to predict the model’s performance on any criterion-
specific psychophysical detection/discrimination task. Next we
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derive expressions for predicting the model’s performance on
a two-interval forced-choice paradigm.

Consider two discrete random variables and that
describe the number of discharges, as predicted by the model
developed in Section II-A, produced in response to stimuli
one and two, respectively. and have probability mass
functions and with means of and and standard
deviations of and , respectively. and have values
for all integers within the bounds , where is
the maximum number of discharges possible.

If stimulus two has the greater intensity, the probability of
our detection/discrimination system choosing correctly that it
has a greater intensity than stimulus one is

Choosing correctly

(3)

Proof: See [33, p. 168]. From [1], if 15 and
100, is well approximated by the Poisson proba-

bility mass function

(4)

and if and , is well
approximated by the Gaussian probability density function

(5)

Equation (3) assumes both and are discrete random
variables having integer values bound by . There are
two possible methods of using (5) for the case where 15.
Either the appropriate sums in (3) can be changed to integrals,
or the Gaussian probability density function can be discretized
such that it only has values for integers within the bounds

, forming a probability mass function with the same
formula as (5). These methods produce virtually identical
results. We use the latter method because it is computationally
faster.

The derivation of (3) follows the traditional methods used
in analytical signal detection theory (e.g., see [22]) except
in two manners: 1) while unequal variance may have been
traditionally allowed for in signal detection noise models, it is
not usual to allow for two different noise distributions as we
have done and 2) continuous random variables are normally
used, rather than discrete random variables as we have done.
Both of these deviations are necessitated and justified by what
is known from the neurophysiology [1].

Sample psychometric functions for behavioral threshold
generated using this method are plotted in Fig. 2. These were
obtained from the model of 10 000 neurons2 in response to
a single 100-s/phase biphasic pulse generated with a MP
electrode configuration. The deterministic model produces a
step-shaped psychometric function, because there is no vari-
ance in the number of spikes. With the ideal observer assumed

2This is a conservative estimate of the number of surviving AN fibers in a
subject with a profound sensorineural hearing loss [34].

Fig. 2. Psychometric functions for behavioral threshold predicted by the
deterministic (dashed line) and stochastic (solid line) AN models.

in our model, a discriminable difference for the deterministic
model corresponds to the lowest intensity difference producing
an increase in the spike count. In contrast, the stochastic
model produces a psychometric function that rises smoothly
from 50% (chance performance level) to 100% discrimination
as the neural responses become more discriminable, i.e., as
the overlap of the response distributions of the two stimulus
conditions decreases.

A point on the psychometric function that is defined as the
threshold (or IDL) can then be chosen to match the paradigm
that was used in the collection of the psychophysical data that
we wish to predict. However, not all of experimental methods
used to collect the data presented in the results were criterion-
specific. In such cases we used 70.71% as the criterion.3 For a
70.71% criterion, a discriminable difference for the stochastic
model corresponds to the intensity at which 70.71% of the time
more spikes are produced by the comparison interval than by
the reference interval.

In order to test the accuracy of the analytical estimate, we
conducted Monte Carlo simulations of a standard up-down
threshold procedure [32] using our psychophysical model. For
each threshold measurement the simulation was run until ten
turning points were reached. Threshold was taken to be the
mean of the final eight turning points. Thepoints(o) plotted in
Fig. 3 are the means of four of these threshold measurements
for four different phase durations and three different durations
(given in number of pulses) of a 100 pps pulse-train, with error
bars indicating 1 standard deviation. Thresholds obtained via
the analytical method (lines) accurately estimate the simulation
results.

