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Robust Formant Tracking for Continuous
Speech With Speaker Variability
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Abstract—Several algorithms have been developed for tracking
formant frequency trajectories of speech signals, however most of
these algorithms are either not robust in real-life noise environ-
ments or are not suitable for real-time implementation. The algo-
rithm presented in this paper obtains formant frequency estimates
from voiced segments of continuous speech by using a time-varying
adaptive filterbank to track individual formant frequencies. The
formant tracker incorporates an adaptive voicing detector and a
gender detector for formant extraction from continuous speech,
for both male and female speakers. The algorithm has a low signal
delay and provides smooth and accurate estimates for the first four
formant frequencies at moderate and high signal-to-noise ratios.
Thorough testing of the algorithm has shown that it is robust over
a wide range of signal-to-noise ratios for various types of back-
ground noises.

Index Terms—Formant estimation, hearing aids, speech anal-
ysis, speech enhancement.

I. INTRODUCTION

FORMANT frequency trajectories are major acoustical
cues for the identification of phonemes including vowels

[1]–[4], nasal consonants [5], diphthongs [6], and consonants
in consonant-vowel transitions [7]. Sound-induced hearing
loss can cause cochlear hair cell damage, leading to the degra-
dation of the auditory nerve response to formant frequencies
[8], [9]. It is likely that these degradations contribute to de-
creased intelligibility of speech for people suffering from
sound-induced hearing loss. Hearing aids that apply amplifica-
tion independently across different frequency bands probably
cannot compensate satisfactorily for this type of hearing loss
[9], [10]. However, an amplification scheme for hearing aids
called contrast-enhanced frequency shaping (CEFS) that should
improve speech perception has been proposed by Miller and
colleagues [11]. CEFS takes into account across-frequency
distortions introduced by the impaired ear and requires robust
formant frequency estimates to allow dynamic, speech-spec-
trum-dependent amplification of speech in hearing aids [9],
[11], [12]. The accurate and robust formant frequency estima-
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tion required for CEFS is not easy to accomplish in real-time
for continuous speech. This task becomes even more difficult
in real-life noise environments and with speaker variability
(i.e., in cases where the speaker is unknown, the gender of the
speaker is unknown, or different individuals are speaking at
different times or simultaneously).

Traditional formant frequency estimation methods are based
on spectral analysis and “peak picking” techniques (e.g.,
[13]–[17]). However, a comparative analysis of some of these
algorithms has shown that they are neither accurate nor robust
in transient background noise [18]. A more reliable formant es-
timation technique has been proposed by Rao and Kumaresan
[19]. This method is based on prefiltering speech using a
time-varying adaptive filter for each formant before spectral
peak estimation. The prefiltering limits the spectral region of
estimation for each formant frequency and thereby minimizes
the effects of the neighboring formants or background noise
on the estimates. The Rao and Kumaresan approach provides
reasonably accurate formant frequency estimates for strongly
voiced segments of speech. However, the algorithm is not
robust, does not recover well after a period of silence, and is
unreliable during unvoiced speech segments. These factors
make the Rao and Kumaresan algorithm unsuitable for imple-
mentation in hearing aids for CEFS amplification of continuous
speech [18]. Bruce and colleagues [20] proposed various im-
provements to the Rao and Kumaresan algorithm to overcome
these limitations. The Bruce et al. algorithm includes a formant
energy detector and a voicing detector, so that the algorithm
does not track formants during unvoiced speech segments,
during periods of silence, or when a formant has insufficient
energy for reliable spectral estimation [20].

The formant tracking algorithm presented in this paper has
several improvements upon the Bruce et al. scheme to make it
more robust in continuous speech, to speaker variability, and to
different types of background noises present in real-life envi-
ronments. In Section II we describe the improvements that have
been made to the Bruce et al. algorithm, in Section III we de-
scribe the results of quantitative and qualitative testing of the
new algorithm in a variety of background noise conditions, and
in Section IV we discuss the implications of these results and
draw some conclusions about the utility of the algorithm for
a range of speech processing applications. Preliminary results
have been presented in [18] and [21]. Matlab source code for
the algorithm is available on request.

