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A. Main Lemmas 1

In order to prove Theorems 1 and 2, we need to establish the
following six lemmas for the investigation of some important i
properties on the objective function and its feasible domain. @, .6, + ) :

Lemma 1:Let 6, and 6, be defined by (8), wheré < A
A2 < Ap and0 <y < 7. Then, we have

w |y

OSQU*QLSg

Moreover,fy — 0, > % if and only if the condition number l
of the channel satisfies the following inequality: :

71< 1+ +/1+ 3sin(29) .
Ay T V3 sin(2¢)

D@®,.6,) E@, +}35',’"9L)
1<

|
. _ _ _tan(fuy)—tan(fr) _ 2A1 ) Fig. 4. Feasible domaif2 = Q; U Q2 U Q3 in terms ofa and 8 has
Proof: tan(fu — 0.) Ittan(fy) tan(fL) — (M- >‘2) sin(29) ~  intersections with Line$s — a| = E
0, 0L € [-7/2,0],0y € [0,7/2] and0 < ¢ < Z, we attain

0 < 0y — 0, < 5. Hence, requiring; < 0y — GL < 73Zis

equivalent to requiringan(6y — 6) = % >3, andfy -0 e[, 2], in this casefy — & < ¢ is equivalent
which, in turn, is also equivalent to the foflowing inequalityto v — 0 < 3, which, together with (i?) is equivalent to
(v/3sin(2¢))p? — 2p — V/3sin(2¢) < 0, wherep = i; is saying

the condition number of the channH. Therefore, we have P tan(

0 w)+f( —I—cotwtan(%—w))p—cotho, (18)

1< 4 < %W It is not difficult to examine N
. s wherep = {L. Hence, we have
”fvl T35n(2%) - 1 This completes the proof of LemmalL. A2
3sin(29) .
In (a, 5)-plane, whether or not there is any intersection —\/5(1 +00t7/1tan(z —w)) +vDuy
between Linega — | = % and the squar€ as shown in ~ = = max 4 1, 2 tan (X — ¢) , (19)
4

Fig. 4 plays a crucial role in obtaining a closed-from solution

to Problem 2. Lemma 1 provides us with a necessary a\WP\ere the discriminant i®y = 3(1+cotwtan(g _w))2+

sufficient condition to check when there exists an |ntersect|q[1COtwa][l (7 _ w > 0. Now, we need to prove that
4 ' !

The following Lemmas 2- 6 will lead us how to find the

optimal solution under this condition. _\/5(1 + cot 1 tan (g — 1/,)) +vDy
Lemma 2:For ¢ € [0, 7], let three angle9, ¢ and 7 be — <1 (20)
defined, respectively, by o 2tan (h4 — )
To do that, we notice that
f = arctan (A— X tan (z - 1/))) (14)
A2 ( 4 | —\/5(1+cotwtan(§—¢)>+\/D7
B sin2(6y, — 0 —
¢ = arctan (2 oo 2005, — 9)) (15) 2tan2(z tq/)d})
B sin 2(0y — 0) = o
T= arctan(2+CO52(9U_9)), (16) \/g(l—l—cotl/}tan(%—dj))ﬁ-\/m

wheref;, andfy are given in (8). Then, we have the following < cot (21a)
two statements: - \/3(1 + cot ¢ tan (T — ¢)) '
1) When0 <+ < 7, we havedy — 3 <0 and¢ > —%
if -0, > ; x iti
= . sinceDy > 31+ cotyptan (T — . In addition, we
2) When™ <4 < T, we haved, + T > 6 andr < T if i th\fat( cotttan (§ = )
0y — 0> 3. 2
Proof: The whole proof captures the following two parts. cot ¥ _ w
Proof of Statement:1Since \/5(1 + cot ¢ tan (T — w)) 3 cot? ¢ + 1
tan 0y — tan 6 1 coty —1 1 cot 1
tan(fy —0) = — 0 7 - Loy oy
an(6y ) 1+ tanBtané 7\/§X<1+cot21/)+1) 3X(1+cot2w—|—1)
A A s
2 cotyp — {ttan (4 —
_ M ¥ A2 ﬂ.(4 w) (17) — i % (]_ + ) < ﬁ < 1. (21b)
1+cotwtan(z—d}) V3 cotz/;—l—cot cot )+ cot L) = 2