2) Dynamic Range:We define dynamic range as the differ-
ence in dB between behavioral threshold and the lowest stim-
ulus level to elicit an uncomfortably loud percept. One long-
standing and intensively studied hypothesis is that loudness
is simply proportional to the total AN response (e.g., [35]).
While there is now direct evidence to suggest that loudness

3The point on a psychometric function that is estimated by a two-down,
one-up procedure is 70.71% [32]. We performed sensitivity testing and found
that comparisons between the deterministic and the stochastic model were
relatively insensitive to the value of the criterion.
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Fig. 3. Mean thresholds from four iterations of Monte Carlo simulations (o),
with error bars indicating�1 standard deviation, compared with thresholds
obtained via the analytical method (lines).

is not directly proportional to the total AN response, loudness
does appear to bemonotonically relatedto the neural response
[36]. Therefore, we assume here thatuncomfortableloudness
(UCL) corresponds to a fixed number of neural discharges for
the whole AN within the period of temporal integration, i.e.,
the output of the model’s temporal integrator section. We will
call the number of discharges required to reach uncomfortable
loudness . We have no plausible way of determining how
many responses correspond to UCL,4 so we, therefore, present
predictions for three different values of , which appear to
best account for the psychophysical data.

III. RESULTS

Here we present: 1) the model’s response properties as
a function of stimulus and model parameters and 2) some
examples of the model’s prediction of psychophysical data.

A. Model Response Properties

Model response versus stimulus intensity predicted by our
model with 10 000 fibers in response to a single pulse of
duration 100 and 2000 s/phase is plotted in Fig. 4. The
number of discharges is a monotonic function of the stimulus
intensity, and there is horizontal shift of the function dependent
on the phase duration.

Plotted with a linear ordinate [Fig. 4(a)], the deterministic
model and the stochastic model appear to predict very similar
mean response growth curves. However, when plotted with a
logarithmic ordinate [Fig. 4(b)], it can be seen that the models
predict quite different mean responses for pulse amplitudes
that elicit fewer than 1000 spikes. There is a difference in
the slopes of the functions and in the amount of variance. It
is likely that behavioral threshold is reached with a smaller
number of discharges, and hence some or all of a cochlear

4Unfortunately, signal detection theory cannot be used to explain the nature
or behavior of UCL. It is possible that other neural mechanisms contribute to
the sensation of UCL.

(a)

(b)

Fig. 4. Neural response versus stimulus intensity from a model of 10 000
fibers in response to a single pulse of duration 100 and 2000�s/phase (solid
lines and dashed lines, respectively): (a) deterministic and stochastic model:
linear vertical scaleand (b) deterministic and stochastic model:logarithmic
vertical scale.

implant’s operating range may be in the region where the
stochastic activity is significant. From this we expect that the
deterministic and the stochastic models will have differing
predictions of intensity perception as a function of phase
duration and that these differences will be greater at lower
stimulus intensities.

Neural response to a single pulse predicted for MP (solid
line) and BP (dashed line) stimulation is plotted in Fig. 5. For
the deterministic model, the excitation of fibers (shown by the
slope of the curve) is faster for a MP stimulus than for a BP
stimulus, because of the comparatively wider current spread
(see [1, Fig. 9]). However, for the stochastic model, this effect
is limited to high stimulus intensities and is less pronounced.
In the region below 50 dB the growth of the response is domi-
nated by the slopes of the fibers’ I/O functions,not the current
spread function. Again, a significant proportion of a cochlear
implant’s operating range may lie within the region below
50 dB, where the mean responses of the two models diverge
and where the variance is significant in the stochastic model.
Similar to our hypothesis of the importance of pulse width, we
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(a)

(b)

Fig. 5. Neural response versus stimulus intensity from a model of 10 000
fibers in response to a single pulse for MP (solid line) and BP (dashed line)
stimulation: (a) deterministic model and (b) stochastic model.

expect that BP and MP stimulation will also produce differing
predictions in the stochastic and deterministic models and that
these differences will be greater at lower stimulus intensities.

Furthermore, because of the difference in the response
growth curves of the deterministic and stochastic models: 1)
predictions of perception as a function of the number of pulses
will differ for the two models and 2) predictions of IDL will
differ.

