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Abstract—Most models of auditory nerve response to electrical incorporate stochastic activity [1]-[9], but the consequences
stimulation are deterministic, despite significant physiological evi- for behavioral performance have not been investigated.
dence for stochastic activity. Furthermore, psychophysical models In the normal mammalian auditory system, the AN exhibits
and analyses of physiological data using deterministic descrip- . L .
tions do not accurately predict many psychophysical phenomena. bo_th quntaneous discharges e}nd varlgnce In e}coustlcally—
In this paper we investigate whether inclusion of stochastic driven discharge rates. The inner-hair-cell/auditory-nerve
activity in neural models improves such predictions. To avoid the Synapse appears to be the primary source of this stochastic
complication of interpulse interactions and to enable the use of a activity [10]. In most cases, profound sensorineural hearing
simpler and faster auditory nerve model we restrict our investiga- loss results from the functional loss of all, or nearly all,

tion to single pulses and low-rate (<200 pulses/s) pulse trains. Weh - Is. A hai I likelv to b
apply signal detection theory to produce direct predictions of be- ar cells. As a consequence, hair cells are uniikely 1o be a

havioral threshold, dynamic range and intensity difference limen. Significant source of variance (i.e., noise) in neural response
Specifically, we investigate threshold versus pulse duration (the to electrical stimulation of a profoundly deaf ear [11]. A

strength-duration characteristics), threshold and uncomfortable gserijes of studies by Verveen and colleagues [12] have shown,
loudness (and the corresponding dynamic range) versus phasepgever, that random fluctuations in a neuron’s membrane

duration, the effects of electrode configuration on dynamic range tential d d f noi Th itud
and on strength-duration, threshold versus number of pulses (the PO'€Ntal Produce a secondary source of noise. the magnitude

temporal-integration characteristics), intensity difference limen Of these fluctuations is significantly less than the noise from
as a function of loudness, and the effects of neural survival on the inner hair cells and has consequently been regarded as
these measures. For all psychophysical measures investigated, thgnimportant. Hence, neural response to electrical stimulation
inclusion of stochastic activity in the auditory nerve model was |55 historically been modeled via deterministic descriptions
found to produce more accurate predictions. . . L
_ _ ~such as the Hodgkin—Huxley equations. However, significant
|nde>]§ Tertms—lAlud;tpryl Q?rVel:t_COChkt?ar 'Ithd)!?fm’ dynlgmlc variance has been measured in the response of AN fibers to
range, functional electrical stimulation, intensity difference limen  ; : ; ;
(IDL), psychophysics, stochastic model, threshold, uncomfortable [Szl?g[lg] E:ZPEangtlrbr:r;;plul_seSd (11, I[Isg’ [dl3] an.d _pglse t:jallns
loudness. , plained at all by deterministic models.
This stochastic activity should be a significant factor in the
psychophysical performance of cochlear implant users.
. INTRODUCTION Studies of single fiber response using an arbitrary measure

ODELS OF cochlear implant perception have histo@f AN fiber threshold do not accurately predict behavioral
ically utilized deterministic descriptions of auditorythreshold versus phase duration (strength-duration) curves for

nerve (AN) response to electrical stimulation. Recently, physinusoidal stimulation [14] or for pulsatile stimulation [15],

iological models of AN response have been developed tH&f]. Indeed, strength-duration curves of cochlear implant

_ _ _ _users are not well predicted by deterministic models of AN
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Fig. 1. Cochlear neural model and behavioral intensity-discrimination/loudness model.

directly how behavioral threshold, dynamic range and intensib§ 0.5 is referred to as the fiber's threshold. The slope of
difference limen (IDL) change with stimulus parameters arttie integrated-Gaussian is determined by the relative spread

nerve survival. (RS), which is the standard deviation of the Gaussian noise
divided by the threshold [1, Eq. 4]. The Gaussian noise is the
. METHODS underlying mechanism that generates the integrated-Gaussian
I/O function.
A. Psychophysical Model Although only minimal physiological data have been col-

. o .. _lected on the distributions of thresholds and RS'’s in a popu-

The form of our psychophysical model is given in F|g_. Liation of AN fibers at any cochlear location, there exist just
Th's m0d8| fOIIO.WS _the approach of [18]-{21], in which nough to enable us to set distributions of model parameters
Intensity pe_rceptlt_)n is related to the response OT the approximate those seen in the physiological data from cat

to an electrical stimulus. Such models can be derived fr “We model the threshold and RS of each fiber as two
cpmputational p_sychophysical mpdels of acoustic stimul dependent random variables. Pseudorandom numbers are
tion that relate intensity perception to AN response.(e. nerated using the estimated distributions to obtain different

[22]-[25]). Here, we assume that the peripheral section resholds and different RS’s for each fiber. In order to
acoustic psychophysical models can be attributed to eXCitatirq{%\intain the same set of 1/O functions across simulations with

of the AN and the remaining components attributed to MOffie same number of fibers, the seeds of the pseudorandom

central processing. To construct the model, the excitatign ,\or generators are two different fixed values, one for the
section is replaced by a model of electrical stimulation

he AN. Th | . £ th del is simil h eneration of the thresholds and one for the RS's.
the ) € central section of the mode IS Simitar to_ t For both the deterministic and the stochastic model, fiber
central section used to model normal hearing. Accord'ng%resholds are uniformly distributed from5 dB to +5 dB

our model has tW(_) major divisions, @ditory nervesection with respect to the mean threshold, which is determined by
and apsychophysicatection.