Now, combining (20) and (21), we claim that (20) is indeed, + § < 3 < 0y. Since3 — 6 € [-7, 5] and cos(3 — 0)
true. This together with (19) gives ys> 1, which implies is monotonically increasing fog < 6, and is monotoni-
Oy — 5 < 0. cally decreasing for3 > 6, in this case,min fi(«, ) =
In add|t|on on one hand, we note thét— 6;, € [0,7] min{fi(H), f1(C)}.
andcot(x) is monotonically decreasing {0, 7]. On the other  2) Line CG. On this line, the objective functiorf; («, )
hand, we also notice thatn(¢) = lejoig’(%;f)e) = g3 = becomesf; (0, 3) = cos(e — 0) + cos(fy — 0), wheref, <
g1(t), wheret = cot(f — 0,), and thatg} (t) = (3?;22;11)2_ a< Oq—— In the same token, Sinees(a—0) is monoton-
. . . . v3 ically increasing fora < 6, and is monotonically decreasing
He.nce!gL(t) is monotgnlcally increasing wheft| > 3 for > 6, in this casemin f1(a, 8) = min{ f1(C), f1(G)}.
which is equivalent to%r < ¢ 9L < m, and monotonlcally 3) Line HG. On this line, the objective functio (a, )

%,
decreasing wheft| < %, i.e.,. § <0 -0, < 3 - However, “is simpliied into fi (., 8) = cos(f, — ) + cos(3 — 0) =

at any rate, we always ha\mn(¢) > gL(‘?) = —¥3. This, V3 cos (6— T _9), whered, += < 3 < fy. Similarly, since
along with ¢ & [-5, 5] infers ¢ > —¢. So far, we have co5(3 — = — ) is’monotonically increasing foB < 6 + 7/6,
completed the proof of Statement 1.~ and is monotonically decreasing fgt > 6 + /6, in this
aanggf;)freSstﬁltg;nent.Z_Vthn[ E<ﬂ]w T%erféfoiregin(iqﬁal(i)ty situation, min fi (e §) = min{f1(H), /1(G)}.

0,+2>0is eqU|vaIent3t09L 729@ 1, which,,in turn, is Summarlzmg the _ abovg _dlscussmns, we conclude that
also equwalent t(nan(aL—H) 3 Sincetan (0, — 0) = fl(q,ﬁ) achieves its minimum at one of the three
wanby —tang _ — 32 tanw— 21 tan 0> 7 itand vertices of the triangular,, i.e.,, min fi(a,8) =
TR0 tan0 g pran (3 w) L— —3 tand  min{f1(H), f1(C), f1(G)}. This completes the proof of

only if Lemma 3. O
Lemma 4:Let functionFy(«, 3) be defined by (11b). Then,
p% tan (% — ) — \/§<1 — tan tan (E - 1/1))p+ tant) < 0, (22) the minimum of (v, 8) in Q3 as shown in Fig. 1 is achieved
at one of the six vertices, i.eming, gyecq, Fo(a,B3) =
wherep = T Now, lety) = T — . Then,0 < ¢ < T min{Fy(B), F>(D), F»(G), F»(H), F5(E), F>(F)}. [ |
and (22) becomes the exact same as (18) except for the farsof: Taking partial derivatives on both sides of (12b) yield
thatvy is replaced by). Hence, following the same way, Weafz = —2sin(2a—(F—60) =0 and afz = —sin(2a—0—0)—
can proved, + § > 6. sm(ﬁ—&) = 0, which gives ussin(Qa—B—(‘)) =sin(f—0) =
Furthermore, we notice th&y, — 0 € [0, 7] andcot(z) is 0. Hence2a—pS—0 = kn and3—60 = ¢=, where both of and
monotonically decreasing i), wl On the other hand, we also/ are integers. Since—6 < [ 7n/2,7/2],5—60 € [-7/2,7/2],
notice thattan(r) = 232025(29(%”9@) 2 = gu(t), where and|o — 8| < 0y — 0, < Z, we havek = ¢ = 0 and thus,
I cot(8 — 0), and thatg), (1) — (3t;+1)2 Hencegy (t)is @ = 3 = 0. At this point, f_g(oz,ﬂ) gchieves its maximum
. . f value. Sincef2(«, 8) is continuous in the compact domain
mon;)tonlcally decreasing whef] > 5>, which is equivalent Qs, it must have the minimum value, which is achieved on
to f< 0 - 9L < 7, and monotomcally increasing Whenthe boundary ofQ23. The boundary consists of six lines:
| < %, i.e., § <0 —0r <. However, in either case, we ;g BF, FE, ED, DH and HG as shown in Figure 4. Notice
can always obtaiman(¢) <gU(f) = f . This, along with that on LlnesFE and HG, fi(a,p) = fa(a, ), which
7€ [-%, %] impliesT < Z. Thus far, we have completed thehas been discussed in Lemma 3. In addition, on LG8,
proof of Statement 2 and thus, Lemma 2. O fala,0y) = cos(2a — 0y — ) + 2cos(fy — 0) and on Line