We now look directly at how our model’s predictions of
intensity perception compare with psychophysical data.

B. Threshold and Uncomfortable Loudness Versus
Phase Duration: Dynamic Range

Behavioral threshold and UCL versus phase duration data
from two human subjects are plotted in Fig. 6. Using a BP
electrode configuration, the stimuli for one of the subjects were
single-cycle sinusoids,5 BP stimulation (from [29, Fig. 9]).
The stimuli for the other subject were biphasic pulse trains
delivered at 100 pps (from [37, Fig. 1]). The threshold versus

5For a single-cycle of sinusoidal current we define phase duration as half
the period of the sinusoid.

Fig. 6. Psychophysical data: Threshold and uncomfortable loudness from
two human subjects (one from [37, Fig. 1] and another from [29, Fig. 9]) as
indicted in the figure legend. Note that repeated measures for the one subject
were taken at some phase durations as indicted.

phase duration curves have slopes that begin to steepen with
phase durations greater than 500s/phase and the slope of the
White data is steeper than6 dB/doubling in the region from
1000 to 2000 s/phase. These results are consistent with the
data of Pfingstet al. collected in monkeys (see [15, Fig. 2]).
In contrast, the UCL curves monotonically decrease in slope
with increasing phase duration, causing the dynamic range to
increase with increasing phase duration. This is consistent with
other data from human subjects in response to pulsatile stimuli,
e.g., see single-pulse data for phase durations between 200 and
10 000 s/phase from one subject in [29, Fig. 7], averages
across four subjects in [37, Table I], and averages across 14
subjects for low-rate pulse trains of phase durations between
24 and 408 s/phase in [38, Table IV].

Our model’s prediction of these data are plotted in Fig. 7.
The deterministic model predicts that the threshold and UCL
curves will have identical slopes at each phase duration
[Fig. 7(a)], such that the behavioral dynamic range will not
change with phase duration. In contrast, the stochastic model
accurately predicts the changes in slopes of the threshold
and UCL curves at each phase duration [Fig. 7(b)] and the
corresponding increase in dynamic range with increasing phase
duration. It appears that UCL for these data corresponds to an

for our model in the region of 100 to 1000 spikes.
Note that in Fig. 7(b) the model prediction of UCL for

100 spikes begins to converge with its prediction of
threshold. We believe [1] that this arises from the inaccuracy
of the stochastic AN model at very low stimulus intensities
for long pulses.Specifically, we believe that discharge prob-
abilities at very low stimulus intensitiesfor long pulsesare
actually considerably lower than those predicted by the model
integrated-Gaussian function. See [1] for a discussion. More
physiological data are required to increase the accuracy of
the model in this region where the data are likely to deviate
significantly from an integrated-Gaussian function.

C. Effect of Electrode Configuration on Dynamic Range

We present here behavioral dynamic range data from human
subjects for different electrode configurations. Battmeret al.
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(a)

(b)

Fig. 7. Model predictions of threshold and uncomfortable loudness versus
phase duration: (a) deterministic model and (b) stochastic model.

[39] have measured behavioral dynamic ranges from five
subjects in response to pulses of widths 25, 50, 75, 100, 200,
and 400 s/phase for BP and MP electrode configurations on
two different electrodes.

These data are plotted in Fig. 8, along with model pre-
dictions of these data, as BP dynamic range divided by MP
dynamic range. All of these data have a ratio of around one or
less. The deterministic model predicts ratios between 2.7–3.9.
In contrast the stochastic model predicts ratios of 0.6–1.2,
depending on the value of , which are much closer
to the ratios observed in the psychophysical data. Like the
dynamic range versus pulse width predictions of Section III-B,
it appears that UCL for these data corresponds to an for
our model in the region of 100 to 1000 spikes.