1) AN Section:In this paper, two models of the AN are E[Threshold] = Mean Threshold
compared: a stochastic model and a deterministic model. For . 0.18
the AN section of our model we utilize a description of total = 121.04 > PW (dB re.1pA) (1)

AN response to electrical stimulation based on the model @f,ore PW is the pulse width (phase duration)is/phase.
White [7], [9] that we developed further in [1]. This modelgiper thresholds are uniformly distributed in units of dB re.
consists of: 1) an input/output (I/O) function for each of ag LA

arbitrary number of AN fibers and 2) a function approximating i the stochastic model, the RS’s are normally distributed,
the attenuation of the excitatory current as it spreads from than the mean determined by
active electrode to the site of action potential generation in
each neuron. E[RY =0.124+9.51 x 107> x PW—7.90 x 10~° x PW* (2)

The 1/O function describes the probability of discharge in
response to a single pulse as a function of the stimulus intensityd a standard deviation of 0.06.
delivered to the fiber (expressed in absolute units). For theAn integrated-Gaussian function describes a fiber's proba-
deterministic model, this is a step function [1, Eq. 2], where tH#lity of discharge versuabsoluteintensity, not on a relative
intensity at which the discharge probability changes from ze(e.g., dB) scale. For each fiber, threshold is expressed in
to one is referred to as the fiber's threshold. For the stochaslzsolute units and the standard deviation of the Gaussian
model, the I/O function is an integrated-Gaussian [1, Eq. 3jpise is the fiber's RS multiplied by its threshold expressed
where the intensity corresponding to a discharge probability absolute units.
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Following [18], we approximate the electrode array by signals contain some variability. Signal detection theory has
point source of current at the active electrode and the Alrmed the basis of many successful psychophysical models
tissue by a homogeneous resistive medium consisting ofofithe normal auditory system (e.g., [22]-[25]). Indeed, signal
uniform density of single AN fibers. Unless otherwise notedietection theory is the basis for models of many sensory
the model cochlea is populated with 10 000 fibers. We assusystems. We believe that signal detection theory will also be
that the stimulating electrode is placed 15 mm inside a 30 mequired in electrical stimulation of the auditory nerve where
cochlea. To calculate the stimulus intensity at each AN fibestochastic activity results from membrane noise. Although
we assume that the stimulus is attenuated at the rate stdtistical methods are unnecessary for the deterministic model,
0.5 dB/mm for monopolar (MP) stimulation [26] and 4 dB/mnwe consider it as a specialized case of the stochastic model
for bipolar (BP) stimulation—the latter value is appropriatevhere the variances are equal to zero.
for both radial-BP pairs [26] and closely-spaced longitudinal- The output of the neural/psychophysical model developed
BP pairs [27]. Less closely-spaced BP configurations shoufd Section 1I-A can be used to predict psychophysical results
produce a lower rate of attenuation, such that model responasing either Monte Carlo or analytical signal detection theory
and the resulting predictions will tend toward those given fanethods. Monte Carlo techniques are useful because they can
MP configurations. incorporate the same paradigm with which psychophysical

Note that in order to simplify model-data comparisonsesults are collected. They are also more accurate because
we ignore such factors as phase order for biphasic stimthiey can incorporate the actual measured response distribution.
(anodic/cathodic or cathodic/anodic) and electrode form (sha@ralytical methods on the other hand are more efficient
and material). Future investigation of such factors may suggesimputationally, but require approximation of the response
modifications to the model of [1] that would allow theirdistribution.
inclusion in predictions of psychophysical data. In the following two sections we describe the methods

2) Psychophysical Sectiorf-ollowing [18] and [21], inten- used in determining our model's performance on a number
sity discrimination is based on the total discharge rate of alf different psychophysical tasks.

AN fibers activated by the electrical stimulation. Following 1) Threshold and Intensity Difference Limem the Monte

[21], from psychophysical measurement of threshold vers@airlo implementation of the model, a pseudorandom
stimulus duration [28], [29], we use a 100-ms rectangular intaniformly-distributed number between zero and one is
gration window! These two aspects, the summing of responsgenerated for each neuron. If the number is less than the
across all neurons and the long-term temporal integration, gawobability of discharge for that neuron [as determined by the
be modeled by spatial summation and temporal integrationbdel neuron’s I/O function and the stimulus parameters],
the output of the neural section. the neuron is deemed to have discharged. This is repeated for

Note that if our model were to be extended to investigatgach pulse in the pulse train. The total number of discharges
psychophysical results for higher pulse-rate stimuli, short-tefar all neurons to each pulse is then passed through the
integration effects could be included in the psychophysicpkychophysical section of the model to give the total number
section using the approach of McKay and McDermott [19] asf discharges occurring within the temporal integration period.
included in the AN section [5], [29], [30]. Such short-ternThis output can then be used directly in any criterion-specific
integration effects may be particularly apparent in amplitugssychophysical paradigm.
modulated pulse trains [31]. Note also that for higher pulse A range of psychophysical paradigms were used in the
rates, in order to take into consideration refractory effects, t@ellection of the behavioral thresholds and IDL presented in
pulse-train model of [2] should be used in the AN sectioBection Ill, some of which were not criterion-specific. For
of the model in place of the single-pulse model of [1] used ifonsistency and simplicity, we use a standard two-interval
this paper. See [2] for a discussion of further interpulse effedtsrced-choice paradigm [32] to determine the model’s pre-

that may need to be considered. diction of the psychophysical data. From Section II-A, two
stimuli are perceived to be equal in intensity when the output
B. Determination of Psychophysical Measures of the temporal integration section of the model is identical

Signal detection theory refers to statistical methods fg‘)or the two stimuli. If we assume an ideal observer, then the
dete?minin when a si nZlI mav be detected in the resenséiemulus interval eliciting the greater number of discharges
9 9 y P iS chosen as the one containing the stimulus, in the case of

of some confounding signal (e.g., background noise). Thethreshold measurement. In the case of an IDL measure-

signal t(.) be detected. and .the confoundlng S|gnal may al%%nt, the interval with the larger spike-count is chosen as
be considered as a pair of signals to be distinguished, and thus . - . ; . .
. . s the interval containing the higher intensity stimulus. In the

such methods will equally apply to signal discrimination tasks. . )
- ; : rare case when the number of discharges is equal for the
Statisticalmethods are required when either one or both of the ~ . - N B
WO intervals an “unbiased coin is flipped” to generate the

decision.

