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Abstract—In this paper, we consider a distributed multiple-
input multiple-output (D-MIMO) system, where the channel
is flat fading and may be correlated, and experiences both
small and large-scale fading. We assume that full knowledge
of channel state information (CSI) is available at the receiver
and only the first-and second-order statistics of the channel
are available at the transmitter. For such a system with square
quadrature amplitude modulation (QAM), an asymptotic symbol
error probability (SEP) is derived for the linear zero-forcing
(ZF) receiver. Then, we propose an optimal diagonal power-
loading (PL) strategy that minimizes the dominant term of the
asymptotic SEP subject to either a total transmission power
constraint when the total power normalization coefficient can
be fed back to the transmitter from the receiver or an individual
transmission power constraint. A simple closed-form solution is
obtained. Computer simulations show that our presented optimal
system attains significant performance gains over the currently
available equal power-loading system.

Index Terms—Distributed MIMO, large scale fading, zero-
forcing (ZF), asymptotic symbol error probability (SEP), power-
loading.

I. INTRODUCTION

THE distributed MIMO system has become a promis-
ing candidate for future mobile communication systems

thanks to its open architecture and flexible resource man-
agement [1]–[6]. Over the past several years, many research
activities on distributed multiple-input multiple-output (D-
MIMO) system have been intensified for the fast growing
demand for high data-rate services [3]–[5]. A great deal of
efforts have been made on the performance evaluation of
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D-MIMO system [5]–[19]. Contrary to conventional point-
to-point MIMO systems, many radio antenna ports are ge-
ographically distributed over a large area and experience
different path-loss and large-scale fading effects. Hence, each
link experiences different propagation paths, as a result of
the different access distances, along with different shadowing
effects, which makes the performance analysis of D-MIMO
systems a mathematically challenging problem [8]–[19].

In the analysis of composite fading channels, the
Rayleigh/lognormal (RLN) model is the commonly-used
model in the characterization of composite fading MIMO
channels [15], [16], [19]. Since its joint probability density
function (PDF) is not in closed-form, some most important
figures of merit such as the ergodic capacity and SEP are
difficult to evaluate [19]. On the other hand, due to the
relatively-low implementation complexity of ZF receivers,
researchers have continued seeking to evaluate its performance
for such systems [19], [20].

In this paper, we are interested in the asymptotic average
SEP analysis on the square q-QAM constellation as well as
in optimal power allocation for the D-MIMO systems with
composite fading MIMO channels employing the ZF receiver.
The power allocation problem given channel statistics at the
transmitter has been widely studied in literature under a variety
of criteria including maximum ergodic capacity and minimum
BER for point to point MIMO systems [21]–[23]. However,
to the best of our knowledge, current work on this research
topic for the DMIMO systems is focused on sum rate analysis.
A few of studies closely related to our research have been
recently reported in [15], [18], [20]. However, they considered
an equal power allocation case and pulse amplitude modulation
and phase-shift keying modulation. In addition, they proposed
the use of the joint PDF of the ZF received SNR with respect to
the composite random channels for their performance analysis
and derived an exact and closed-form expression for the
average SEP [15]. Unfortunately, the dominant term of the
asymptotic average SEP is not easy to be extracted in a general
case. In this paper, we fully make use of the transmitter
structure as well as of the receiver structure and take an
appropriate technical approach to the average SEP analysis
by separating the joint expectation taken over both the small
scale random fading and the large scale random fading into
two successive individual expectations. With this idea, our
principal task in this paper is to derive an asymptotic average
SEP for the ZF receiver and that based on this, we propose
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an optimal diagonal power-loading strategy that minimizes its
dominant term subject to either a total transmission power
constraint and an individual transmission power constraint.

Notation: Matrices are denoted by uppercase boldface
characters (e.g., A), while column vectors are denoted by
lowercase boldface characters (e.g., b). The i-th entry of b
is denoted by bi. The (i, j)-th entry of A is denoted by ai,j ,
and also denoted by

[
A
]
i,j

. The columns of a P×K matrix A
are denoted by a1,a2, · · · ,aK . The transpose of A is denoted
by AT . The Hermitian transpose of A (i.e., the conjugate and
transpose of A) is denoted by AH . An L×L identity matrix
is denoted by IL.