Lemma 3:Let  functon Fi(a,3) be defined ED, fa(a,0u) = cos(2a—0y —6)+2 cos(fy —0), which can
by (11a). Then, the minimum of Fi(o,3) in also be dealt with by following the way similar to the proof of

Q U Q, as shown in Fig. 1 is achieved at ond-emma 3. Hence, in the following we only need to consider
of the six vertices, i.e., ming gea,u0, Fi(e,B) = the other two lines, i.e BF and DH.

min{F, (C), Fy(G), Fy(H), F\(E), F1(F), F1(A)}. n 1) Line BF. On this line, the objective functioy(«, 3) is
Proof: Taking partial derivatives on both sides of (12a), weeduced tofs (0, 3) = cos(20y — 8 — 0) + cos(B8 — 0) =
have Bdﬁ = —sin(a — ¢) = 0 and afﬂ,l = —sin(f —0) = 0. (2 + cos2(6y — 9)) cos(B — 0) + sin2(0y — 0)sin(f —
Hence,a—60 = kw and3— 6 = ¢x, where both of and/ are 2 . 5
integers. Sincer—0 € [—7/2,7/2],5—0 € [-7/2,7/2], and 0) = \/(2+C052(9U —0))" +sin® 2(0y — 0) cos(B—7—0),
lo— B < 0y — 0 < 5, we havek = £ = 0. However, at this wherefy — Z < 3 < 6y and7 = arctan (% .
point, f1(«a, 8) achieves its maximum value. Singg(a, 3) is  Now, following the same argument as in the proof of Lemma 3,
continuous in the compact domaily U 2, it must have the we can conclude that in this situatiomin fala, B) =
minimum value, which is achieved on the boundarytfu min{ fo(B), f2(F)}.

;. In addition, sincef, (o, () is symmetrical in its feasible  2) Line DH. On this line, the objective functiotf (v, 3)
domain{2; U Q> with respect to the line oft = 3, we only pecomes f,(0,,8) = cos(20, — 8 — 6) + cos(B —

need consider one of triangular domains, $gyas shown in _ 2 . 5
Figure 4. Let us now consider the following three lines. 0) = \/(2 +cos2(0z — )" + sin®2(6r, — 6) cos(6——0),

1) Line HC. On this line, the objective functioify (o, 3) Wheref, < 8 < 0, + 5 and¢ = arctangm)
is reduced tof; (0, 3) = cos(6r — 6) + cos(8 — ), where Following the discussion similar to Lin&F', we can claim




that in this casemin fo(«, 8) = min{ f2(D), f2(H)}. Fy(a, ) be defined by (11). Then, we have

Summarizing the above discussions, we concludg ) = ! 1
that fo(o, 3) achieves its minimum at one of VA? cos? ¢ + A sin® ¢ \/>\1 sin® ¢ + A3 cos? ¢
the six vertices of Qy, i.e., min fo(q,() = B4) = 2(A2 — X\3)sin 29
min{ fo(G), f2(B), f2(F), f2(E), fa(D), fa(H)}. This VAZsin? ) + A2 cos? /(A2 — A2)2 sin? 2¢) + 4A2 A2
completes the proof of Lemma 4. | 1