1If the stimulus is <100 ms, as is the case for almost all the data presente . - AT
in this paper, the integrator’'s output is simply the sum of all spikes thatd]n analyt'cal appllcat|ons of the model, the distribution of

occur during the 100-ms integration period. For cases where the stimulugli® model’s output is approximated by an analytical function.
>100-ms, we sum the responses elicited by the maximum number of pulsgsen signal detection theory is used to derive an analytical ex-

that can appear within the temporal integration window. For a uniform pulse . t dict th del’ f iteri
train this is equal to the elicited responsertqoulses, wherer is the pulse pression to predic € moael's performance on any criterion-

rate times 100 ms. specific psychophysical detection/discrimination task. Next we
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derive expressions for predicting the model’s performance on 120

a two-interval forced-choice paradigm.

Consider two discrete random variablé§ and X, that
describe the number of discharges, as predicted by the mode
developed in Section II-A, produced in response to stimuli
one and two, respectivelyX; and X, have probability mass
functions f; and f» with means ofu; and 2 and standard
deviations ofo; and o, respectively.f; and f» have values
for all integers within the boundf, X,,,,], where X,,,.; is
the maximum number of discharges possible.

If stimulus two has the greater intensity, the probability of
our detection/discrimination system choosing correctly that it
has a greater intensity than stimulus one is

100

Correct Detections/Discriminations (%)

80

[e2]
o

Py
(=)
T

N
[=)

O 1 I I I I
X X 0 10 st 2|0 nt 3(t) B 401 A 50 60
. iy iy imulus Intensity re.1u
Pr{Choosing correctly = > [ fi(n) >_ fa(m)
"0 ——" Fig. 2. Psychometric functions for behavioral threshold predicted by the

deterministic (dashed line) and stochastic (solid line) AN models.

+3 3 Ko fi(n) fo(n). (3)

" ) in our model, a discriminable difference for the deterministic
Proof: See [33, p. 168]. From [1], ify; < 15 and qqe| corresponds to the lowest intensity difference producing
Xmax > 100, f; is well approximated by the Poisson probag, increase in the spike count. In contrast, the stochastic
bility mass function model produces a psychometric function that rises smoothly
e~Hi T from 50% (chance performance level) to 100% discrimination
fiwsp) = —=  @=0,1,2, ... (4)  as the neural responses become more discriminable, i.e., as
the overlap of the response distributions of the two stimulus
conditions decreases.

A point on the psychometric function that is defined as the
threshold (or IDL) can then be chosen to match the paradigm
that was used in the collection of the psychophysical data that
we wish to predict. However, not all of experimental methods

: o used to collect the data presented in the results were criterion-
variables having integer values bound[By X.ax|. There are  gaific 1n such cases we used 70.71% as the critdfian.a

two possible methods of using (5) for the case where 15. 70 710 criterion, a discriminable difference for the stochastic

Either the appropriate sums in (3) can be changed 10 integraffyqe corresponds to the intensity at which 70.71% of the time

or the Gaussian probability density function can be discretizgg .o spikes are produced by the comparison interval than by
such that it only has values for integers within the bounqge reference interval.

[0, Xomax], forming a probability mass function with the same |, o qer to test the accuracy of the analytical estimate, we

formula as (5). These methods produce virtually identicglnq,cred Monte Carlo simulations of a standard up-down
results. We use the latter method because it is computationgflyashold procedure [32] using our psychophysical model. For
faster. o . each threshold measurement the simulation was run until ten
' The dgnvatpn of (3) foIIlows the traditional methods use ming points were reached. Threshold was taken to be the
in analytical signal detection theory (e.g., see [22]) exCeplaqn of the final eight tumning points. Theints(o) plotted in
in two manners: 1) while unequal variance may have begfly 3 are the means of four of these threshold measurements
traditionally allowed for in signal detection noise models, it i$or four different phase durations and three different durations
not usual to allow for two different noise distributions as W&,ien in number of pulses) of a 100 pps pulse-train, with error
have done and 2) continuous random variables are normally,s ingicatingt-1 standard deviation. Thresholds obtained via
used, rather than discrete random variables as we have dqpg-analytical methodifies) accurately estimate the simulation
Both of these deviations are necessitated and justified by ngéuns_
is known from the neurophysiology [1]. _ 2) Dynamic Range:We define dynamic range as the differ-
Sample psychometric functions for behavioral thresholgh e in 4B between behavioral threshold and the lowest stim-
generated using this method are plotted 'g Fig. 2. These Wefis |evel to elicit an uncomfortably loud percept. One long-
obtained from the model of 10000 neurons response 10 sianding and intensively studied hypothesis is that loudness
a single 100us/phase biphasic pulse generated with a Mg gimply proportional to the total AN response (e.g., [35]).