II. FORMANT TRACKING ALGORITHM

A block diagram showing the main features of the formant
tracker is shown in Fig. 1. First, the natural spectral tilt of the
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Fig. 1. Block diagram of the formant tracker. The formant tracker relies on an adaptive filterbank to separate each formant frequency region prior to spectral
estimation.

signal [14], [22] is removed via a highpass preemphasis filter
(second-order Butterworth filter with a cutoff frequency of
3 kHz). An analytic version of the preemphasized speech signal
is then calculated using an approximate Hilbert transformer
(20th-order linear-phase FIR filter [23]). The primary reason
behind converting the real-valued signal into its analytic rep-
resentation is to allow the use of complex-valued filters in the
formant filterbank (see Section II-A below). The conversion
also decreases the amount of aliasing in the signal, increasing
the accuracy of the spectral estimation technique used for
formant frequency estimation [24].

The algorithm was implemented for speech signals sampled
at kHz and with an RMS energy of 0 dB over the entire
duration of the signal.

A. Adaptive Bandpass Filterbank

The adaptive bandpass filterbank used in the formant tracking
algorithm is similar to the one proposed by Rao and Kumaresan
[19] but has been modified to further suppress the effects of
the pitch from the first-formant estimation. Each band of the
filterbank consists of an all-zero filter (AZF) cascaded with a
single-pole dynamic tracking filter (DTF). The combination of
the AZF and the DTF is called a formant filter and is respon-
sible for bandpass filtering the speech signal prior to estimating
individual formant frequencies. Complex filters are used to sim-
plify normalization of the filter frequency response to give unity
gain and zero phase lag at the filter center frequency [19]. The
zeros and pole of each formant filter are updated over time,
based on the previous formant frequency estimates, allowing dy-
namic suppression of interference from neighboring formants
and from background noise sources, while tracking an indi-
vidual formant frequency as it varies with time.

In the filters for tracking , each AZF has three
zeros that are set to the previous value of the other three
formant frequency estimates (obtained from the other three

formant trackers). The transfer function of the th AZF (where
or ) at time is

(1)

where

(2)

and is the radius of the zeros on the -plane, and
are the formant frequency estimates at the previous

time index from the th and th formant trackers, respectively.
The term ensures that the AZF has unity gain and zero
phase lag at the estimated formant frequency of the th compo-
nent. A value of is used [19].

The transfer function of the first-formant AZF is slightly dif-
ferent than those of the other three AZFs. The AZF of the
filter has an additional zero at the pitch frequency to pre-
vent the tracker from erroneously tracking the signal energy
at the frequency. Therefore, the transfer function of the first
AZF at index is

(3)

where

(4)

and is the pitch estimate at the previous time index,
which is provided to the first-formant filter by the gender de-
tector described in Section II-D below. Note that is only es-
timated during voiced speech, so during unvoiced segments of
speech the moving average value of the estimates is used.
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Fig. 2. Magnitude-frequency response of the four formant filters at a particular
time when the pitch (F0) is set to 200 Hz, the first formant frequency (F1) is
set to 700 Hz, the second formant frequency (F2) is set to 1500 Hz, the third
formant frequency (F3) is set to 2200 Hz and the fourth formant frequency
(F4) is set to 3500 Hz. Each formant filter acts as an adaptive bandpass filter,
spectrally isolating the four formants.

The DTF in each formant filter is made up of a single pole,
where the location of the pole is always set to the previous esti-
mate of the formant frequency of that formant filter. The transfer
function of the th DTF at time is

(5)

where is the radius of the pole and is the formant
estimate of the th formant tracker at the previous time index.
A value of is used [19].

After the placement of the pole and zeros for each formant
filter, the complex filter coefficients of the four formant filters
are calculated. These filter coefficients are then used to filter
the analytic speech signal into four band-limited spectral re-
gions from which the four formant frequencies are estimated.
Example frequency responses of the four formant filters at a par-
ticular time are shown in Fig. 2. The positions of the pole and
the zeros of each formant filter are updated every sample, as the
formant frequency estimates vary with time. All four formant
filters have unity gain and zero phase lag at the location of the
pole, i.e., at the peak of the bandpass filter that corresponds to
the previous estimate of the formant frequency.

Fig. 3 shows spectrograms of the original speech signal and
the signal from each of the four formant filters after the original
signal has been adaptively filtered, using the formant filterbank.
It can be seen that in each of the filtered signals the energy of the
neighboring formants is greatly reduced and each filter output
contains energy primarily from only one formant. The energy
at the pitch frequency is also attenuated in the output of the
formant filter.