II. DISTRIBUTED MIMO MODEL AND ZF RECEIVERS

In this section, we consider a single-cell D-MIMO com-
munication system equipped with N receiver antennas at the
base station (BS) and K users with each having M transmitter
antennas and also require that N ≥ KM . As it was previously
mentioned, we assume that the BS has perfect CSI while only
the first-and second-order statistics of the channel are available
at the transmitter, and all users simultaneously transmit their
data streams to the BS. Then, for such a system, an input-
output relationship can be written as

y = Ts + n, (1)

where y is an N×1 received signal vector, s is a KM×1 trans-
mitted symbol vector with unit average power per element. n
is N × 1 circularly symmetric complex Gaussian noise vector
with zero-mean and covariance matrix E[nnH ] = N0IN .
Here, channel matrix T is composed of three factors, i.e.,
T = HΞ1/2P1/2. Small-scale fading is captured by an
N × KM random matrix H, which is assumed to follow
a complex zero-mean Gaussian distribution with correlation
among every row, and thus, we have H = ZR1/2

T , where the
entries of Z are modeled as i.i.d CN(0, 1) random variables
and RT is the KM × KM transmitted positive definite
covariance matrix. Note that small-scale fading correlation
occurs only between the antennas of the one user, since the
different users are, in general, geographically separated. Such a
scenario can occur when several users, with multiple spatially
correlated antennas, transmit to a common multiple-antennas
BS. The transmitted correlation matrix can be constructed
as RT = diag(RT1,RT2, · · · ,RTK), where RTk is the
correlation matrix between the antennas of the k-th user for
k = 1, 2, · · · ,K. Its entries are modeled via the common
exponential correlation model [24], i.e.,

[RTk]i,j = ρ
|i−j|
k , (2)

where |ρk| ∈ [0, 1) for i, j = 1, 2, · · · ,M being the transmitter
correlation coefficient.

The entries of the KM × KM diagonal
matrix Ξ represent the large-scale effects, i.e.,
Ξ = diag(Ξ1/D

v
1IM ,Ξ2/D

v
2IM , · · · ,ΞK/Dv

KIM ), where
each Dk for k = 1, 2, · · · ,K denotes the distance between
the k-th user and the BS and v is the path-loss exponent.
We consider the lognormal shadowing model, which is the
commonly-used model in the characterization of shadowing

effects in various radar, optical and RF wireless channels.
In this scenario, the probability density function (PDF) of
the large-scale fading coefficients Ξk for k = 1, 2, · · · ,K is
given by

fΞ(ξk) =
η

ξk
√

2πδk
e
− (η ln ξk−µk)2

2δ2
k , for ξk ≥ 0, (3)

where η = 10/ ln 10, µk and δk are the mean and standard
deviation (both in dB) of the variable’s natural logarithm,
respectively.

The KM × KM diagonal power loading matrix
P determines the available power for each data
stream, i.e, P = diag(P1,P2, · · · ,PK), where
Pk = diag(pk1, pk2, · · · , pkM ) with a total transmission
power constraint

∑K
k=1

∑M
m=1 pkm = 1 and pkm ≥ 0.

III. PERFORMANCE ANALYSIS AND OPTIMIZATION

Our main purpose in this section is to first derive an
asymptotic SEP formula for the D-MIMO system as described
in Section 1 using the ZF receiver and then, to optimize its
dominant term subject to a total transmission power constraint.

A. Asymptotic SEP Analysis

To do that, we notice that the received signal after the ZF
equalizer G =

(
THT

)−1
TH , which is used to recover the

spatially multiplexed data streams, becomes

ŝ = Gy = s + Gn. (4)

Then, the received signal is decomposed into KM parallel
data streams with the instantaneous received SNR at the m-th
datastream of the k-th user ZF (1 ≤ k ≤ K, 1 ≤ m ≤ M )
output being equal to

γkm =
SNR[

(THT)−1
]
km,km

=
SNR

[
ΞP
]
km,km[

(HHH)−1
]
km,km

, (5)

where SNR = 1
N0

. Therefore, the SEP of the mth datastream
of kth user for the square q-ary QAM constellation for the
above given SNR can be expressed by