These data and model predictions are consistent with the
data and model predictions shown in [33, Fig. 6-9]. Zwolan
et al. (see [40, Table III]) have also found: 1) dynamic ranges
in six human subjects to be on average approximately equal
for BP and MP stimulation—in agreement with the Battmeret
al. data plotted in Fig. 8 and 2) some subjects with smaller
BP dynamic ranges than MP—in agreement with the data
plotted in [33, Fig. 6-9]. Similar BP and MP dynamic ranges
have also been observed for stimuli very different from those
presented and modeled here. Shannon has measured behavioral
dynamic ranges in response to a 1000-Hz, 300-ms sinusoidal

Fig. 8. BP dynamic range divided by MP dynamic range: psychophysical
data (averages across five human subjects and two electrodes) from [39] and
model predictions, for phase durations of 25, 50, 75, 100, 200, and 400
�s/phase.

Fig. 9. Deterministic and stochastic model predictions of threshold versus
phase duration (pulse width) for BP and MP stimulation.

stimulus [41] for a number of electrodes in a multielectrode
array, using both BP and MP electrode configurations. Over
the entire electrode array the dynamic ranges for BP and MP
stimulation were approximately equal.

The model predictions can be better understood when the
factors contributing to the growth in the total AN response
are considered [see Fig. 5(a) and (b)]. In the deterministic
model, thresholds do not change with electrode configuration
[see Fig. 9], so only the effect of electrode configuration on
UCL will alter the dynamic range. Only two factors contribute
to excitation of fibers in the deterministic model: 1) the spread
of current to fibers distant from the electrode and 2) the
distribution single-fiber thresholds at any one location. If the
former were the only factor (i.e., single-fiber thresholds in
the deterministic model were all identical), then the BP : MP
dynamic range ratio would be equal to the ratio of the current
attenuation rates for the two modes (8). Indeed, for BP
stimulation the first factor (“1”) is dominant: the spread of
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current is very narrow and, therefore, all the fibers in the
vicinity of the electrode are excited at fairly low intensities,
such that the excitation of fibers successively further away
becomes the primary factor at intensities approaching UCL. In
contrast, MP stimulation produces a wide spread of current,
such that the second factor (“2”) has a stronger impact at
all intensities. The effect of the second factor, therefore, is to
moderate the differences between the two modes of stimulation
somewhat, more than halving the predicted BP : MP dynamic
range ratio.6

However, this ratio is still approximately two to seven
times greater than the ratios seen in the psychophysical data.
The stochastic model accounts for this with two additional
factors: 1) the distribution of single-fiber I/O function slopes
and 2) the consequent difference in behavioral thresholds for
BP and MP electrode configurations (see Fig. 9 for model
predictions, [42, Fig. 6], and [43, Fig. 4(a)] for supporting
psychophysical data). The former means that fibers with the
lowest thresholdsand the shallowest slopes will be excited at
lower intensities than those with steeper slopes. In MP mode
the wide spread of current “makes available” a greater pool of
these sensitive, shallow-slope fibers. As a consequence, only
a very small stimulus amplitude is required to excite these
fibers sufficiently to generate a cochlear response sufficient for
behavioral threshold. BP mode will excite a smaller number
of these shallow-slope fibers. Therefore, a considerably higher
amplitude is required to generate the same total cochlear
response. At higher stimulus intensities near UCL, steep-slope
fibers are responsible for almost all the changes in cochlear
activity. Because only small changes in stimulus amplitude
create large changes in neural activity, the difference in stim-
ulus amplitudes required to elicit UCL for the two electrode
types is generally7 not as great as that at behavioral threshold.
Thus the stochastic model generally predicts BP : MP dynamic
range ratios that are approximately one or less.

D. Further Results

A number of further predictions of psychophysical data,
not shown in this paper due to space restrictions, have been
obtained with this model [33]. Preprints of a manuscript in
preparation that contains these results are available (down-
load from http://www.bme.jhu.edu/˜ibruce/papers/predict.htm
or email: ibruce@bme.jhu.edu). In summary, these results are
as follows.