B. Spectral Estimation via Linear Prediction

The first four formant frequencies of voiced speech segments
are estimated from the four bands of the adaptive bandpass fil-
terbank using first-order linear prediction on each band. The an-
alytic signal from each band is first windowed using a 20-ms

Fig. 3. Spectrograms of the original speech signal and the filtered signals from
the four adaptive formant filters.

Hamming window. Next, a single linear predictive coefficient
(LPC) of the windowed frame is calculated for each band using
the autocorrelation method (e.g., [25] and [26]), fitting a single-
pole model to the windowed signal in each band. The LPCs
are only calculated from the bands if the entire previous 20-ms
window of the speech signal is voiced (as determined by the
voicing detector described in Section II-E below) and the en-
ergy in a particular band is above the energy threshold for that
band, as described in the next section.

C. Adaptive Energy Detector

After the speech signal has been filtered using the adaptive
bandpass filterbank, the RMS energy of the signal over the pre-
vious 20 ms is calculated for each band. In order to estimate a
particular formant frequency from the spectrum (instead of as-
signing the moving average value to that formant frequency), the
energy calculated in that formant band has to be above an “en-
ergy threshold level,” in addition to that speech segment being
voiced. The energy threshold level for each of the formant fre-
quencies is different and is adapted to long-term changes in the
spectral energy of the formant frequency bands. Gradual adjust-
ment of the threshold levels prevents long-term errors to the en-
ergy detector and allows the algorithm to recover quickly from
brief loud sounds. The energy threshold level for the th
formant is updated during every voiced segment of speech ac-
cording to

(6)

where is the energy threshold level (in decibels) of the
th formant frequency at time index and is the RMS

energy (in decibels) of the previous 20 ms of the signal at the
output of the th formant filter.

The initial energy threshold levels for each formant
are set at the start of the algorithm. Various initial energy

threshold levels were tested and the best results were
obtained using the values given in Table I.
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TABLE I
INITIAL FORMANT ENERGY THRESHOLD LEVELS

D. Gender Detector

Gender detection is based on a simple and fast pitch estimator
[27]. This algorithm uses an autocorrelation based approach
with center-clipping, for pitch frequency estimation. Center-
clipping the signal makes the periodicity of the speech signal
more prominent while suppressing the interaction between the
pitch frequency and the first formant frequency, thus increasing
the accuracy of the pitch frequency estimates [27], [28].

A 50-ms segment of speech is broken up into seven 20-ms
frames overlapping by 5 ms. After the signal in a particular
frame has been center clipped, its autocorrelation, , is cal-
culated and the location of the highest peak, , of the autocorre-
lation function is located. If is greater than ,
then the pitch period is computed from . Otherwise, the seg-
ment is classified as being unvoiced and its pitch is set to 0 Hz.
The range of acceptable values for the pitch frequency is be-
tween 60 and 320 Hz, and if the calculated value of the pitch for
a particular frame is outside this range then the pitch estimate
for that frame is set to 0 Hz. The pitch for the entire segment
is obtained by median-filtering the pitch estimates from all the
frames within that segment.

The gender is updated every 20 ms (160 samples); the
speaker is considered to be male if the average pitch
frequency is below 180 Hz and is set to female if
it is great than or equal to 180 Hz. The average pitch frequency
of each segment is also used by the formant filter for the
placement of the additional zero at the pitch frequency location,
as described in Section II-A above.

E. Voicing Detector

A block diagram of the voicing detector is shown in Fig. 4.
The voicing detector provides the formant tracking algorithm
with a reliable sample-by-sample decision on whether the pre-
ceding 20-ms speech segment is voiced or unvoiced. The low-
frequency to high-frequency energy ratio serves as the primary
means of determining if a speech segment is voiced or unvoiced.
Functionality has been built into the voicing detector to prevent
it from switching its decisions spuriously, e.g., as a result of
short-term fluctuations in the speech spectrum. Parameters of
the voicing detector need to be adapted to so that it functions
well for both male and female speakers; the gender detector pro-
vides regular updates to the voicing detector about the gender
of the speaker so that the voicing detector parameters can be
updated.

In the voicing detector, the original speech signal (the real-
valued signal without preemphasis) is filtered into two different
frequency bands by passing it through a highpass filter (HPF)
and a lowpass filter (LPF) with the same cutoff frequency .
After the signal is filtered into the two frequency bands, the

Fig. 4. Block diagram of the voicing detector designed to identify voiced
segments of speech.

