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This is the support document for the proofs of Lemmas
and Theorems in Paper “Optimal Design Of Linear Space
Codes For Indoor MIMO Visible Light Communications
With ML Detection” submitted to IEEE Photonics Journal

A. Main Lemmas

In order to prove Theorems 1 and 2, we need to establish the
following six lemmas for the investigation of some important
properties on the objective function and its feasible domain.

Lemma 1:Let θL and θU be defined by (8), where0 <
λ2 ≤ λ1 and0 ≤ ψ ≤ π

2 . Then, we have

0 ≤ θU − θL ≤ π

2
Moreover,θU − θL ≥ π

3 if and only if the condition number
of the channel satisfies the following inequality:

1 ≤ λ1

λ2
≤ 1 +

√
1 + 3 sin(2ψ)√
3 sin(2ψ)

.

Proof: tan(θU − θL) = tan(θU )−tan(θL)
1+tan(θU ) tan(θL) = 2λ1λ2

(λ2
1−λ2

2) sin(2ψ)
>

0, θL ∈ [−π/2, 0], θU ∈ [0, π/2] and 0 ≤ ψ ≤ π
2 , we attain

0 ≤ θU − θL ≤ π
2 . Hence, requiringπ

3 ≤ θU − θL ≤ π
2 is

equivalent to requiringtan(θU − θL) = 2λ1λ2
(λ2

1−λ2
2) sin(2ψ)

≥ √
3,

which, in turn, is also equivalent to the following inequality:
(
√

3 sin(2ψ))ρ2 − 2ρ − √
3 sin(2ψ) ≤ 0, whereρ = λ1

λ2
is

the condition number of the channelH. Therefore, we have

1 ≤ λ1
λ2

≤ 1+
√

1+3 sin(2ψ)√
3 sin(2ψ)

. It is not difficult to examine
1+
√

1+3 sin(2ψ)√
3 sin(2ψ)

≥ 1. This completes the proof of Lemma 1.¤
In (α, β)-plane, whether or not there is any intersection

between Lines|α − β| = π
3 and the squareΩ as shown in

Fig. 4 plays a crucial role in obtaining a closed-from solution
to Problem 2. Lemma 1 provides us with a necessary and
sufficient condition to check when there exists an intersection.
The following Lemmas 2- 6 will lead us how to find the
optimal solution under this condition.

Lemma 2:For ψ ∈ [0, π
2 ], let three anglesθ, φ and τ be

defined, respectively, by

θ = arctan
(λ1

λ2
× tan

(π

4
− ψ

))
(14)

φ = arctan
( sin 2(θL − θ)

2 + cos 2(θL − θ)

)
(15)

τ = arctan
( sin 2(θU − θ)

2 + cos 2(θU − θ)

)
, (16)

whereθL andθU are given in (8). Then, we have the following
two statements:

1) When 0 ≤ ψ < π
4 , we haveθU − π

3 ≤ θ and φ ≥ −π
6

if θ − θL ≥ π
3 .

2) When π
4 ≤ ψ ≤ π

2 , we haveθL + π
3 ≥ θ and τ ≤ π

6 if
θU − θ ≥ π

3 .
Proof: The whole proof captures the following two parts.

Proof of Statement 1: Since

tan(θU − θ) =
tan θU − tan θ

1 + tanβ tan θ

=
λ2
λ1

cot ψ − λ1
λ2

tan
(

π
4 − ψ

)

1 + cot ψ tan
(

π
4 − ψ

) (17)
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Fig. 4. Feasible domainΩ = Ω1 ∪ Ω2 ∪ Ω3 in terms of α and β has
intersections with Lines|β − α| = π

3
.

andθU − θ ∈ [−π
2 , π

2 ], in this case,θU − π
3 ≤ θ is equivalent

to θU − θ < π
3 , which, together with (17), is equivalent to

saying

ρ2 tan
(π

4
− ψ

)
+
√

3
(
1 + cot ψ tan

(π

4
− ψ

))
ρ− cot ψ ≥ 0, (18)

whereρ = λ1
λ2

. Hence, we have

ρ ≥ max



1,

−√3
(
1 + cot ψ tan

(
π
4 − ψ

))
+
√DU

2 tan
(

π
4 − ψ

)