electrode configuration. The deterministic model produces,gyiie there is now direct evidence to suggest that loudness
step-shaped psychometric function, because there is no vari-

ance in the number of spikes. With the ideal observer assumetirhe point on a psychometric function that is estimated by a two-down,
one-up procedure is 70.71% [32]. We performed sensitivity testing and found
2This is a conservative estimate of the number of surviving AN fibers inthat comparisons between the deterministic and the stochastic model were
subject with a profound sensorineural hearing loss [34]. relatively insensitive to the value of the criterion.

and if 15 < 1; < Xpax — 15 and X, > 30, f; is well
approximated by the Gaussian probability density function
1 2 2
Jilzs i, 03) = e ()20 _ oo <z < 0. (5)

N V2ro;

Equation (3) assumes bofti; and X, are discrete random
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[36]. Therefore, we assume here thatcomfortabldoudness e AFFEEE !
. . S} |
(UCL) corresponds to a fixed number of neural discharges for g ' 7
the whole AN within the period of temporal integration, i.e., €10° | |
the output of the model’s temporal integrator section. We will 2 il
call the number of discharges required to reach uncomfortable§ LT i
loudnessV,,.;. We have no plausible way of determining how = l
many responses correspond to UE4o we, therefore, present 107 '
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Fig. 4. Neural response versus stimulus intensity from a model of 10000
[ll. RESULTS fibers in response to a single pulse of duration 100 and 2@fphase (solid
. , . lines and dashed lines, respectively): (a) deterministic and stochastic model:
Here we present: 1) the model's response properties |@sar vertical scaleand (b) deterministic and stochastic modebarithmic

a function of stimulus and model parameters and 2) sometical scale.
examples of the model’s prediction of psychophysical data.

. implant’'s operating range may be in the region where the

A. Model Response Properties stochastic activity is significant. From this we expect that the

Model response versus stimulus intensity predicted by odeterministic and the stochastic models will have differing
model with 10000 fibers in response to a single pulse pfedictions of intensity perception as a function of phase
duration 100 and 200Q:s/phase is plotted in Fig. 4. Theduration and that these differences will be greater at lower
number of discharges is a monotonic function of the stimulgtimulus intensities.
intensity, and there is horizontal shift of the function dependentNeural response to a single pulse predicted for MP (solid
on the phase duration. line) and BP (dashed line) stimulation is plotted in Fig. 5. For

Plotted with a linear ordinate [Fig. 4(a)], the deterministithe deterministic model, the excitation of fibers (shown by the
model and the stochastic model appear to predict very simiklope of the curve) is faster for a MP stimulus than for a BP
mean response growth curves. However, when plotted withsémulus, because of the comparatively wider current spread
logarithmic ordinate [Fig. 4(b)], it can be seen that the modefsee [1, Fig. 9]). However, for the stochastic model, this effect
predict quite different mean responses for pulse amplitudigslimited to high stimulus intensities and is less pronounced.
that elicit fewer than 1000 spikes. There is a difference in the region below 50 dB the growth of the response is domi-
the slopes of the functions and in the amount of variance.rated by the slopes of the fibers’ I/O functionst the current
is likely that behavioral threshold is reached with a small&pread function. Again, a significant proportion of a cochlear
number of discharges, and hence some or all of a cochlgaplant’'s operating range may lie within the region below

4 . . . 50 dB, where the mean responses of the two models diverge

Unfortunately, signal detection theory cannot be used to explain the nature . L . .
or behavior of UCL. It is possible that other neural mechanisms contribute'ri'tg1d where the variance is S|gn|f|cant in the stochastic model.
the sensation of UCL. Similar to our hypothesis of the importance of pulse width, we
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T hase duration curves have slopes that begin to steepen with
1 3 — X
0 e phase durations greater than 5€/phase and the slope of the

White data is steeper than6 dB/doubling in the region from
1000 to 2000us/phase. These results are consistent with the
data of Pfingset al. collected in monkeys (see [15, Fig. 2]).

In contrast, the UCL curves monotonically decrease in slope
with increasing phase duration, causing the dynamic range to
increase with increasing phase duration. This is consistent with
other data from human subjects in response to pulsatile stimuli,
e.g., see single-pulse data for phase durations between 200 and
10000 us/phase from one subject in [29, Fig. 7], averages

Mean Number of Discharges (spikes)

40 45 50 55 60 65 70 across four subjects in [37, Table 1], and averages across 14
Stimulus Intensity (dB re. 1pA) subjects for low-rate pulse trains of phase durations between
(b) 24 and 408us/phase in [38, Table IV].

Fig. 5. Neural response versus stimulus intensity from a model of 10000 Our model’s prediction of these data are plotted in Fig. 7.
fipers in_ response to a s_ingle pulse for MP (solid Iim_a) and BP (dashed linfhe deterministic model predicts that the threshold and UCL
stimulation: (a) deterministic model and (b) stochastic model. . . . .
curves will have identical slopes at each phase duration
[Fig. 7(a)], such that the behavioral dynamic range will not
expect that BP and MP stimulation will also produce differinghange with phase duration. In contrast, the stochastic model
predictions in the stochastic and deterministic models and tlzatcurately predicts the changes in slopes of the threshold
these differences will be greater at lower stimulus intensitieand UCL curves at each phase duration [Fig. 7(b)] and the
Furthermore, because of the difference in the responsaresponding increase in dynamic range with increasing phase
growth curves of the deterministic and stochastic models: dyration. It appears that UCL for these data corresponds to an
predictions of perception as a function of the number of pulsé§,.; for our model in the region of 100 to 1000 spikes.
will differ for the two models and 2) predictions of IDL will Note that in Fig. 7(b) the model prediction of UCL for
differ. N, = 100 spikes begins to converge with its prediction of
We now look directly at how our model's predictions ofthreshold. We believe [1] that this arises from the inaccuracy
intensity perception compare with psychophysical data.  of the stochastic AN model at very low stimulus intensities
for long pulses.Specifically, we believe that discharge prob-
B. Threshold and Uncomfortable Loudness Versus abilities at very low stimulus intensitiefor Iong pulsesare
Phase Duration: Dynamic Range actually considerably lower than those predicted by the model