RMS energy of the previous 20 ms of the lower and higher fre-
quency bands is normalized by the square root of the filter band-
widths, i.e., divided by for the low-frequency band and by

for the high-frequency band. The log ratio of the
normalized low-frequency energy to high-frequency energy is
then calculated. The windowed signal segment is classified as
voiced when the log ratio exceeds a threshold level.

The value of depends on the estimated gender of the
speaker. For the large number of values tested, the best results
were obtained when was set to 700 Hz for male speech and
1120 Hz for female speech. Every 20 ms the voicing detector
obtains updates of the estimated gender of the speaker and is
able to modify if the gender changes. The cutoff frequency

is adapted slowly so that transient effects are limited. The
algorithm is configured to shift the cutoff frequency from
700 to 1120 Hz (from that for a male speaker to that for a female
speaker) or vice versa over 44 ms according to the equation

if
and

if
and

otherwise
(7)

where is the cutoff frequency and is the estimated
gender (zero for male and one for female) at sample index .

The log energy ratio is reliable and accurate only for
phonemes with frequency components that do not vary too
much over time. The presence of transient frequency compo-
nents can make the voicing detector results oscillate too quickly
between the voiced and unvoiced states. To avoid these spurious
oscillations between the voiced and unvoiced states, Bruce and
colleagues [20] proposed a threshold with hysteresis. This
allows changes in the voicing state (from voiced to unvoiced
or vice versa) only if the state of the current sample changes
from the previous sample and the current sample has a log ratio
exceeding a set threshold level.

If the previous 20-ms window (i.e., up to sample ) was
unvoiced and the current 20-ms window (i.e., up to sample )
has a log energy ratio greater than a set threshold level ,
then the current sample is assigned as being voiced, i.e., the
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switch from unvoiced to voiced state occurs only if the log en-
ergy ratio is greater than the proper threshold level. If the pre-
vious window was voiced and the current window has a log ratio
less than a set threshold level , then the current sample
is assigned as being unvoiced, i.e., the switch from voiced to
unvoiced state occurs only if the log energy ratio is below the
proper threshold level. These threshold levels depend on the
gender of the speaker and have to be changed as the gender of
the speaker changes. From the range of values tested, the best
results for the voicing detector were obtained when was
set to 0.1 for males and 0.2 for females and when was set
to 0.2 for males and 0.3 for females. If the gender of the
speaker changes, the threshold levels are updated over 40 ms
(to avoid any transient effects) according to the equations

if
and

if
and

otherwise
(8)

if
and

if
and

otherwise.
(9)

In order to avoid erroneous voicing detection in the presence
of background noise with a random lowpass spectrum over the
short term, the voicing detector algorithm performs an autocor-
relation-based test to determine if the energy in the lower fre-
quency band is due to short-term colored noise or due to some
other lowpass signal that may be speech. The autocorrelation
of the previous 20 ms of the signal is calculated. The signal is
classified as voiced only if, in addition to passing the log en-
ergy ratio test, the autocorrelation at any lag is greater
than the autocorrelation threshold multiplier times the auto-
correlation at zero lag . The value of the multiplier is
different for male and female speakers. For the range of values
tested, the best results were obtained when was set to 0.25 for
female speakers and 0.6 for male speakers. If the gender of the
speaker changes, the multiplier is updated over 44 ms (to
avoid any transient effects) according to the equation

if
and

if
and

otherwise.

(10)

Independent testing of the voicing detector algorithm was
conducted using both synthesized sentences and recorded
speech sentences from the TIMIT database. The results show
that the voicing detector performs very well for both male
and female speakers and has a delay of approximately 10 ms
from the actual onset of voicing to the detection of voicing.

The voicing detector is fairly robust and encounters very little
spurious switching between the voiced and unvoiced states.

F. Moving Average Decision Maker

The moving average decision maker has two purposes

• to calculate and update the moving average value of each
formant frequency;

• to determine whether to assign the LPC-estimated value
for the current formant frequency estimate or to decay to
the moving average value for each formant frequency.

The moving average decision maker assigns the estimated
value to the formant frequencies (from the LPCs) only when
every sample in the 20-ms LPC window (i.e., 160 samples) is
determined to be voiced according to the voicing detector and
the energy of the formant is above its respective threshold level
(described in Section II-C above). If not all of the windowed seg-
ment is voiced or if the energy of a particular formant is below
its respective threshold level, then the current value of the for-
mant frequency decays toward the moving average value for that
formant frequency according to

(11)

where is the formant estimate the th formant frequency
at time index and is the previous value of the
moving average for the th formant frequency. The update rule
for the moving average value of each formant frequency is

(12)

where is the moving average value for the th formant
frequency at time and is the estimate of the th formant
frequency at time .