 , (19)

where the discriminant isDU = 3(1 + cot ψ tan
(

π
4 −ψ

))2 +
4 cot ψ tan

(
π
4 − ψ

)
> 0. Now, we need to prove that

−√3
(
1 + cot ψ tan

(
π
4 − ψ

))
+
√DU

2 tan
(

π
4 − ψ

) < 1. (20)

To do that, we notice that

−√3
(
1 + cot ψ tan

(
π
4 − ψ

))
+
√DU

2 tan
(

π
4 − ψ

)

=
2 cot ψ

√
3
(
1 + cot ψ tan

(
π
4 − ψ

))
+
√DU

≤ cot ψ
√

3
(
1 + cot ψ tan

(
π
4 − ψ

)) , (21a)

sinceDU ≥ √
3
(
1 + cot ψ tan

(
π
4 − ψ

))
. In addition, we

further note that

cot ψ
√

3
(
1 + cot ψ tan

(
π
4 − ψ

)) =
1√
3
× cot2 ψ + cot ψ

cot2 ψ + 1

=
1√
3
×

(
1 +

cot ψ − 1
cot2 ψ + 1

)
<

1√
3
×

(
1 +

cot ψ

cot2 ψ + 1

)

=
1√
3
×

(
1 +

1
cot ψ + cot−1 ψ

)
≤
√

3
2

< 1. (21b)
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Now, combining (20) and (21), we claim that (20) is indeed
true. This, together with (19) gives usρ ≥ 1, which implies
θU − π

3 ≤ θ.
In addition, on one hand, we note thatθ − θL ∈ [0, π]

andcot(x) is monotonically decreasing in[0, π]. On the other
hand, we also notice thattan(φ) = sin 2(θL−θ)

2+cos 2(θL−θ) = − 2t
3t2+1 =

gL(t), where t = cot(θ − θL), and thatg′L(t) = 3t2−1
(3t2+1)2 .

Hence, gL(t) is monotonically increasing when|t| >
√

3
3 ,

which is equivalent to2π
3 < θ − θL < π, and monotonically

decreasing when|t| <
√

3
3 , i.e., π

3 < θ − θL < 2π
3 . However,

at any rate, we always havetan(φ) ≥ gL

(√
3

3

)
= −

√
3

3 . This,

along with φ ∈ [−π
2 , π

2 ] infers φ ≥ −π
6 . So far, we have

completed the proof of Statement 1.
Proof of Statement 2: When π

4 ≤ ψ ≤ π
2 , π

2 ≤ θ ≤ 0
and as a result,θL − θ,−π

3 ∈ [−π
2 , π

2 ]. Therefore, inequality
θL + π

3 ≥ θ is equivalent toθL − θ ≥ −π
3 , which, in turn, is

also equivalent totan(θL − θ) ≥ −√3. Sincetan(θL − θ) =
tan θL−tan θ
1+tan θL tan θ =

−λ2
λ1

tan ψ−λ1
λ2

tan
(

π
4−ψ

)

1−tan ψ tan
(

π
4−ψ

) , θL− θ ≥ −π
3 if and

only if

ρ2 tan
(π

4
− ψ

)−
√

3
(
1− tan ψ tan

(π

4
− ψ

))
ρ + tan ψ ≤ 0, (22)

where ρ = λ1
λ2

. Now, let ψ = π
2 − ψ̃. Then, 0 ≤ ψ̃ ≤ π

4
and (22) becomes the exact same as (18) except for the fact
that ψ is replaced byψ̃. Hence, following the same way, we
can proveθL + π

3 ≥ θ.
Furthermore, we notice thatθU − θ ∈ [0, π] and cot(x) is

monotonically decreasing in[0, π]. On the other hand, we also
notice thattan(τ) = sin 2(θU−θ)