SEPkm =4
(

1− 1
√
q

)
Q

(
d

√
γkm

2

)
− 4
(

1− 1
√
q

)2

Q2

(
d

√
γkm

2

)
,

where d =
√

3
2(q−1) is the unit-energy factor for the square

q-ary QAM constellation [25]. Therefore, an arithmetic mean
SEP for the given channel realization is determined by

SEP(H,Ξ) =
1

KM

K∑
k=1

M∑
m=1

SEPkm. (6)

In order to evaluate the expectation of SEP(H,Ξ) over the
random channels H and Ξ, we use two alternative formulas
for the Q-funcation and Q2-function below:

Q(t) =
1
π

∫ π
2

0

e−
t2

2 sin2 θ dθ, Q2(t) =
1
π

∫ π
4

0

e−
t2

2 sin2 θ dθ
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so that each SEPkm can be represented by

SEPkm = A1

∫ π
2

0

e−
d2γkm
4 sin2 θ dθ −A2

∫ π
4

0

e−
d2γkm
4 sin2 θ dθ, (7)

where A1 = 4
π (1 − 1√

q ), A2 = 4
π (1 − 1√

q )2. In addition,
in order to further simplify the expectation, we also need
the joint probability density function (PDF) of γkm in terms
of random variables H and Ψ, which was the original idea
from [15] dealing with PAM and PSK constellations. Here,
we will take a significantly different approach. We separate
the joint expectation of SEP(H,Ξ) taken over both H and Ξ
into two successive individual expectations: the one being the
conditional expectation of SEP(H,Ξ) taken over the random
matrix H first given Ξ and the other being the expectation
of the resulting conditional expectation taken over Ξ. More
clearly, that is:

EH,Ξ

[
SEP(H,Ξ)

]
= EΞ

[
EH

[
SEP(H,Ξ)|Ξ

]]
. (8)

The essential reason of why this approach successfully works
is because H and Ξ are independent. Note that the second
equality in equation (5) follows from the fact that both Ξ and
P are diagonal, and RT is block diagonal. To fulfill our idea,
we notice γkm can be rewritten as

γkm =
SNRΞkm,kmPkm,km[

R−1
T

]
km,km

×Xkm

=
SNRΞkpkm
Dv
k

[
R−1
Tk

]
m,m

×Xkm,

(9)

where the random small-scale counterpart Xkm is defined by

Xkm =
[R−1

Tk]m,m
[(HHH)−1]km,km

. (10)

It is known that Xkm follows a complex Chi-square distribu-
tion with its PDF being given by [26]

fX(xkm) =
1

Γ(N −KM + 1)
xN−KMkm e−xkm , xkm > .

(11)
For notational simplicity, let

Ckm =
SNRd2Ξkpkm

4[R−1
Tk]m,mDv

k sin2 θ
(12)

so that equation (7) can be rewritten as

SEPkm = A1

∫ π
2

0

e−CkmXkmdθ −A2

∫ π
4

0

e−CkmXkmdθ.

(13)
Using equation (11), we have

EX [e−CkmXkm ] =
∫ ∞

0

e−CkmxkmfX(xkm)dxkm

=
1

(N −KM)!

∫ ∞
0

xN−KMkm e−(1+Ckm)xkmdxkm

=
1

(1 + Ckm)N−KM+1
,

(14)

where the last line followed by applying the identity [27]. We
now analyze the SER performance in the high-SNR regime.

Consider the definition given by (12) and we can obtain the
following asymptotic results when SNR tends to infinity:

EX [e−CkmXkm ] =
1

(1 + Ckm)N−KM+1

=
1

CN−KM+1
km

+O
(
SNR−(N−KM+2)

)
=
(

4[R−1
Tk]m,mDv

k

SNRd2pkm
sin2 θ

)N−KM+1 1
ΞN−KM+1
k

+O
(
SNR−(N−KM+2)

)
.

(15)

Similarly, utilizing equation (3) yields

EΞ[
1

ΞN−KM+1
k

] =
∫ ∞

0

1
ξN−KM+1
k

fΞ(ξk)dξk

= e
(N−KM+1)2δ2k−2η(N−KM+1)µk

2η2 .

(16)

In addition, we write∫ π
2

0

(sin2 θ)N−KM+1dθ =
π

2

N−KM+1∏
k=1

2k − 1
2k

= B1,∫ π
4

0

(sin2 θ)N−KM+1dθ

=
π

4

N−KM+1∏
k=1

k∑
j=1

(2k)!!(j − 1)!!
(2k−)!!(j)!!