G. Limitations on the Proximity of Formant Frequencies

The frequency response of a formant filter becomes distorted
when the poles and zeros are too close to each other. Therefore,
the formant tracking algorithm limits how close the formant fre-
quency estimates can come to each other. The algorithm does
not allow to be less than 150 Hz from the pitch frequency

at any time. Similarly, , , and are limited from
being less than 300, 400, and 500 Hz, respectively, from their
lower neighbors.

III. TESTING AND RESULTS

Rigorous and systematic testing of the formant tracking al-
gorithm was conducted in order to find best values for the op-
erating parameters as well as to ensure that the algorithm per-
forms well under various levels and types of background noise.
The algorithm has been tested using various synthesized speech
signals as well as a large number of signals from the TIMIT
recorded speech database. Testing with synthesized sentences
allows quantitative analysis of the performance of the formant
tracker because the formant frequency values of the synthesized
speech signals are known. The TIMIT database speech signals
are recorded from actual speakers and therefore sound more nat-
ural than the synthesized speech signals. However, because the
actual formant frequency values of the TIMIT database speech
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TABLE II
MEANS AND STANDARD DEVIATIONS OF INITIAL FORMANT

FREQUENCY VALUES FOR TESTING PURPOSES

signals are unknown, only qualitative analysis of the results can
be performed through visual inspection of the spectrograms.

For testing purposes, the formant tracking algorithm was ini-
tialized with formant frequency estimates set to random values
drawn from distributions that approximate the true distributions
of naturally occurring formant frequencies. The mean and stan-
dard deviation in frequency of each formant – and the
pitch were calculated from formant frequency values of male
and female synthesized utterances of the sentence “Five women
play basketball.” During testing, the initial values for the four
formant frequencies and the pitch frequency were drawn from
Gaussian distributions , where the mean and
standard deviation for each formant , for , 2, 3, or
4, or for the pitch , are given in Table II. The initial values
were rejected and new values drawn if any value was negative or
was greater than the Nyquist frequency kHz , or if
the values for the frequencies of – were not in the correct
order (i.e., ascending values).

Quantitative performance of the algorithm for the synthesized
sentences was measured in terms of the root mean squared error
(RMSE) in units of Hz between the actual and estimated for-
mant frequencies. The RMSE was measured only for those time
indexes where the target speaker’s speech was voiced and had
sufficient energy for spectral estimation, and the approximate
average delay of the formant trackers (10 ms) was compensated
for when computing the RMSE.

A. Testing in the Presence of White Noise

The operation of the algorithm was tested and analyzed in the
presence of background additive white Gaussian noise (AWGN)
at signal-to-noise ratios (SNRs) from 40 to 10 dB, for various
synthesized and TIMIT database speech signals (for both male
and female speakers).

Fig. 5(a) shows the spectrogram of a female synthesized
speaker saying “Five women played basketball” in the presence
of AWGN at 20 dB SNR. On the spectrogram, the actual
formant frequencies are plotted as dotted lines, the estimated
formant frequencies for an example trial are plotted as solid
lines and the voicing decision is plotted as a dashed line. The
speech is unvoiced when the voicing decision is “low” (zero),
and it is voiced when the voicing decision is “high” (nonzero).
Note that the approximate average delay of the formant trackers
and voicing detector (10 ms) is compensated for when plotting
the formant estimates against the spectrograms and true formant
trajectories.

It can be seen that during the voiced segments of speech the
algorithm performs well in tracking the actual formant frequen-
cies, including fairly rapid formant transitions. During unvoiced

Fig. 5. Formant tracking results for a synthesized female speaker saying
“Five women played basketball” in the presence of background white Gaussian
noise. (a) Spectrogram, estimated (solid lines) and actual (dotted lines) formant
frequencies, and voicing decision (dashed line) at an SNR of 20 dB. (b) Mean
RMSE (in hertz) over 25 trials as a function of SNR (in decibels). The arrows
indicate the standard deviations of the actual formant frequency values (in
hertz).

speech segments the algorithm decays the formant tracks to-
ward the moving average values of the formant frequency es-
timates, rather than attempting spectral estimation. At the onset
of a new voiced segment of speech, the formant tracker quickly
reacquires the correct formant trajectory.