Lemma 5:Let a,b andc be given three positive real num- VR COSQSw + A3 sin

bers with$ < ¢ < 1. If a function f(z) is defined on a closed F»(B) =

2 qin2 2 2
interval [1 2c] by f(z) = % then, f(z) achieves its VAT sin® 6 + 3 cos 27”[) .
maximum atz = 2¢, its minimum atz = 1 whenb > a and F,(C) = (2‘ AQ)S”‘M’
atz = zo whenb < a, wherez = Z—tﬁi ™ \/)\2 cos? 1 + A2 sin 1/)\/ A2 — 28in? 2¢) + 4A2 N2
1
Proof: It is not difficult to compute the first order derivative \/)\2 szw A2 cos? ¢
. b+ac) (x—atbe .
with respect tar such thatf’(z) = % Now, it p,(p) =

can be seen that there is only one possible sgdor f/(z) = VA2 cos? w + A3 sin® ¢

0. We need to know whem, belongs to an open interval Moreover, the following four statements are true:
(1,2¢). Hence, this leads us to considering the following two 1) F»(B) > F»(D) if and only if 0 <1 < T.

situations: 2) Fi(C) > Fy(D) if and only if 0 < ¢ < arctan (1) and
1) b > a. In this case, it can be observed that < 1 —
and thus,f'(z) > 0, i.e., f(z) is monotonically increasing. A > 4 — 5sin d’.
Therefore,min f(z) = f(1) andmax f(z) = f(2¢). A2 | 1—5sin” ¢
2) b < a. In this case, we first know that, > 1. On  3) Fi(C) > Fy(B) if and only if ¢ > arctan2 and
the other hand, judging whethar, < 2c¢ is equivalent to -
‘o T ; . A 5sin® 1 — 1
examining whether the following inequality holds: Al )
A2~ \ 5sin“ep —4

4) Under the condition of

a+be <9 (23) A1 1+ /14 3sin(2¢)

b+ac — Ao

> )
A2 V3 sin(2¢)
F>(A) > F»(C) if and only if 0 <+ < 7. |
Proof: For presentation clarity, we discuss how to prove each

which is 2ac? + bc — a > 0. There are two roots for statement separately.
2022 + bz —a = 0 in terms ofz, i.e., z; = *b*vb“&l? Proof of Statement:1 F»(B) > Fy(D) if and only if

anda, = =bHVH8 Sincer, < L ande > 1, ¢ mdeed \//\2 sin? ) 4+ A3 cos2ep < \/ cos?1h + A3 sin?4p. This is

4
meets (23). Thereforqf( ) achieves its minimum at = ro equivalent to(A\? — A\3)cos2¢ > 0, which is equivalent to
and its maximum at one of the two ending poinis:= 1 (<4 < %, sinced; > Ay >0and0 <y < I,
andz = 2c. Notice thatf(1) = ((+b)2 and f(2c) = m Proof of Statement:2 [, (C) > Fy(D) if and only if

Now, we need to prove that(1) < f(2¢), which is equivalent 2\/)\% sin2 ) + A2 cos? 1) < \//\% cos? ) + A2 sin2 . This, in
to proving that the following inequality is true: R

turn, is equivalent tq5sin®¢ — 1)p? < 5sin®+) — 4, where
p=3L > 1. Therefore5sin® ¢y —1 < 0 andp > %
This completes the proof of Statement 2.
2(1 - c) 1 (24) Proof of Statement:3t can be proved by following the way
similar to the proof of Statement 2.
Proof of Statement :4First, we note that

Fy(B) — F»(D)

Fy(A) — F»(C) =

- 3
This leads us to considering a functigfe) = 2(1—z)(2az+ .
2 ; PN e 2(A2 — \2) sin 2¢)
b)* for 1/2 <z < 1. Sincef'(z) = —2(2azx+b)(4daz — (2a « 1 72 _1 (25)
b)), 2ax+b > 0 and4azx — (2a —b) > 2a— (2a—b) = b > 0, \/()\f — A\2)2sin? 20 + 4X2)\2

f/(x) < 0 and hencef(x) is monotonically decreasing. Since
F(1/2) = (a+b)?, f(c) < f(1) = (a + b)?, implying thatc On the other hand, we also notice that inequality

: L . - 2(A2—\2) sin 2¢) . : 2
indeed satisfies (24). This completes the proof of Lemmia 5. \/(A%—A§1)2sizn2 yrese > 1 is equivalent to+/3(\?