2+cos 2(θU−θ) = 2t
3t2+1 = gU (t), where

t = cot(θU −θ), and thatg′U (t) = − 3t2−1
(3t2+1)2 . Hence,gU (t) is

monotonically decreasing when|t| >
√

3
3 , which is equivalent

to 2π
3 < θ − θL < π, and monotonically increasing when

|t| <
√

3
3 , i.e., π

3 < θ − θL < 2π
3 . However, in either case, we

can always obtaintan(φ) ≤ gU

(√
3

3

)
=

√
3

3 . This, along with

τ ∈ [−π
2 , π

2 ] implies τ ≤ π
6 . Thus far, we have completed the

proof of Statement 2 and thus, Lemma 2. ¤
Lemma 3:Let function F1(α, β) be defined

by (11a). Then, the minimum of F1(α, β) in
Ω1 ∪ Ω2 as shown in Fig. 1 is achieved at one
of the six vertices, i.e., min(α,β)∈Ω1∪Ω2 F1(α, β) =
min{F1(C), F1(G), F1(H), F1(E), F1(F ), F1(A)}.
Proof: Taking partial derivatives on both sides of (12a), we
have ∂f1

∂α = − sin(α − θ) = 0 and ∂f1
∂β = − sin(β − θ) = 0.

Hence,α−θ = kπ andβ−θ = `π, where both ofk and` are
integers. Sinceα−θ ∈ [−π/2, π/2], β−θ ∈ [−π/2, π/2], and
|α−β| ≤ θU − θL ≤ π

2 , we havek = ` = 0. However, at this
point, f1(α, β) achieves its maximum value. Sincef1(α, β) is
continuous in the compact domainΩ1 ∪ Ω2, it must have the
minimum value, which is achieved on the boundary ofΩ1 ∪
Ω2. In addition, sincef1(α, β) is symmetrical in its feasible
domainΩ1 ∪ Ω2 with respect to the line ofα = β, we only
need consider one of triangular domains, sayΩ2 as shown in
Figure 4. Let us now consider the following three lines.

1) Line HC. On this line, the objective functionf1(α, β)
is reduced tof1(θL, β) = cos(θL − θ) + cos(β − θ), where

θL + π
3 ≤ β ≤ θU . Sinceβ − θ ∈ [−π

2 , π
2 ] and cos(β − θ)

is monotonically increasing forβ < θ, and is monotoni-
cally decreasing forβ > θ, in this case,min f1(α, β) =
min{f1(H), f1(C)}.

2) Line CG. On this line, the objective functionf1(α, β)
becomesf1(θL, β) = cos(α− θ) + cos(θU − θ), whereθL ≤
α ≤ θU − π

3 . In the same token, Sincecos(α−θ) is monoton-
ically increasing forα < θ, and is monotonically decreasing
for α > θ, in this case,min f1(α, β) = min{f1(C), f1(G)}.

3) Line HG. On this line, the objective functionf1(α, β)
is simplified into f1(α, β) = cos(θL − θ) + cos(β − θ) =√

3 cos
(
β− π

6 −θ
)

, whereθL + π
3 ≤ β ≤ θU . Similarly, since

cos(β − π
6 − θ) is monotonically increasing forβ < θ + π/6,

and is monotonically decreasing forβ > θ + π/6, in this
situation,min f1(α, β) = min{f1(H), f1(G)}.

Summarizing the above discussions, we conclude that
f1(α, β) achieves its minimum at one of the three
vertices of the triangular Ω2, i.e., min f1(α, β) =
min{f1(H), f1(C), f1(G)}. This completes the proof of
Lemma 3. ¤

Lemma 4:Let functionF2(α, β) be defined by (11b). Then,
the minimum ofF2(α, β) in Ω3 as shown in Fig. 1 is achieved
at one of the six vertices, i.e.,min(α,β)∈Ω3 F2(α, β) =
min{F2(B), F2(D), F2(G), F2(H), F2(E), F2(F )}.
Proof: Taking partial derivatives on both sides of (12b) yield
∂f2
∂α = −2 sin(2α−β−θ) = 0 and ∂f2

∂β = − sin(2α−β−θ)−
sin(β−θ) = 0, which gives ussin(2α−β−θ) = sin(β−θ) =
0. Hence,2α−β−θ = kπ andβ−θ = `π, where both ofk and
` are integers. Sinceα−θ ∈ [−π/2, π/2], β−θ ∈ [−π/2, π/2],
and |α − β| ≤ θU − θL ≤ π