1) Threshold Versus Number of Pulses (Temporal Integra-
tion): Both the psychophysical data from one human
subject shown in [33, Fig. 6-12] and the data from
five human subjects shown in [44, Fig. 5] indicate the
steeper slopes of threshold versus number of pulses
(temporal integration) curves for longer phase durations.

6If the range of thresholds (at a given cochlear place) is found through
neurophysiological measurements to be more Gaussian than uniform as we
assumed in our model, then the deterministic model’s prediction of the
BP : MP dynamic range ratio would further approach the behavioral data.

7If quite high stimulus levels are required to reach UCL (e.g.,Nucl is quite
large, or the total number fibers is small), the stochastic model will behave
similarly to the deterministic model. In such cases, the difference in UCL
levels for the two electrode types can be relatively large. As a consequence,
BP : MP dynamic range ratios can become somewhat larger than one.

The stochastic model is able to predict this increase
in slope with phase duration, whereas the deterministic
model predicts zero slope for all phase durations.

2) Intensity Difference Limen: Both the deterministic and
stochastic models agree with intensity difference limen
data from [45] in that they predict an8-dB reduction
in the maximum Weber fractions measured over the
dynamic range of a subject. However, the deterministic
model predicts very erratic Weber functions, with the
predicted Weber fractions all underestimating the data,
while the stochastic model predicts smooth Weber func-
tions as seen in the data and Weber fractions in the same
range as those of the data.

3) Effect of Number of Fibers on Threshold, Uncomfortable
Loudness and Intensity Difference Limen: While both the
deterministic and the stochastic model predict changes
in dynamic range and Weber fraction with respect to
threshold as the number of fibers is varied: 1) the
deterministic model predicts practically no change in
threshold with the number of fibers and 2) the deter-
ministic model predicts decreases in dynamic range and
Weber fraction with increasing neural survival, whereas
the stochastic model predicts the opposite. Comparison
of the model predictions with psychophysical data from
a number of human subjects shown in [45, Fig. 7], whom
we could expect to vary in the number of surviving
fibers, suggests that the stochastic model, in contrast to
the deterministic model, may account for some of the
intersubject variability in the psychophysical data.

IV. DISCUSSION

A. Using the Model to Understand Psychophysical Behavior

The relationship between cochlear response and behavior
is defined by the central component of our model. We use
a spike-counting model (i.e., perfect spatiotemporal summa-
tion) used in some models of normal hearing. This model
is relatively simple to use. For example: 1) by adjusting the
amplitude of a stimulus until the elicited cochlear output is
equal to that elicited by another stimulus, the two stimuli can
be made to evoke the same perceived intensity and 2) the
output is a single mean and a single variance for each stimulus,
so relatively simple statistical methods can be used to measure
detectability or discriminability of stimuli.

Understanding how the cochlear response is affected by
stimulus parameters, electrode configuration, nerve pathology,
and nerve survival is necessary for understanding how these
variables control behavioral response. The cochlear response is
controlled by three primary factors: 1) The individual fiber I/O
functions—we have shown that model predictions for a step-
function (deterministic model) and for an integrated-Gaussian
function (stochastic model) are very different.8 2) Differences
in fibers—the distribution of fiber I/O slopes is broad and

8Because AN fibers may only discharge in response to a fraction of the
pulses in the stimulus, discharge probabilities for individual fibers are best
visualized using a two to three decade logarithmic scale. Cochlear response
functions (e.g., Fig. 4) should be viewed over a much larger range (e.g., six
decades)!
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unimodal (and thresholds also vary among fibers). The deter-
ministic model cannot incorporate the slopes of I/O functions,
let alone their distribution. In contrast, the stochastic model
is able to describe the distribution of slopes, such that fibers
with shallow slopes contribute the majority of cochlear activity
at low stimulus intensities. In sharp contrast, fibers with steep
slopes contribute the majority of increase in cochlear activity at
high stimulus intensities. 3) The large impact of phase duration
(pulse width) on a fiber’s discharge probability function.