Lemma 6:For 0 < ¢ < Z, let functions Fy(a, ) and A3)sin2y) > 2\ Ag, Which is (vV3sin2¢)p? — 2p —
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V/3sin 21/) > 0, wherep = i—; Hence, we havep > to the fact that the condition number of the channel satisfies

Lt/ TE3om20) A o 1Ey/LHSsny) -
LHV1H36nY) 1his js our assumption. Therefore, under thif?® following inequality: 3 > —7=270 /== Under this

cor\u/dii;g(nw)equanon (25) is equivalent 8 (B) > Fy(D), condition, the feasible domain of Case a) is empty. Therefore,
which is Statement 1. This completes the proof of Statemen{’vﬁ3 only need to consider Cases b) and c), each feasible set of
and thus, Lemma 6. 0 which is the whole squar@.
Caseb): > 2cos(e — (). In this case,
we need to maximize d,. Using (10), we have
2P

— 2Pt — —
maxdy = maXq, s mMaxy, F(o,B8,p) ~— ming gmin, F(o,B,u)

B. Proofs of Theorems

1) Proof of Theorem 1:Without loss of generality, we 21;;( 5. Where we have utiized the fact that
assume thail; > ds a.nd thus, we only need to consider thgﬁﬁf ﬁFfacj 3, 1) _ F(a,8,2cos(a — §), since
following three cases: p > 2cos(e — ) and F(a,(,p) is an increasing

1) d2>d? > d2, maxds function of u. Now, following the discussion similar to
2) @ >d> & maxds the.proof. of _Lemma 4, we can conclude_thﬁ’;_,(al,ﬂ)

) 5 achieves its minimum at one of the four vertices(afi.e.,
3) di >d3 > d3. maxds min Fy (o, 3) = min{Fy(A), F5(B), F5(C), Fy(D)}.

In addition, It is not difficult to observe that the optimal Casec): 1 < pu < 2cos(aw — ). In this case, we need
solution cannot be achieved whépn = 0. Hence, to facilitate to maximize ds. Combining the definition ofds and (10),
our analysis, by utilizing the parameterization of the spasee can represent? as di = d3(u® — 2pcos(a — fB) +
coding matrixF proposed in Subsection 1lI-B, Cases 1), 21) 4P2 (1® ~2p cos(a—pB)+1) _ 4P pP—2pcos(a—B)+1
and 3) can be equivalently represented in terms:.af and 20 fop) D N N C
/m respectively, as

Hence, we havenaxd§ = max,, g max, d3. Now, applying

Lemma 5 into funcnon% yields max,, d} =
a) 1<pu<—— maxds 4Py 1 - 4P} _ _4p}

" 7 2cos(a— )’ A2(>‘1a>\27’¢) f2(e,B,2cos(a,3)) T F2(a,8,2cos(ev,)) T Fi(a,B)
1 Therefore,maxd; = which is exactly the same

mv%os(o‘ - ﬂ)}v max d case as Case b).

¢) 1< p<2cos(a—fB), maxds, Now, summarizing the above discussions on Cases b)

and c¢), we attain that the optimum is reached
where(a, 3) € Q,i.e.,0, <, < 0y. Now, it is more clear when d, = d; and is given by —2r __  where

to see that in order to solve these optimization problems, Wen 7 (o, 5) =  min{F(A), F2(§1)in§;((°8§) ’FQ(D)}
need to consider when there is an intersection between ﬂj@mbmmg this with Lemma 6, we haveiin Fy(a,3) =
square? and Lines:|a — 3| = %. min{F,(C), Fz(D)} when 0 < ¢ < Z. On the
other hand, we know that in this casey(6.,8) =
A \/(2+0052(9L—9))2+Sin22(6‘L—6‘)cos(ﬂ — ¢ — 0),
ﬁ where 0, < [ < #6y. From the definitions ofé and
'. ¢ in Lemma 2, when0 < ¢ < 7, we can obtain
AT tan ¢ = —22002=9 _ > tan(h, — ) and as a consequence,
3

b) 0> max{ min Fo (Oz B)’

3+2tan? (6L —0)
0, < 01 + ¢. Similarly, we can provédy > 6 + ¢. Hence,

. B@,.0,) when 0 < ¢ < % and 0 + ¢ — 0, > Oy — (0 + @),
C6,59,) ® ie, 0+ ¢ > 2% we have f2(0,01) < f2(01,00),
i.e., Fr(D) < FQ(C) and thus,min Fy(a, 5) = Fa(D).