2 , we havek = ` = 0 and thus,
α = β = θ. At this point, f2(α, β) achieves its maximum
value. Sincef2(α, β) is continuous in the compact domain
Ω3, it must have the minimum value, which is achieved on
the boundary ofΩ3. The boundary consists of six lines:
GB,BF, FE, ED,DH andHG as shown in Figure 4. Notice
that on LinesFE and HG, f1(α, β) = f2(α, β), which
has been discussed in Lemma 3. In addition, on LineGB,
f2(α, θU ) = cos(2α − θU − θ) + 2 cos(θU − θ) and on Line
ED, f2(α, θU ) = cos(2α−θU−θ)+2 cos(θU−θ), which can
also be dealt with by following the way similar to the proof of
Lemma 3. Hence, in the following we only need to consider
the other two lines, i.e.,BF andDH.

1) Line BF . On this line, the objective functionf2(α, β) is
reduced tof2(θU , β) = cos(2θU − β − θ) + cos(β − θ) =(
2 + cos 2(θU − θ)

)
cos(β − θ) + sin 2(θU − θ) sin(β −

θ) =
√(

2 + cos 2(θU − θ)
)2 + sin2 2(θU − θ) cos(β−τ−θ),

whereθU − π
3 ≤ β ≤ θU and τ = arctan

(
sin 2(θU−θ)

2+cos 2(θU−θ)

)
.

Now, following the same argument as in the proof of Lemma 3,
we can conclude that in this situation,min f2(α, β) =
min{f2(B), f2(F )}.

2) Line DH. On this line, the objective functionf2(α, β)
becomes f2(θL, β) = cos(2θL − β − θ) + cos(β −
θ) =

√(
2 + cos 2(θL − θ)

)2 + sin2 2(θL − θ) cos(β−φ−θ),

where θL ≤ β ≤ θL + π
3 and φ = arctan

(
sin 2(θL−θ)

2+cos 2(θL−θ)

)
.

Following the discussion similar to LineBF , we can claim
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that in this case,min f2(α, β) = min{f2(D), f2(H)}.
Summarizing the above discussions, we conclude

that f2(α, β) achieves its minimum at one of
the six vertices of Ω2, i.e., min f2(α, β) =
min{f2(G), f2(B), f2(F ), f2(E), f2(D), f2(H)}. This
completes the proof of Lemma 4. ¤

Lemma 5:Let a, b andc be given three positive real num-
bers with 1

2 ≤ c ≤ 1. If a functionf(x) is defined on a closed
interval [1, 2c] by f(x) = x2−2cx+1

(ax+b)2 , then,f(x) achieves its
maximum atx = 2c, its minimum atx = 1 when b ≥ a and
at x = x0 whenb ≤ a, wherex0 = a+bc

b+ac .

Proof: It is not difficult to compute the first order derivative

with respect tox such thatf ′(x) =
2(b+ac)

(
x− a+bc

b+ac

)
(ax+b)3 . Now, it

can be seen that there is only one possible rootx0 for f ′(x) =
0. We need to know whenx0 belongs to an open interval
(1, 2c). Hence, this leads us to considering the following two
situations:

1) b > a. In this case, it can be observed thatx0 < 1
and thus,f ′(x) > 0, i.e., f(x) is monotonically increasing.
Therefore,min f(x) = f(1) andmax f(x) = f(2c).

2) b ≤ a. In this case, we first know thatx0 ≥ 1. On
the other hand, judging whetherx0 ≤ 2c is equivalent to
examining whether the following inequality holds:

a + bc

b + ac
≤ 2c, (23)

which is 2ac2 + bc − a ≥ 0. There are two roots for
2ax2 + bx − a = 0 in terms of x, i.e., x1 = −b−√b2+8a2

4a

and x2 = −b+
√

b2+8a2

4a . Sincex2 < 1
4 and c ≥ 1

2 , c indeed
meets (23). Therefore,f(x) achieves its minimum atx = x0

and its maximum at one of the two ending points:x = 1
andx = 2c. Notice thatf(1) = 2(1−c)

(a+b)2 andf(2c) = 1
(2ac+b)2 .