The impact of the three primary factors, plus other factors
such as the number of pulses, electrode configuration and
nerve survival, can be understood and predicted. For example,
in order to maintain the same level of audibility when the
number of stimulus pulses is halved, pulse amplitude must be
increased so that the average discharge probability is doubled.
In a similar manner, in order to maintain the same perceived
intensity when switching from MP to BP stimulation, pulse
amplitude must be increased to compensate exactly for the re-
duction in discharge probability across the cochlea. Similarly,
a cochlea with poor nerve survival requires a compensatory
increase in pulse amplitude. Furthermore, the relative noise
level of fibers may be quite different for different cochlear
pathologies [46]. This directly impacts the slope of individual
fibers and, therefore, the slope of total cochlear response. For
example, in subjects with a pathology that causes fibers to be
relatively noisy, one would expect dynamic ranges to be larger
and intensity discrimination to be poorer, particularly at low
intensities.

B. Model Extensions

In this paper, we have derived a model of intensity per-
ception in cochlear implants users based on physiological
data and have used this model to investigate a number of
different psychophysical phenomena. In all the cases examined
in this paper, the model predicts the perceptual performance
of cochlear implant users significantly better when stochastic
activity is included. However, extensions or revisions of
this AN model may further improve predictions and our
understanding of the functional significance of the physiology.

As we raised in [1], the neural section of our model
is derived from physiological data collected incats. Fur-
ther physiological data may be collected from humans using
cochlear implant telemetry and noninvasive electrophysiology
that should prove useful in refining our simple model of current
spread and neural response. A model of current spread in the
human cochlea constructed from human cochlear sections [47]
may also help to this end.

Another extension to the model would be to allow for other
sources of noise. For instance, the survival of inner hair cells in
some subjects could result in some remaining synapse-driven
spontaneous activity in the AN. This would affect the amount
of noise present in the total AN response. Other sources of
noise may also be present in more central sections of the
auditory pathways. The effects of both of these potential noise
sources can be included in our psychophysical model if their
behavior is known. We have conducted initial investigations
into such effects, where we have assumed that the additional

noise is unaffected by stimulus parameters. One consequence
of this noise is that thresholds increase with increasing noise
levels such that the stochastic model behavior tends toward
that of the deterministic model. This may account for those
strength-duration curves in [15, Fig. 2] that are higher and
flatter. Central noise may also account for the relatively high
Weber fractions measured in some subjects (see [45, Fig. 6]).
Furthermore, from preliminary simulation results it appears
that additional noise may improve the predictions of the
stochastic modelmorethan the predictions of the deterministic
model.

In summary, the results listed in the preceding paragraph
indicate that such additional noise sourcesmay improve pre-
dictions to some small extent and may be useful in under-
standing intersubject variability. However, such hypothesized
noise sources have not been well characterized. This contrasts
with stochastic activity occurring in auditory nerve fibers,
for which there are good measurements, significant evidence
of its source, and accurate predictive biophysical models.
Furthermore, we have shown in this paper that inclusion
of this single noise mechanism in a simple cochlear model
enables accurate prediction of a wide-range of psychophysical
behavior.

By changing parameters of the model to reduce the amount
of stochastic activity we may also account for such data
that lie somewhere between the deterministic model and the
stochastic model predictions. For instance, particularly focused
current fields or extremely low neural survival may cause
higher probabilities of firing at stimulus intensities within
the behavioral operating range. Because neural responses at
high discharge probabilities exhibit relatively little variability,
stochastic and deterministic model predictions are similar
under such conditions.