The algorithm was tested using different male and female
speech sentences in various SNRs, in the presence of back-
ground AWGN. In general, the formant frequencies were
estimated accurately and the algorithm was relatively robust.
Fig. 5(b) shows the RMS error between the actual and the esti-
mated formant frequencies for the same sentence as in Fig. 5(a)
in the presence AWGN at various SNRs. There were 25 trials
conducted, with a different AWGN sequence and different
initial formant estimates each time, and the figure shows the
mean RMSEs for the 25 trials.

The arrows on the right-hand side of Fig. 5(b) indicate the
standard deviations of the actual formant frequencies (calcu-
lated using those points for which the RMSE of the estimated
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TABLE III
NUMBER OF POORLY-TRACKED TRIALS OUT OF 25 FOR THE FEMALE AND

MALE VERSIONS OF “FIVE WOMEN PLAYED BASKETBALL”
IN THE PRESENCE OF BACKGROUND AWGN

formant frequencies is calculated). At high SNRs, the RMSEs
for and are close to the standard deviations of the actual
formant frequencies, and the RMSE for is much less than
the standard deviation of actual frequencies. The RMSE for

is much higher than the standard deviation of actual fre-
quencies at all SNRs because the actual frequency often ex-
ceeds the Nyquist frequency kHz in this sentence
and consequently the formant cannot be tracked during these
times. At 0 dB SNR the RMSE for grows to around two
times the standard deviation of actual frequencies. Below
0 dB SNR, the RMSE drops to around the standard devia-
tion for because at such low SNRs the algorithm decays to
the moving average values of the formant frequencies instead of
spectrally estimating them via linear prediction. The RMSE for

increases to around the standard deviation of actual fre-
quencies at SNRs between 0 and 10 dB and exceeds the standard
deviation somewhat at lower SNRs. This validates the use of the
moving average decision maker when spectral estimates are not
reliable. Another justification for decaying to moving average
values during unvoiced speech is that it ensures that the formant
frequency estimates vary smoothly as the speech changes from
voiced to unvoiced and vice versa, even at low SNRs.

Similar performance was found for a male synthesized
speaker in AWGN, except that the mean RMSEs for were
substantially lower than for the female speaker, because the
true frequencies for the male speaker remain below the
Nyquist frequency and can consequently be tracked with some
reliability [18].

Despite the good mean RMSE results, there were some in-
stances where the random initial formant frequencies values
(drawn from the distributions described above) were far enough
from the formant frequencies of the first phoneme in the test sen-
tence that the and trackers had difficulty in finding the
correct formant tracks. Table III shows the number of trials out
of 25 for which the RMSE for was greater than 600 Hz, indi-
cating that and were poorly tracked in that trial. At high
SNRs this occurred only very infrequently (zero or one times
out of 25 trials). Poorly tracked trials were more prevalent at
low SNRs, particularly for the female test sentence in which: 1)
the formants frequencies are more widely spaced and 2) is
often above the Nyquist frequency.

B. Testing in the Presence of a Single Background Speaker

The performance of the algorithm was evaluated in the pres-
ence of a single male or female background (competing) speaker
at SNRs from 40 dB to 5 dB. This scenario is challenging
for the algorithm, because over a particular short time period
the background speaker may contribute significant energy to
the formant frequency regions of the target speaker, especially
at lower SNRs. This may cause the algorithm to start tracking

Fig. 6. Formant tracking results for a synthesized male speaker saying “Five
women played basketball” in the presence of a single recorded (TIMIT) female
speaker. (a) Spectrogram, estimated (solid lines) and actual (dotted lines)
formant frequencies, and voicing decision (dashed line) at an SNR of 5 dB.
(b) Mean RMSE (in hertz) over 25 trials as a function of SNR (in decibels).
The arrows indicate the standard deviation of the actual formant frequency
values (in hertz).

the formant frequencies of the background speaker instead of
those of the primary speaker. Furthermore, at very low SNRs
(0 dB and below), the formant tracking algorithm may start ex-
clusively tracking the formant frequencies of the background
speaker because the energy from the background speaker will
be greater than that from the target speaker.