( 1√
2

)2(k−j+1) = B2.

(17)
Therefore, substituting the equations (15), (16), and (17)
into (13) gives

E
[
SEPkm

]
= SEP

∞
km +O

(
SNR−(N−KM+2)

)
, (18)

where notation SEP
∞
km denotes the dominant term of

E
[
SEPkm

]
, i.e.,

SEP
∞
km =

βkmp
−(N−KM+1)
km

SNR(N−KM+1)

with βkm given by

βkm =(A1B1 −A2B2)
(

4[R−1
Tk]m,mDv

k

d2

)N−KM+1

× e
(N−KM+1)2δ2k−2η(N−KM+1)µk

2η2 .

(19)

Hence, the overall average SEP is represented by

E
[
SEP(H,Ξ)

]
=

1
KM

K∑
k=1

M∑
m=1

E
[
SEPkm

]
=SEP

∞
+O

(
SNR−(N−KM+2)

)
,

(20)

where SEP
∞

is defined by

SEP
∞

=
1

KM

K∑
k=1

M∑
m=1

SEP
∞
km

=
1

KM

K∑
k=1

M∑
m=1

βkmp
−(N−KM+1)
km

SNR(N−KM+1)
.

(21)

Now, it can be observed from (20) and (21) that the ZF receiver
achieves the diversity gain of N −KM + 1 for the DMIMO
systems.
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B. High-SNR Power Loading

In this section, we provide an optimal power-loading scheme
in the high-SNR regime by minimizing the dominant term of
the average SEP subject to either a total transmission power
constraint or an individual transmission power constraint.

Problem 1: Let SEP
∞

be defined by (21). Then, find an
optimal distribution of power pkm for k = 1, 2, · · · ,K and
m = 1, 2, · · · ,M such that

{p̃km}K,Mk=1,m=1 = arg min SEP
∞

subject to a total transmission power constraint,
K∑
k=1

M∑
m=1

pkm = 1. (22)

In order to solve this optimization problem, we note that
function g(t) = t−(N−KM+1) is convex. Hence, the ob-
jective function SEP

∞
in terms of design variables pkm is

convex [28]. Since the constraint (22) is linear, the overall
optimization Problem 1 is convex. Let L(P, λ) denote its
Lagrange multiplier function. Then,

L(P, λ) = SEP
∞

+ λ
( K∑
i=1

M∑
j=1

pij − 1
)

with P = (p11, · · · , pKM ). By letting all its first-order
derivatives be equal to zeros, i.e.,

∂L

∂λ
=

K∑
i=1

M∑
j=1

pij − 1 = 0,

∂L

∂pij
=
−(N −KM + 1)βij

SNR(N−KM+1)
p
−(N−KM+2)
ij + λ = 0,

we can obtain the optimal solution p̃km below:

p̃km =
β

1
N−KM+2
km∑K

i=1

∑M
j=1 β

1
N−KM+2
ij

. (23)

Problem 2: Let SEP
∞

be defined by (21). Then, find an
optimal distribution of power pkm for k = 1, 2, · · · ,K and
m = 1, 2, · · · ,M such that

{p̃km}K,Mk=1,m=1 = arg min SEP
∞

subject to an individual transmission power constraint
M∑
m=1

pkm = pk,

where pk is fixed for k = 1, 2, · · · ,K.
Following the discussion similar to solving Problem 1, we

can attain the optimal solution p̃km as follows:

p̃km =
pkβ

1
N−KM+2
km∑M

j=1 β
1

N−KM+2
kj

. (24)

All the above discussions can be summarized as the follow-
ing theorem:

Theorem 1: The average SEP for correlated RLN MIMO
channels with square q-QAM using the ZF receiver has the
following asymptotic formula:

E
[
SEP(H,Ξ)

]
=

1
KMSNRN−KM+1

K∑
k=1

M∑
m=1

βkm

p̃N−KM+1
km

+O
(
SNR−(N−KM+2)

)
,

where βkm is given by (19), and the optimal power loading
p̃km is provided by (23) for the total transmission power
constraint and by (24) for the individual power constraint.