The physiological data on which our model is based are
from acutely-implanted, normal-hearing animals. This model
does not take into account the effects that etiology, prolonged
deafness and implantation have on the response of AN fibers
to electrical stimulation [46]. An extension to this study could
be to model the effects of various etiologies on single-fiber
I/O functions and current spread.

Only responses to stimulation from a single electrode have
been investigated in this paper. In order to model responses to
stimulation from multiple electrodes, even at moderate pulse
rates, refractory effects should be incorporated [2] when the
electrodes are stimulating overlapping populations of fibers.
Also, loudness summation effects may need to be considered
when the neural populations excited do not overlap [30], [48],
[49].

In this paper we have limited our investigation to low pulse-
rate stimuli. With the pulse-train model developed in [2],
we now have a good tool for extending this investigation to
the prediction of psychophysical data for moderate stimula-
tion rates (200–1000 pps). However, to improve this model
for moderate and high pulse-rate (>1000 pps) stimulation,
neurophysiological data must be collected over a range of
discharge probabilities (possibly as low as 0.01 or lower) at
such pulse rates. Preliminary physiological data [5], [50], [51]
reveal interpulse interactions occurring at high pulse rates that
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can significantly increase or decrease the level of stochastic
activity in a fiber. This leads us to believe that stochastic
activity in the AN may play an even more important role
in predicting and understanding behavioral responses to high
pulse-rate stimuli.

C. Applicability of the Model

The results presented in this paper have important conse-
quences for physiological studies, for investigation of neural
sound coding and for speech processing strategies. For physi-
ological studies, the results suggest that “discharge probability
versus stimulus intensity” functions should be measured. Such
measurements will provide a far more accurate description
of spatio-temporal patterns of AN response and better enable
us to understand how information could be coded. For psy-
chophysical studies, our results indicate that many perceptual
measures are better predicted by the stochastic model. The
source of this improvement is in the description of the most
peripheral section of the auditory pathways. It is, therefore,
suggested that consideration of stochastic activity in AN
responses may produce better predictions and explanations of
a range of other psychophysical measures not investigated in
this paper. Furthermore, it is likely that the “bare-bones” psy-
chophysical section of this model should be extended to predict
additional psychophysical measures with more accuracy.

We have investigated neural and psychophysical responses
to stimuli with a wide range of phase durations. Higher rate
pulsatile stimuli are typically used in modern cochlear im-
plants, necessitating short phase durations. One might, there-
fore, wonder as to the relevance of studying very long pulse
widths. There are two reasons: 1) We believe an important
feature of our AN model is the slope and shape of the single-
fibers’ “probability versus stimulus intensity” functions. We
have direct experimental control of this slope by changing
phase duration. By so changing the fibers’ slopes we have ob-
served large, correlated changes in psychophysical measures.
We consider fiber slope to be the dominant feature in much of
the behavior investigated in this paper. Therefore, we believe
the ability to manipulate this feature to be fundamental to
developing an understanding of cochlear response to electrical
stimulation. 2) There is a relatively large body of psychophys-
ical data available in which long phase duration stimuli were
used.

It might appear that a three-piece linear fit to single-fiber I/O
data would be an adequate AN model, instead of an integrated-
Gaussian fit. Quite to the contrary, simulations indicate that
such models behave more like the deterministic model when
used to predict behavioral threshold and threshold-dependent
psychophysical measures (e.g., dynamic range, IDL as a
function of loudness). While the three-piece function does
produce a graded discharge probability over a small stimulus-
intensity range (2–4 dB), the discharge probability is zero or
one over all the remaining intensity range. This is similar to
the deterministic model, in which discharge probability is zero
or one for all stimulus intensities. The results of this paper
indicate that behavioral threshold is particularly sensitive to
the low-probability “tail” of single-fiber I/O functions, and

consequently predictions of behavioral threshold (and related
measures) using the three-piece model are only slightly better
than those of the deterministic model. This can be most clearly
understood by plotting all three functions on a log-probability,
log-amplitude (dB) scale. The three-piece function and the
deterministic model appear very similar to each other when
contrasted to the integrated-Gaussian function.