Behavioral threshold and UCL versus phase duration déFrt:éegrated-Gaussmn function. See [1] for a discussion. More
h

from two human subjects are plotted in Fig. 6. Using a B ysiological data are required to increase the accuracy of

electrode configuration, the stimuli for one of the subjects were: model in this region where the data are likely to deviate

single-cycle sinusoid®,BP stimulation (from [29, Fig. 9]). significantly from an integrated-Gaussian function.
The stimuli for the other subject were biphasic pulse trains
delivered at 100 pps (from [37, Fig. 1]). The threshold versus. Effect of Electrode Configuration on Dynamic Range

5For a single-cycle of sinusoidal current we define phase duration as haIfV\./e present _here behavioral dynam'c raqge data from human
the period of the sinusoid. subjects for different electrode configurations. Battraeal.



BRUCE et al: EFFECTS OF STOCHASTIC NEURAL ACTIVITY 1399
60 3 .
=< . Uncomfortable Loudness = NN i
150 . ——  Behavioral Threshoid o
— -6 dB/doubling 250 - - N __=1000 spikes 7
o Deterministic Model ucl ;
c == N, =500 spikes
Q 40+ o - N, = 100 spikes
= c o 4
= >
230 12
c o
Qo = Stochastic Model Psychophysical Data
c =15
=201 1 o
3 . S
I e s
& N
0 s v 5.
10 10 10 Qosr 1
Phase Duration (us/phase) &
(@ 0 ;
10 100 1000
60 ‘ Phase Duration (us/phase)
< --- Uncomfortable Loudness . . . . .
S al -6 dB/doubling Fig. 8. BP dynamic range divided by MP dynamic range: psychophysical
—50 Behavioral Threshold data (averages across five human subjects and two electrodes) from [39] and
) model predictions, for phase durations of 25, 50, 75, 100, 200, and 400
m 40+ us/phase.
RS
=
30 ] 50 : SR
) N - =--  Deterministic - MP & BP
=20 1 oo -6 dB/doubling
1%} 40- T~ RN ---  Stochastic - BP
=] DR Stochastic — MP
E10 32
73 = 30 BN N,
0 ‘ o N T
10° 10° 10° o
Phase Duration (us/phase) = 207 AN
©
Fig. 7. Model predictions of threshold and uncomfortable loudness versusg 10 \\\
phase duration: (a) deterministic model and (b) stochastic model. = ~
0
[39] have measured behavioral dynamic ranges from five

subjects in response to pulses of widths 25, 50, 75, 100, 200, ~%o 1000 10000
and 400us/phase for BP and MP electrode configurations on Phase Duration (us/phase)
two different electrodes. Fig. 9. Deterministic and stochastic model predictions of threshold versus
These data are plotted in Fig. 8, along with model prehase duration (pulse width) for BP and MP stimulation.
dictions of these data, as BP dynamic range divided by MP
dynamic range. All of these data have a ratio of around one or . .
less. The deterministic model predicts ratios between 2.7—3s.§|.mUIUS _[41] for a number of electrodes in a mult!electrode
In contrast the stochastic model predicts ratios of 0.6-1. ,ray, using both BP and MP electrgde configurations. Qver
depending on the value oN,., which are much closer ¢ e en'ure electrode array the dynamic ranges for BP and MP
to the ratios observed in the psychophysical data. Like tfimulation were approximately equal.
dynamic range versus pulse width predictions of Section 111-B, The model predictions can be better understood when the
it appears that UCL for these data corresponds tVan for factors cgntnbutmg to Fhe growth in the total AN response
our model in the region of 100 to 1000 spikes. are considered [see Fig. 5(a) and (b)]. In the deterministic
These data and model predictions are consistent with tf@del, thresholds do not change with electrode configuration
data and model predictions shown in [33, Fig. 6-9]. Zwolal$€€ Fig. 9], so only the effect of electrode configuration on
et al. (see [40, Table I1I]) have also found: 1) dynamic rangedCL Will alter the dynamic range. Only two factors contribute
in six human subjects to be on average approximately eq@@dexcitation of fibers in the deterministic model: 1) the spread
for BP and MP stimulation—in agreement with the Battraer of current to fibers distant from the electrode and 2) the
al. data plotted in Fig. 8 and 2) some subjects with small@istribution single-fiber thresholds at any one location. If the
BP dynamic ranges than MP—in agreement with the dafi@rmer were the only factor (i.e., single-fiber thresholds in
plotted in [33, Fig. 6-9]. Similar BP and MP dynamic rangethe deterministic model were all identical), then the BP: MP
have also been observed for stimuli very different from thostynamic range ratio would be equal to the ratio of the current
presented and modeled here. Shannon has measured behawtteriuation rates for the two modes @). Indeed, for BP
dynamic ranges in response to a 1000-Hz, 300-ms sinusoidainulation the first factor (“1”) is dominant: the spread of
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current is very narrow and, therefore, all the fibers in the  The stochastic model is able to predict this increase
vicinity of the electrode are excited at fairly low intensities, in slope with phase duration, whereas the deterministic
such that the excitation of fibers successively further away  model predicts zero slope for all phase durations.
becomes the primary factor at intensities approaching UCL. In2) Intensity Difference LimenBoth the deterministic and
contrast, MP stimulation produces a wide spread of current, stochastic models agree with intensity difference limen
such that the second factor (“2”) has a stronger impact at data from [45] in that they predict ar8-dB reduction
all intensities. The effect of the second factor, therefore, isto  in the maximum Weber fractions measured over the
moderate the differences between the two modes of stimulation dynamic range of a subject. However, the deterministic
somewhat, more than halving the predicted BP : MP dynamic  model predicts very erratic Weber functions, with the
range ratid predicted Weber fractions all underestimating the data,
However, this ratio is still approximately two to seven while the stochastic model predicts smooth Weber func-
times greater than the ratios seen in the psychophysical data. tions as seen in the data and Weber fractions in the same
The stochastic model accounts for this with two additional range as those of the data.
factors: 1) the distribution of single-fiber 1/0 function slopes 3) Effect of Number of Fibers on Threshold, Uncomfortable
and 2) the consequent difference in behavioral thresholds for Loudness and Intensity Difference Lim&vhile both the
BP and MP electrode configurations (see Fig. 9 for model deterministic and the stochastic model predict changes
predictions, [42, Fig. 6], and [43, Fig. 4(a)] for supporting in dynamic range and Weber fraction with respect to
psychophysical data). The former means that fibers with the threshold as the number of fibers is varied: 1) the
lowest thresholdsind the shallowest slopes will be excited at deterministic model predicts practically no change in
lower intensities than those with steeper slopes. In MP mode threshold with the number of fibers and 2) the deter-
the wide spread of current “makes available” a greater pool of  ministic model predicts decreases in dynamic range and
these sensitive, shallow-slope fibers. As a consequence, only Weber fraction with increasing neural survival, whereas
a very small stimulus amplitude is required to excite these the stochastic model predicts the opposite. Comparison
fibers sufficiently to generate a cochlear response sufficient for  of the model predictions with psychophysical data from
behavioral threshold. BP mode will excite a smaller number  anumber of human subjects shown in [45, Fig. 7], whom
of these shallow-slope fibers. Therefore, a considerably higher we could expect to vary in the number of surviving
amplitude is required to generate the same total cochlear fibers, suggests that the stochastic model, in contrast to
response. At higher stimulus intensities near UCL, steep-slope the deterministic model, may account for some of the
fibers are responsible for almost all the changes in cochlear intersubject variability in the psychophysical data.
activity. Because only small changes in stimulus amplitude
create large changes in neural activity, the difference in stim- V. DISCUSSION
ulus amplitudes required to elicit UCL for the two electrode