We would like to make the following three comments on
this theorem:

1) Theorem 1 provides us with a new and simple power
allocation scheme for both the transmitter and the receiver so
that the dominant error performance is minimized under two
kinds of the power constraints.

2) Under the total transmission power constraint and the
assumption that the first and the second order statistics are
available at the transmitter, the BS computes the power
normalization coefficient β̄ =

∑K
i=1

∑M
j=1 β

1
N−KM+2
ij and

feeds back this information to every RP. Then, each RP
utilizes (23) to optimally distribute the power to its each
individual subchannel.

3) Under the individual transmission power constraint and
the assumption that the first and the second order statistics
are available at the transmitter, each RP uses (24) directly
to optimally allocate its total power to its each individual
subchannel without any need of the feedback information from
the receiver.

4) Here, it should be clearly pointed out that our designed
optimal precoder Theorem 1 completely relies on the perfect
knowledge of the first and second order statistics of the
channel at the transmitter. As we know, on one hand, in
spite of the fact that these information can be first estimated
by the receiver using some training signals provided by the
transmitter, and then, fed back to the transmitter, the resulting
estimation error, in practice, is unavoidable. On the other
hand, despite the fact that sending more training signals can
improve accurate estimation of the channel, it, meanwhile, will
reduce the necessary information rate [29]. Specifically for
the distributed multi-user MIMO uplink system considered in
our paper, each user has to send orthogonal pilot sequences
in order to accurately estimate the channel. In practice, a
simple scheme is the unit matrix IKM , which takes up KM
transmission time slots, and then, send information data within
a transmission period not longer than the fading coherence
time [29]. More specifically, if we assume that the total number
of time slots is T in the period of a transmission cycle, then,
a rate loss is KM

T .
Therefore, how to effectively and efficiently design the opti-

mal precoder robust to the estimation error while maintaining
a reasonable information rate that minimizes SEP with the ZF
detector is under our investigation in future.

5) Regarding the total complexity of our proposed optimal
precoder in this paper, it includes the complexity of ZF detec-
tion and that of the optimal diagonal power loading designed
by Theorem 1. Since it is difficult to calculate the exact number
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Fig. 1. Average SER of mth subchannel of kth user in a distributed MIMO
system with 16-QAM modulation (N = 8,K = 3,M = 2, ρk = 0.6, v =
4, µk = 4, δk = 2, D1 = 1km,D2 = 1.5km,D3 = 2km)

of operations for various schemes, we compute the complexity
in terms of the required floating point operations (flops).
For ZF detection in the system model, its main computation
complexity is the pseudo inverse of channel matrix. According
to [30], the required flops of inversion of a KM×KM matrix
using Gauss-Jordan elimination is about 4

3 × (KM)3.
In addition, regarding the computational cost of our pro-

posed optimal diagonal power loading scheme, its main com-
putation complexity is to calculate the optimal power alloca-
tion factor according to (23). Its computational complexity is
linearly increasing with the number of the transmitter antenna,
i.e., O(M), which can be ignored compared to the complexity
of ZF detection.

IV. NUMERICAL RESULTS

In this section, we carry out some computer simulations
to verify our analysis and to compare our proposed power-
loading algorithm with the equal power-loading scheme con-
sidered in literature. For simulation simplicity, some parame-
ters of the small and large-scale fading are fixed throughout
our experiments.

In order to examine our proposed criterion on minimizing
the dominant term of the average SEP, we carry out computer
simulations to compare the simulated average symbol error
rate result with the theoretical expression of the dominant term.
Fig 1 shows the SER of the mth subchannel of the kth user
and overall average SER in the distributed MIMO system over
the correlated MIMO channels with ρk = 0.6 when 16-QAM
modulation is used. The results show that when SNR is large,
they match very well.