T Analogously, we can prove the case whére< ¢ < 7.
Q - (I) Intersection. By Lemma 1, there is an intersection, as
& 3 "" > shown in Fig. 4, between the squdkeand Lines:|a— (| = Z

g if 6 — 61, > %, which is equivalent to the fact that the condi-

P'S - tion number of the channel satlsfllaK +7 V1+85in(2y)

D(6,.6,) A(GU,gL Under this condition, different cases have dlfferent feasible
sets. So we need to deal with each individual optimization

problem separately.

Casea) 1 < u < m. Note that this inequality

implies that the feasible set with respect to design variables

a and § must satisfy|la — 8| > %, as shown in Figure

Fig. 5. Feasible domaif? in terms of« and 8 has no intersection with

Lines|8—a| =%
2. Our task in this case is to maximiz&. Using (10)
— 2Pr
() No intersection By Lemma 1, we know that there is"We have H;Xd? = MmaxX(q, B)eﬂluﬂéglaxu o, Bo)
no intersection, as shown in Fig. 5, between the sqaamd T yR—. Tmin“ Fafn — mm(mmeﬂlfﬂz IACROL where

Lines:|a — 8| = § if 0 <0y — 0 < %, which is equivalent we have utilized the fact thahin, F(«, 3, 1) = F(a, 3,1),



sincel < u < Wla_ﬁ) and F(a, 3, 1) is an increasing
function of p.

Caseb_): [ > max mﬂcos(a - ﬂ)} This in-
equality infers that the feasible set @fand 3 must meet the
inequality: o — 8| > £ andf, < o, <6y or ja - 3| < %

andé;, < a, < 6y, as shown in Figure 2. Our goal in thisthat fi(0z,5)

case is to maximize,. With (10), we obtain

2Pr
max max ——,
(.B) U n Fla, 3, 1)

2PT }
max maxX ————

(a.8)eQs 1 Fla,f,pn)

2Pr

min g, g)eq, ua, min, F(a, 3, 1)’
2PT }

min(, p)en, ming, F (o, 3, 1)
For any fixeda and 3, since F(«, 3,1) is an increasing

function of u, we have

max dy = max {

= max{

(26)

min  min F(a, B, ) = (27a)

(@.B)€0 n gy, 2l )

(o, 3)EQ3

and

min min F(«, 3,
(o,3)EQLUQ2 1 (2, 8,1)

min

F(a, ,
(a,ﬁ)eﬂluﬂz /8
> min

Fi(a,
T (,8)€EQ1UQ2 ()

Combining (26) with (27) results in
2Pt

1
2cos(a — B) )
(27b)

max ds <
min { min(a,g)e0,ua, Fi(e, B), ming, gea, F2(a, ﬁ)}

Casec): 1 < p < 2cos(a — ). In this case, the feasible

set in terms ofa and 8 is Q3 = {(o,0) : |a — 3] <

%,0r < a,3 <0y}, as shown in Figure 2, and thus, we aim

at maximizingds. Combining the definition ofl; and (10),
we can represent? as d3 d3(u? — 2pcos(a — B) +
1) _ 4P12“(N2_2/1«005(0¢_5)+1 o 4P2 u?—2p cos(a—B)+1
- F2(o,B,10) R CN XD B £l W A I
Hence, we havenaxdj = max, s max, d3. Now, applying

; =2 cos(a—B)+1 s 2 _
Lemma 5 into function™—zr == yields max, d3 =
4P3 4PZ

4P3 1 _ T -
AZ(A1,A2,9) f2(e,B,2c08(e,B)) — F2(a,8,2cos(a,B)) T F3(a,B)’

_ 2Pr
Therefore,maxds = W e Fo (@)
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that f1(a,6y) cos(a — 0) + cos(6y — ), where
0, < a < 0y — 5. by the definition off in Lemma 2
and by Lemma 2, we know tha#t;, < ¢ andfy — 5 < 0.
As a result, we havefi(0r,0y) < fi(bv — %5,0v0)

and thus, F1(C) < Fi(G). In addition, we also note
cos(f, — 6) + cos(B — ), where