types is generallfynot as great as that at behavioral thresholdl, Using the Model to Understand Psychophysical Behavior
Thus the stochastic model generally predicts BP : MP dynamic

range ratios that are approximately one or less. The relationship between cochlear response and behavior
is defined by the central component of our model. We use
D. Eurther Results a spike-counting model (i.e., perfect spatiotemporal summa-

o ) tion) used in some models of normal hearing. This model

A number of further predictions of psychophysical datas re|atively simple to use. For example: 1) by adjusting the

not shown in this paper due to space restrictions, have begfipjitude of a stimulus until the elicited cochlear output is
obtained with this model [33]. Preprints of a manuscript igqual to that elicited by another stimulus, the two stimuli can
preparation that contains t_hese regults are available_ (dow- made to evoke the same perceived intensity and 2) the
load from http://www.bme.jhu.edu/"ibruce/papers/predict.htg;tpyt is a single mean and a single variance for each stimulus,
or email: ibruce@bme.jhu.edu). In summary, these results &gye|atively simple statistical methods can be used to measure
as follows. detectability or discriminability of stimuli.

1) Threshold Versus Number of Pulses (Temporal Integra- Understanding how the cochlear response is affected by
tion): Both the psychophysical data from one humastimulus parameters, electrode configuration, nerve pathology,
subject shown in [33, Fig. 6-12] and the data fromand nerve survival is necessary for understanding how these
five human subjects shown in [44, Fig. 5] indicate th@ariables control behavioral response. The cochlear response is
steeper slopes of threshold versus number of pulsgsntrolled by three primary factors: 1) The individual fiber 1/0
(temporal integration) curves for longer phase durationginctions—we have shown that model predictions for a step-

61f the range of thresholds (at a given cochlear place) is found throuéHnCt!on (determln_lstlc model) and for _an mtegra_ted-Gaus&an

neurophysiological measurements to be more Gaussian than uniform astwaction (stochastic model) are very dlﬁerém) Differences

assumed in our model, then the deterministic model's prediction of the fibers—the distribution of fiber 1/0 slopes is broad and
BP : MP dynamic range ratio would further approach the behavioral data.

7If quite high stimulus levels are required to reach UCL (e)§,.; is quite 8Because AN fibers may only discharge in response to a fraction of the
large, or the total number fibers is small), the stochastic model will behapelses in the stimulus, discharge probabilities for individual fibers are best
similarly to the deterministic model. In such cases, the difference in UClisualized using a two to three decade logarithmic scale. Cochlear response
levels for the two electrode types can be relatively large. As a consequerfomgctions (e.g., Fig. 4) should be viewed over a much larger range (e.g., six
BP : MP dynamic range ratios can become somewhat larger than one.  decades)!
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unimodal (and thresholds also vary among fibers). The detapise is unaffected by stimulus parameters. One consequence
ministic model cannot incorporate the slopes of I/O functionef this noise is that thresholds increase with increasing noise
let alone their distribution. In contrast, the stochastic modkvels such that the stochastic model behavior tends toward
is able to describe the distribution of slopes, such that fibaftsat of the deterministic model. This may account for those
with shallow slopes contribute the majority of cochlear activitgtrength-duration curves in [15, Fig. 2] that are higher and
at low stimulus intensities. In sharp contrast, fibers with stedptter. Central noise may also account for the relatively high
slopes contribute the majority of increase in cochlear activity ¥eber fractions measured in some subjects (see [45, Fig. 6]).
high stimulus intensities. 3) The large impact of phase duratiGurthermore, from preliminary simulation results it appears
(pulse width) on a fiber's discharge probability function.  that additional noise may improve the predictions of the