Fig. 6(a) shows the spectrogram and estimated and actual for-
mant frequencies of a synthesized male speaker saying “Five
women played basketball” in the presence of a competing single
female recorded (TIMIT) background speaker at an SNR of
5 dB. At such a low SNR with a single competing background
speaker, the voicing detector determines that signal is voiced for
almost the entire duration of the signal. During the silent and
unvoiced segments of the target sentence, the algorithm tracks
the formants of the background female speaker and then returns
to accurately tracking the target formants in the strongly voiced
phonemes of the synthesized sentence. An example of this is
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Fig. 7. Mean RMSE (in hertz) over 25 trials as a function of SNR (in decibels)
for a synthesized male speaker saying “Once upon a midnight dreary, while
I pondered weak and weary, over many a. . .” in the presence of background
babble. The arrows indicate the standard deviation of the actual formant
frequency values (in hertz).

seen in Fig. 6(a) in the period 0.6–0.7 s, where the and
estimates rise up in frequency to the formants of the background
female speaker and then return back down to the formants of the
synthesized male speaker.

Fig. 6(b) shows the mean RMSEs for 25 trials of the same
synthesized male speaker sentence in the presence of a single
female background speaker from the TIMIT database saying
“How do we define it?” at various SNRs. The background sen-
tence was identical in each of the 25 trials, but the initial for-
mant estimates were different for each trial. Similar to the pre-
vious example, at high SNRs the mean RMSEs for , , and

are typically around the standard deviations of their respec-
tive actual formant frequencies, and as the SNR falls to 0 dB the
RMSEs increase above the standard deviation values. The mean
RMSEs for are substantially below the actual standard
deviation at most SNRs. At 0 dB SNR the performance of the
algorithm degrades and the RMSE for rise above the stan-
dard deviation.

C. Testing in the Presence of Multiple Background Speakers

The performance of the algorithm was also tested in the pres-
ence of multiple background competing speakers (background
babble) at SNRs from 40 dB to 5 dB. This noise source has
characteristics somewhere between the previous two test cases:
the multiplicity of speakers produces a flatter short-term spec-
trum and less temporal modulation than a single speaker, but it
has greater spectral and temporal modulation than AWGN.

Fig. 7 shows mean RMSEs for 25 trials of a synthesized male
speaker saying “Once upon a midnight dreary, while I pondered
weak and weary, over many a...” in the presence of background
babble at various SNRs. The background babble was identical
in each of the 25 trials, but the initial formant estimates were
different for each trial. At high SNRs, the RMSEs for are
below the standard deviation of the actual formant frequencies.
The mean RMSE for grows to equal the standard deviation
as the SNR drops to 0 dB, but it falls slightly at 5 dB to just
below the standard deviation.

Fig. 8. Spectrogram, formant frequency estimates (solid lines) and gender
decision (dashed line) for a transition between a male and a female speaker (at
t � 4:1 s) in the presence of AWGN at an SNR of 25 dB. Where the dashed
line is low the gender detector has determined that the speaker is male, and
where the dashed line is high it has decided that a female has begun speaking.

D. Testing for Speaker Variability

One of the main features of the algorithm is its ability to track
formant frequencies for both male and female speakers. The
results for the previous test cases indicate that the algorithm
works quite well for both genders. However, in this test case
the response of the algorithm to a change in the gender of the
speaker was evaluated, to see if it can seamlessly switch between
tracking formant frequencies for either gender.

Fig. 8 shows a spectrogram for the transition between two
concatenated TIMIT database sentences in the presence of back-
ground white noise at an SNR of 25 dB. The start of the signal
is a male speaker saying “Gus saw pine trees and redwoods on
his walk through Sequoia national forest” followed by a female
speaker saying “Don’t ask me to carry an oily rag like that.”
The switch from the male speaker to the female speaker occurs
at approximately s. On the spectrogram, the estimated
formant frequencies are plotted as solid lines and the gender
decision is plotted as a dashed line. The gender detector cor-
rectly estimates that the speaker is male where the dashed line
is low (before s) and that the speaker is female where
the dashed line is high (after s). The algorithm performs
well during the transition from male to female speaker and con-
tinues to provide smooth and accurate formant frequency esti-
mates as it starts tracking the formants of the female speaker.