In addition, to show superiority of our proposed optimal
power-loading scheme, we compare the SER performance
of the proposed system with that of the system using the
equal power scheme. All numerical results are shown in
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Fig. 2. Overall average SER comparison of power
loading schemes in a distributed MIMO system against SNR
(N = 10,K = 4,M = 2, ρk = 0.3 or 0.9, v = 4, µk = 4, δk =
2, D1 = 0.5km,D2 = 1km,D3 = 1.5km,D4 = 2km)
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Fig. 3. Overall average SER comparison of power loading schemes in a
distributed MIMO system against SNR (N = 10,K = 2,M = 4, v =
4, µk = 4, δk = 2, D1 = 0.5km,D2 = 1.5km)

Figs. 2 and 3. Fig. 2 shows the overall average SER of
the proposed scheme over the RLN MIMO channels with a
total transmission power constraint under various correlation
scenarios ( i.e., Set 1: ρk = 0.3 and Set 2: ρk = 0.9).
Fig. 3 shows the overall average SER of the proposed
scheme over the RLN MIMO channels with the individual
transmission power constraint ( i.e., {p1 = 0.2, p2 = 0.8} and
{p1 = 0.4, p2 = 0.6}) under various correlation scenarios (i.e.,
Set 1: {ρ1 = 0.6, ρ2 = 0.9} and Set 2: {ρ1 = 0.9, ρ2 = 0.6}) .
Specifically, we can observe from these figures that the perfor-
mance gain also depends on the channel correlation coefficient
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ρ. The more performance gain can be obtained with larger
|ρ|. Therefore, the efficient utilization of the statistics of the
channels and the feedback information from the receiver at the
transmitter can lead to significant performance enhancement.

V. CONCLUSION

In this paper, we have considered the D-MIMO system,
in which the channel experiences both small and large-scale
fading. For such a system, we have developed a new technical
approach to deriving the asymptotic average SEP for the
square QAM constellation using the ZF receiver. Based on this,
we have proposed the optimal diagonal power-loading scheme
minimizing the dominant term of the asymptotic SEP subject
to either a total transmission power constraint or an individual
transmission power constraint. A simple closed-form solution
has been attained. Comprehensive computer simulations have
verified our theoretic analysis and demonstrated that our
presented optimal system attains significant performance gains
over the currently available equal power-loading system.

REFERENCES

[1] O. Oyman, R. Nabar, H. B. olcskei, and A. Paulraj, “Characterizing the
statistical properties of mutual information in MIMO channels,” IEEE
Trans. Signal Process., vol. 51, no. 11, pp. 2782–2795, Nov. 2003.

[2] “Utra-utran long term evolution (LTE), 3rd generation partnership
project (3GPP),” 3GPP, Nov. 2004.

[3] H. Zhang and H. Dai, “On the capacity of distributed MIMO systems,” in
Proc. Conf. Inform. Sciences and Systems (CISS), Princeton University,
Princeton, NJ, Mar. 2004.

[4] R. Heath, S. Peters, Y. Wang, and J. Zhang, “A current perspective
on distributed antenna systems for the downlink of cellular systems,”
IEEE Commun. Mag., vol. 51, no. 4, pp. 161–167, Apr. 2013.

[5] H. Dai, H. Zhang, and Q. Zhou, “Some analysis in distributed MIMO
systems,” J. Commun., vol. 2, no. 3, pp. 43–50, May 2007.

[6] H. Dai, “Distributed versus co-located MIMO systems with correlated
fading and shadowing,” in Proc. IEEE Int. Conf. Acoustics Speech Sig-
nal Process. (ICASSP), vol. 4, Toulouse, France, May 2006.

[7] D. Wang, X. You, J. Wang, Y. Wang, and X. Hou, “Spectral efficiency
of distributed MIMO cellular systems in a composite fading channel,”
in Proc. IEEE Intern. Conf. Commun. (ICC), vol. 4, Beijing, China,
May 2008, pp. 1259–1264.

[8] C. Zhong, K.-K. Wong, and S. Jin, “Capacity bounds for MIMO
Nakagami-m fading channels,” IEEE Trans. Signal Process., vol. 57,
no. 9, pp. 3613–3623, Sept. 2009.

[9] “Special issue on coordinated and distributed MIMO,” IEEE Wire-
less Commun., vol. 17, no. 3, pp. 24–75, June 2010.

[10] “Special issue on distributed broadband wireless communications,”
IEEE J. Select. Areas Commun., vol. 29, no. 6, pp. 1121–1213,
June 2011.

[11] H. Zhu, “Performance comparison between distributed antenna and
microcellular systems,” IEEE J. Select. Areas Commun., vol. 29, no. 6,
pp. 1151–1163, June 2011.