The impact of the three primary factors, plus other factostochastic modahorethan the predictions of the deterministic
such as the number of pulses, electrode configuration amadel.
nerve survival, can be understood and predicted. For exampleln summary, the results listed in the preceding paragraph
in order to maintain the same level of audibility when théndicate that such additional noise sourceay improve pre-
number of stimulus pulses is halved, pulse amplitude must bigtions to some small extent and may be useful in under-
increased so that the average discharge probability is doublsgnding intersubject variability. However, such hypothesized
In a similar manner, in order to maintain the same perceivedise sources have not been well characterized. This contrasts
intensity when switching from MP to BP stimulation, pulsavith stochastic activity occurring in auditory nerve fibers,
amplitude must be increased to compensate exactly for the f@- which there are good measurements, significant evidence
duction in discharge probability across the cochlea. Similarlgf its source, and accurate predictive biophysical models.
a cochlea with poor nerve survival requires a compensatdryrthermore, we have shown in this paper that inclusion
increase in pulse amplitude. Furthermore, the relative noiséthis single noise mechanism in a simple cochlear model
level of fibers may be quite different for different cochleaenables accurate prediction of a wide-range of psychophysical
pathologies [46]. This directly impacts the slope of individudbehavior.
fibers and, therefore, the slope of total cochlear response. FOBy changing parameters of the model to reduce the amount
example, in subjects with a pathology that causes fibers to d&fe stochastic activity we may also account for such data
relatively noisy, one would expect dynamic ranges to be larggiat lie somewhere between the deterministic model and the
and intensity discrimination to be poorer, particularly at lowtochastic model predictions. For instance, particularly focused
intensities. current fields or extremely low neural survival may cause

higher probabilities of firing at stimulus intensities within
_ the behavioral operating range. Because neural responses at
B. Model Extensions high discharge probabilities exhibit relatively little variability,

In this paper, we have derived a model of intensity pestochastic and deterministic model predictions are similar
ception in cochlear implants users based on physiologig#ider such conditions.
data and have used this model to investigate a number offThe physiological data on which our model is based are
different psychophysical phenomena. In all the cases examirigein acutely-implanted, normal-hearing animals. This model
in this paper, the model predicts the perceptual performangdees not take into account the effects that etiology, prolonged
of cochlear implant users significantly better when stochastieafness and implantation have on the response of AN fibers
activity is included. However, extensions or revisions db electrical stimulation [46]. An extension to this study could
this AN model may further improve predictions and oube to model the effects of various etiologies on single-fiber
understanding of the functional significance of the physiology/O functions and current spread.

As we raised in [1], the neural section of our model Only responses to stimulation from a single electrode have
is derived from physiological data collected mats. Fur- been investigated in this paper. In order to model responses to
ther physiological data may be collected from humans usistimulation from multiple electrodes, even at moderate pulse
cochlear implant telemetry and noninvasive electrophysiologgtes, refractory effects should be incorporated [2] when the
that should prove useful in refining our simple model of currefectrodes are stimulating overlapping populations of fibers.
spread and neural response. A model of current spread in &ieo, loudness summation effects may need to be considered
human cochlea constructed from human cochlear sections [#Hen the neural populations excited do not overlap [30], [48],
may also help to this end. [49].