E. Other Tests

The algorithm was tested using both synthesized and TIMIT
database recorded speech signals under various other types and
levels of background noise conditions, including

• background music;
• background environmental sounds;
• background traffic noise;
• fading of the target speech signal;
• reverberant acoustic environments.
Further details of the testing and results can be obtained in

[18].
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IV. DISCUSSION AND CONCLUSION

As described in the Introduction, in order to use this algorithm
for CEFS amplification in hearing aids the formant frequency
estimates have to be smooth and accurate and must be computed
with relatively little time delay. Detailed analysis has shown
that the algorithm provides fairly accurate formant frequency
estimates at moderate to high SNRs and is robust to real-life
noise conditions such as additive white Gaussian noise, a single
background speaker (of the same or different gender), multiple
background speakers, reverberant acoustic environments, etc.
The algorithm provides mostly smooth formant frequency es-
timates and recovers quickly after erroneous estimates to return
to tracking actual formant frequencies in the speech signal. Fur-
thermore, the algorithm has been designed to operate in real-
time and estimate formant frequencies from continuous speech
for both male and female speakers. Therefore, it can be con-
cluded that the formant tracking algorithm presented in this
paper is suitable for CEFS amplification.

There have been some problems identified with the formant
tracker. It was observed that occasionally the and
trackers had difficulty finding the correct formant tracks if the
initial formant estimate values were far from the actual formant
frequencies. In continuous operation of the algorithm, this
might occur sometimes when there is a switch in the gender of
the speaker or if the formant tracker is perturbed by transient
background noise while the voicing detector reports that the
signal is voiced. One solution to this problem might be to place
limits on range of values that formant frequencies estimates
can take, depending on the current gender estimate from the
gender detector. Additionally, the algorithm occasionally gives
“choppy” and oscillating formant frequency estimates. This is
an undesirable result because the actual formant frequencies
of speech normally vary slowly with time and have smooth
transitions. This problem is normally only encountered when
the SNR is very low (typically below 5 dB) and occurs due
to the algorithm tracking the excess energy added outside
the formant frequency regions from the background noise
source. Possible solutions to this problem may be to smooth
the estimates or to incorporate additional logical limitations to
prevent abnormal jumps from occurring in formant frequency
estimates in the first place. Another improvement may be to
modify the formant filters to have variable bandwidths that
are dependent on the magnitudes of the poles estimated by
the linear prediction analysis. This may further improve the
formant frequency estimates during rapid formant transitions at
high SNRs, but the performance of the algorithm at low SNRs
would likely remain unchanged. Despite these limitations, the
overall performance of the algorithm is better than those of
traditional formant estimation techniques [18].

Recently, substantial improvements have been made over
traditional formant tracking methods. Several approaches have
incorporated more sophisticated modeling of vocal tract reso-
nances than conventional linear prediction [29]–[33]. Another
technique uses the spectral differential phase spectrum rather
than the Fourier spectrum [34]. In contrast to simple logical
peaking picking, many new algorithms implement estimation
and tracking techniques such as concurrent curve formation

[35], probabilistic estimation techniques (such as the estima-
tion-maximization algorithm) [29], [36], [37], 1-D and 2-D
hidden Markov models (HMMs) [38]–[42], Kalman filtering
[31], [41], and particle filtering [33]. However, the compu-
tational complexity and the signal delay for most of these
techniques greatly exceed those of the algorithm presented in
this paper. Furthermore, it remains for most of these methods
to be tested for robustness in background noise. One exception
is [41], in which the combination of LP-spectral subtraction
and Kalman filtering was found to produce much more robust
estimation of formants in background car and train noise than a
2-D HMM algorithm.

Although it was found in [18] that formant tracking based
on a highly simplified model of the auditory periphery [17] was
not robust to background noise, a more physiologically accurate
model has previously been shown to have a robust representa-
tion of formants in white noise [43]. It would be of interest to
see if the newer estimation and tracking methods listed above
could be applied to the output of such a physiological model to
produce robust formant estimates for a variety of background
noises. However, once again the computational requirements
and the signal delay are likely to exceed those of the formant
tracker presented in this paper.

Although the algorithm developed in this paper is primarily
designed to meet the criteria for CEFS amplification, other ap-
plications for it do exist, such as automatic speech recognition
[29], speech synthesis [44], speaker normalization for automatic
speech recognition [45], voice conversion [40], speaker identi-
fication [46] and speech coding [47]. Some of these applica-
tions utilize phonemic segmentation before formant estimation,
in which case the voicing detector and moving average decision
maker could be removed from our system, and the remaining
algorithm could be applied just to segments that are identified
as voiced phonemes.
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