As we raised in [1], the concepts considered in this paper are
already being applied to the design of cochlear implants. These
concepts have direct relevance to both the: 1) effectiveness and
2) safety of cochlear implants. In particular, let us consider
current high pulse-rate stimulation strategies. 1) If it were
not for the inherently stochastic nature of the AN, stimulus
pulse-rates higher than a fiber’s maximum discharge-rate might
severely distort the temporal representation of a speech signal.
In contrast, the combined activity of many stochastic fibers,
each firing at a low rate, should accurately represent the
temporal features of a speech signal. 2) Nerve damage studies
have found that stimulation at high pulse-rates and high
amplitudes does induce serious injury to the nerve [52], [53].
However, at lower stimulus amplitudes that are within the
animal’s normal loudness range, nerve damage is not observed
[54]. A likely explanation for these results is directly related
to the stochastic nature of AN responses. If we stimulate the
nerve with a high pulse-rate, low-amplitude stimulus we would
expect that each fiber’s discharge probability per pulse would
be low, i.e., the fiber’s discharge rate would be much lower
than the stimulus’s pulse rate [2], [55]. As a consequence, no
damage to the fibers would occur. However, if the stimulus
was high in amplitude, fiber discharge probabilities per pulse
would become high, i.e., fiber discharge rates would indeed
become too high [2], [55] and cause injury to the nerve.

In [33, ch. 8], we have analyzed the stochastic model output
to determine what discharge probabilities per pulse are reached
on individual fibers in “extreme cases.” With the phrase “ex-
treme cases” we refer to stimulus (and neural) parameters that
are likely to produce high discharge probabilities, but which
are also likely to be within normal operating levels of cochlear
implant users. From this analysis, even in the most extreme
cases with a BP electrode configuration, individual spike
probabilities are low except on a very few fibers. This means
that all but these few fibers will be responding at a fraction
of the pulse rate. Furthermore, we hypothesize that discharge
probabilities for cochlear implant users are very likely to be
significantly lower than for our extreme cases. First, most
speech processing strategies will stimulate using multiple
electrodes, such that the excitation contributing to the loudness
of the stimulus will be distributed amongst more fibers than
when using a single electrode. Thus, discharge probabilities on
individual fibers will be lower for multielectrode stimulation.
Second, pulse rates of 200–800 pps and higher are being used
in implants. Increasing the pulse rate will cause more pulses
to fall within the temporal integrator window. Therefore,
UCL will be reached at even lower individual discharge
probabilities. Third, MP stimulation is commonly used in
cochlear implants. The results in [33, Table VIII.1] indicate
that MP stimulation will result in quite low fiber discharge
probabilities. Fourth, these results are for a model cochlea
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of 10 000 fibers, which is a conservative estimate of nerve
survival in implant users. From [34], nerve survival may
be higher in the majority of users. Greater survival will
also lead to a greater distribution of excitation amongst the
fibers, again leading to reduced discharge probabilities on
individual fibers. Finally, although this is more speculative,
preliminary data from Dynes [5] indicate that high pulse-rate
stimulation may further increase the noise level of AN fibers.
Dynes found that a subthreshold pulse increased the relative
noise level for subsequent pulses, and for a pulse train that
produces low discharge probabilities (as we postulate is the
case for almost all fibers) the majority of pulses in the train
will be subthreshold. These preliminary physiological data
are consistent with some psychophysical data for high-rate
stimulation [29]. Since many implants now use high stimulus
pulse-rates, fiber noise-levels may indeed be higher than those
used in the model. Model simulations using higher fiber noise-
levels indicate that there is a greater distribution of excitation
amongst the fibers (i.e., a greater “spread” of excitation), again
leading to reduced discharge probabilities per fiber.
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