Another extension to the model would be to allow for other In this paper we have limited our investigation to low pulse-
sources of noise. For instance, the survival of inner hair cellsriate stimuli. With the pulse-train model developed in [2],
some subjects could result in some remaining synapse-drive@ now have a good tool for extending this investigation to
spontaneous activity in the AN. This would affect the amounie prediction of psychophysical data for moderate stimula-
of noise present in the total AN response. Other sourcestmin rates (200-1000 pps). However, to improve this model
noise may also be present in more central sections of thee moderate and high pulse-rate (>1000 pps) stimulation,
auditory pathways. The effects of both of these potential noiseurophysiological data must be collected over a range of
sources can be included in our psychophysical model if thelischarge probabilities (possibly as low as 0.01 or lower) at
behavior is known. We have conducted initial investigatiorsich pulse rates. Preliminary physiological data [5], [50], [51]
into such effects, where we have assumed that the additior&teal interpulse interactions occurring at high pulse rates that
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can significantly increase or decrease the level of stochastansequently predictions of behavioral threshold (and related
activity in a fiber. This leads us to believe that stochastimeasures) using the three-piece model are only slightly better
activity in the AN may play an even more important roléhan those of the deterministic model. This can be most clearly
in predicting and understanding behavioral responses to higiderstood by plotting all three functions on a log-probability,
pulse-rate stimuli. log-amplitude (dB) scale. The three-piece function and the
deterministic model appear very similar to each other when
contrasted to the integrated-Gaussian function.
C. Applicability of the Model As we raised in [1], the concepts considered in this paper are
The results presented in this paper have important congéeady being applied to the design of cochlear implants. These
quences for physiological studies, for investigation of neurg®Pncepts have direct relevance to both the: 1) effectiveness and
sound coding and for speech processing strategies. For phygisafety of cochlear implants. In particular, let us consider
ological studies, the results suggest that “discharge probabif@yrrent high pulse-rate stimulation strategies. 1) If it were
versus stimulus intensity” functions should be measured. Suept for the inherently stochastic nature of the AN, stimulus
measurements will provide a far more accurate descriptigtlse-rates higher than a fiber's maximum discharge-rate might
of spatio-temporal patterns of AN response and better enagverely distort the temporal representation of a speech signal.
us to understand how information could be coded. For psi contrast, the combined activity of many stochastic fibers,
chophysical studies, our results indicate that many percept@ach firing at a low rate, should accurately represent the
measures are better predicted by the stochastic model. T&@poral features of a speech signal. 2) Nerve damage studies
source of this improvement is in the description of the mobave found that stimulation at high pulse-rates and high
peripheral section of the auditory pathways. It is, thereforamplitudes does induce serious injury to the nerve [52], [53].
suggested that consideration of stochastic activity in ANowever, at lower stimulus amplitudes that are within the
responses may produce better predictions and explanationg@@ifnal’s normal loudness range, nerve damage is not observed
a range of other psychophysical measures not investigated3d]. A likely explanation for these results is directly related
this paper. Furthermore, it is likely that the “bare-bones” psyo the stochastic nature of AN responses. If we stimulate the
chophysical section of this model should be extended to predirve with a high pulse-rate, low-amplitude stimulus we would
additional psychophysical measures with more accuracy. expect that each fiber’s discharge probability per pulse would
We have investigated neural and psychophysical responbeslow, i.e., the fiber's discharge rate would be much lower
to stimuli with a wide range of phase durations. Higher ratdan the stimulus’s pulse rate [2], [55]. As a consequence, no
pulsatile stimuli are typically used in modern cochlear imdamage to the fibers would occur. However, if the stimulus
plants, necessitating short phase durations. One might, thewas high in amplitude, fiber discharge probabilities per pulse
fore, wonder as to the relevance of studying very long pulgeuld become high, i.e., fiber discharge rates would indeed
widths. There are two reasons: 1) We believe an importasgecome too high [2], [55] and cause injury to the nerve.
feature of our AN model is the slope and shape of the single-In [33, ch. 8], we have analyzed the stochastic model output
fibers’ “probability versus stimulus intensity” functions. Weto determine what discharge probabilities per pulse are reached
have direct experimental control of this slope by changimgn individual fibers in “extreme cases.” With the phrase “ex-
phase duration. By so changing the fibers’ slopes we have éigme cases” we refer to stimulus (and neural) parameters that
served large, correlated changes in psychophysical measua¢g.likely to produce high discharge probabilities, but which
We consider fiber slope to be the dominant feature in much afe also likely to be within normal operating levels of cochlear
the behavior investigated in this paper. Therefore, we belieiaplant users. From this analysis, even in the most extreme
the ability to manipulate this feature to be fundamental ttases with a BP electrode configuration, individual spike
developing an understanding of cochlear response to electrigeibabilities are low except on a very few fibers. This means
stimulation. 2) There is a relatively large body of psychophyghat all but these few fibers will be responding at a fraction
ical data available in which long phase duration stimuli weref the pulse rate. Furthermore, we hypothesize that discharge
used. probabilities for cochlear implant users are very likely to be
It might appear that a three-piece linear fit to single-fiber I/Gignificantly lower than for our extreme cases. First, most
data would be an adequate AN model, instead of an integratsgeech processing strategies will stimulate using multiple
Gaussian fit. Quite to the contrary, simulations indicate thatectrodes, such that the excitation contributing to the loudness
such models behave more like the deterministic model whehthe stimulus will be distributed amongst more fibers than
used to predict behavioral threshold and threshold-dependetien using a single electrode. Thus, discharge probabilities on
psychophysical measures (e.g., dynamic range, IDL asingdividual fibers will be lower for multielectrode stimulation.
function of loudness). While the three-piece function doeSecond, pulse rates of 200-800 pps and higher are being used
produce a graded discharge probability over a small stimulus-implants. Increasing the pulse rate will cause more pulses
intensity range (2—4 dB), the discharge probability is zero ¢ fall within the temporal integrator window. Therefore,
one over all the remaining intensity range. This is similar tdCL will be reached at even lower individual discharge
the deterministic model, in which discharge probability is zenorobabilities. Third, MP stimulation is commonly used in
or one for all stimulus intensities. The results of this papeochlear implants. The results in [33, Table VIII.1] indicate
indicate that behavioral threshold is particularly sensitive that MP stimulation will result in quite low fiber discharge
the low-probability “tail” of single-fiber I/O functions, and probabilities. Fourth, these results are for a model cochlea
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of 10000 fibers, which is a conservative estimate of nerys]
survival in implant users. From [34], nerve survival ma
be higher in the majority of users. Greater survival wi
also lead to a greater distribution of excitation amongst the
fibers, again leading to reduced discharge probabilities 9?1%]
individual fibers. Finally, although this is more speculative,

preliminary data from Dynes [5] indicate that high pulse-rate

stimulation may further increase the noise level of AN fiber 1
Dynes found that a subthreshold pulse increased the relat vé
noise level for subsequent pulses, and for a pulse train tfig]
produces low discharge probabilities (as we postulate is the
case for almost all fibers) the majority of pulses in the train

will be subthreshold. These preliminary physiological daté9]
are consistent with some psychophysical data for high-rate
stimulation [29]. Since many implants now use high stimulugg)
pulse-rates, fiber noise-levels may indeed be higher than those
used in the model. Model simulations using higher fiber nois&—ll
levels indicate that there is a greater distribution of excitation

amongst the fibers (i.e., a greater “spread” of excitation), again
leading to reduced discharge probabilities per fiber. [22]
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