0 + 5 < B fy. Hence, if 0, + 5 > 6, then,

fi0r,0r + §) > fi(r,0y) and thus, we have
Fi(H) > F1(C). If 0+ % < 6, then, by Lemma 2, we know
¢+ 60— 0, > Z. In addition, we also know thaf, (0L, )

\/(2 + cos2(f, — 9))2 +sin?2(0; — ) cos(B — & — 0),
where 0, < B < 60, + §. As a result, we obtain
fg(@L,eL) < fz(eL,Q + 1+ %) and thUS,FQ(D) < FQ(H)
Therefore, in any case, the poidi is not any optimal
point. SinceFy(H) = F1(H) and F5(F) = F1(G), we have
min{min F (o, 8), min F»(a, )} = {F1(C), F»2(D)}. Now,
by Lemma 6, we can prove the result on Theorem 1 regarding
the considered case. Similarly, we can prove the case when
7 < < 5. This completes the proof of Theorem 1. [J

2) Proof of Theorem 2:SinceF = VG, the nonnegative
constraint onF is transfered taG such that

<

g11 €08y — gorsinyy > 0 (28a)
grisiny + garcosyy > 0 (28b)
g12COSYP — goosinyy > 0 (28c)
gi2sinty + gagcosyp > 0 (28d)

From (28) we can attailg;; > 0 and g;2 > 0. In addition,
when( < < 7, from (28b) and (28d) we have

> (29a)

(29b)

g21 > —giitany
g22 = —giztany

and when?} < ¢ < 7, from (28a) and (28c) we obtain

< giicoty (30a)
< gipcot® (30b)

921
g22

On the other hand, the nonnegative power constraint (4b) in
terms of F is transfered into that in terms @& such that

(costp +sin1p)(g11 + g12)
+(cosy — sin)(ga1 + ga2) = 2Pr

Now, combining (29) with (31) results in the largest feasible
domain in terms of design variables; andg;», i.e.,

(31)

Now, summarizing the above discussions on Cases a), b)

and c), we conclude that the optimum is reached whe# d3
and is given by

2Py

min { min, gje0,un, F1(a, 8), ming, g)eq, F2(a, 5)}

On the other hand, by Lemmas
know that min F(a, 5) {F1(C),F1(H), F1(G)},
since Fj(A) F(C),Fi(H) F(F) and
Fl(G) Fl(F), and that mian(a,ﬁ)
{FQ(B),FQ(D),FQ(H)7F2(G),F2(E)7F2(F)} To further

3 and 4, we

g11 + g12 < 2Ppcosy  for g13 > 0,912 >0 (32)

when0 < ¢ < 7, while combining (30) with (31) produces
the largest feasible domain in terms of design varialglgs
andgi., i.e.,

g11 +gi2 < 2Prsiny  for g11 > 0,912 >0 (33)

when 7 < ¢ < 7. In addition, notice that in this case,
from (5) we know thatg11 = dl/)\l,glg = dz/)\l and a1 =
A2g11912 = dids. Hence, by the definition ofi;, we obtain

ds = d; — dy and thus, the objective function in Problem 2 is

simplify this optimization problem, let us consider theeduced tomaxmin{ds,d; —ds}. This optimization problem

us
case when0 < ¢ < 7.

In this situation, we notice can be split into two sub-problemsaaxds,d; > 2d, and



max(d; — dz),d; < 2ds subject to either constraint (32) for

0 < ¢ < %, which is equivalent tal; + dy < 2\, Prcos,

or constraint (33) for7 < + < 7, which is equivalent to

di + do < 2\ Prsint. No mater which case occurs, the re-
sulting optimization problem is linear and thus, the maximum
is achieved when all the corresponding equalities hold, i.e.,
when(0 < ¢ < %, we haved; = 2ds,dy + dy = 21 Py cos

and the equality in (29) holds, and whén< +) < 7, we have

di = 2ds,dy + do = 2A\1 Prcosty and the equality in (30)
holds. This completes the proof of Theorem 2. |

12