[12] S. Lee, S. Moon, J. Kim, and I. Lee, “Capacity analysis of distributed
antenna systems in a composite fading channel,” IEEE Trans. Wire-
less Commun., vol. 11, no. 3, pp. 1076–1086, Mar. 2012.

[13] H. Hu, Y. Zhang, and J. Luo, Distributed Antenna Systems: Open Ar-
chitecture for Future Wireless Communications. Auerbach Publications,
CRC Press, 2007.

[14] D. Wang, X. You, J. Wang, and Y. Wang et al., “Spectral efficiency of
distributed MIMO cellular systems in a composite fading channel,” in
Proc. IEEE Intern. Conf. Commun. (ICC), vol. 4, Beijing, China, May
2008, pp. 1259–1264.

[15] M. Matthaiou, N. D. Chatzidiamantis, G. K. Karagiannidis, and J. A.
Nossek, “ZF detectors over correlated K fading MIMO channels,”
IEEE Trans. Commun., vol. 59, no. 6, pp. 1591–1603, June 2011.

[16] M. Matthaiou, C. Zhong, M. R. McKay, and T. Ratnarajah, “Sum
rate analysis of ZF receivers in distributed MIMO systems with
Rayleigh/lognormal fading,” in Proc. IEEE Intern. Conf. Com-
mun.(ICC), Ottawa, ON, June 2012, pp. 3857–3861.

[17] V. Gopal, M. Matthaiou, and C. Zhong, “Performance analysis of
distributed MIMO systems in Rayleigh/inverse-Gaussian fading chan-
nels,” in Proc. IEEE Intern. Global Comm. Conf. (GLOBECOM),
Anaheim, CA, Dec. 2012, pp. 2468–2474.

[18] J. Zhang, M. Matthaiou, Z. Tan, and H. Wang, “Performance analysis
of digital communication systems over composite η−µ Gamma fading
channels,” IEEE Trans. Veh. Technol., vol. 61, no. 7, pp. 3114–3124,
Sep. 2012.

[19] M. Matthaiou, C. Zhong, M. McKay, and T. Ratnarajah, “Sum rate
analysis of ZF receivers in distributed MIMO systems,” IEEE J. Se-
lect. Areas Commun., vol. 31, no. 2, pp. 180–191, Feb. 2013.

[20] H. Q. Ngo, M. Matthaiou, T. Q. Duong, and E. G. Larsson, “Uplink per-
formance analysis of multicell MU-SIMO systems with ZF receivers,”
IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4471 – 4483, Nov. 2013.

[21] A. Lozano, A. Tulino, and S. Verd, “High-SNR power offset in
multi-antenna communication,” IEEE Trans. Inform. Theory, vol. 51,
pp. 4134–4151, Dec. 2005.

[22] A. M. Tulino, A. Lozano, and S. Verdu, “Capacity-achieving input
covariance for single-user multi-antenna channels,” IEEE Trans. Wireless
Commun., vol. 5, pp. A. M. Tulino, A. Lozano, and S. Verdu, March
2006.

[23] X. Li, S. Jin, X. Gao, and K.-K. Wong, “Near-optimal power allocation
for MIMO channels with mean or covariance feedback,” IEEE Trans.
Commun., vol. 58, pp. 289–300, Jan. 2010.

[24] M. Chiani, M. Z. Win, and A. Zanella, “On the capacity of spatially
correlated MIMO Rayleigh-fading channels,” IEEE Trans. Inf. Theory,
vol. 49, no. 10, pp. 2363–2371, Oct. 2003.

[25] M. K. Simon, and M.-S. Alouini, “A unified approach to the perforance
analysis of digital communication over generalized fading channels,”
Proceedings of the IEEE, vol. 86, no. 9, pp. 1860–1877, Sept. 1998.

[26] R. J. Muirhead, Aspects of Multivariate Statistical Theory. John Wiley
& Sons Inc New York, 1982.

[27] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals. Academic: Series,
and Products, 6th ed., 2000.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, 2004.

[29] B. Hassibi and B. M. Hochwald, “How much training is needed in
multiple-antenna wireless links?,” IEEE Trans. Inform. Theory, vol. 49,
pp. 951–963, Apr. 2003.

[30] G. Golub and C. F. V. Loan, Matrix Computations (The third edition).
2715 North Charles street, Baltimore Maryland: The John Hopkins
University Press, 1996.