Now, we need to prove thatf(1) ≤ f(2c), which is equivalent
to proving that the following inequality is true:

2(1− c)
(a + b)2

≤ 1
(2ac + b)2

(24)

This leads us to considering a functioñf(x) = 2(1−x)(2ax+
b)2 for 1/2 ≤ x ≤ 1. Sincef̃ ′(x) = −2(2ax+b)(4ax−(2a−
b)), 2ax+ b > 0 and4ax− (2a− b) ≥ 2a− (2a− b) = b > 0,
f̃ ′(x) < 0 and hence,̃f(x) is monotonically decreasing. Since
f̃(1/2) = (a + b)2, f̃(c) ≤ f̃(1) = (a + b)2, implying thatc
indeed satisfies (24). This completes the proof of Lemma 5.¤

Lemma 6:For 0 ≤ ψ ≤ π
2 , let functionsF1(α, β) and

F2(α, β) be defined by (11). Then, we have

F1(C) =
1√

λ2
1 cos2 ψ + λ2

2 sin2 ψ
+

1√
λ2

1 sin2 ψ + λ2
2 cos2 ψ

F2(A) =
2(λ2

1 − λ2
2) sin 2ψ√

λ2
1 sin2 ψ + λ2

2 cos2 ψ
√

(λ2
1 − λ2

2)
2 sin2 2ψ + 4λ2

1λ
2
2

+
1√

λ2
1 cos2 ψ + λ2

2 sin2 ψ

F2(B) =
3√

λ2
1 sin2 ψ + λ2

2 cos2 ψ

F2(C) =
2(λ2

1 − λ2
2) sin 2ψ√

λ2
1 cos2 ψ + λ2

2 sin2 ψ
√

(λ2
1 − λ2

2)
2 sin2 2ψ + 4λ2

1λ
2
2

+
1√

λ2
1 sin2 ψ + λ2

2 cos2 ψ

F2(D) =
3√

λ2
1 cos2 ψ + λ2

2 sin2 ψ

Moreover, the following four statements are true:

1) F2(B) ≥ F2(D) if and only if 0 ≤ ψ ≤ π
4 .

2) F1(C) ≥ F2(D) if and only if 0 ≤ ψ < arctan
(

1
2

)
and

λ1

λ2
≥

√
4− 5 sin2 ψ

1− 5 sin2 ψ
.

3) F1(C) ≥ F2(B) if and only if ψ > arctan 2 and

λ1

λ2
≥

√
5 sin2 ψ − 1
5 sin2 ψ − 4

.

4) Under the condition of

λ1

λ2
>

1 +
√

1 + 3 sin(2ψ)√
3 sin(2ψ)

,

F2(A) ≥ F2(C) if and only if 0 ≤ ψ ≤ π
4 .

Proof: For presentation clarity, we discuss how to prove each
statement separately.

Proof of Statement 1: F2(B) ≥ F2(D) if and only if√
λ2

1 sin2 ψ + λ2
2 cos2 ψ ≤

√
λ2

1 cos2 ψ + λ2
2 sin2 ψ. This is

equivalent to(λ2
1 − λ2

2) cos 2ψ ≥ 0, which is equivalent to
0 ≤ ψ ≤ π

4 , sinceλ1 > λ2 > 0 and0 ≤ ψ ≤ π
2 .

Proof of Statement 2: F1(C) ≥ F2(D) if and only if

2
√

λ2
1 sin2 ψ + λ2

2 cos2 ψ ≤
√

λ2
1 cos2 ψ + λ2

2 sin2 ψ. This, in

turn, is equivalent to(5 sin2 ψ − 1)ρ2 ≤ 5 sin2 ψ − 4, where

ρ = λ1
λ2
≥ 1. Therefore,5 sin2 ψ−1 < 0 andρ ≥

√
4−5 sin2 ψ
1−5 sin2 ψ

.
This completes the proof of Statement 2.

Proof of Statement 3: It can be proved by following the way
similar to the proof of Statement 2.

Proof of Statement 4: First, we note that

F2(A)− F2(C) =
F2(B)− F2(D)

3

×

 2(λ2

1 − λ2
2) sin 2ψ√

(λ2
1 − λ2

2)2 sin2 2ψ + 4λ2
1λ

2
2

− 1


 (25)

On the other hand, we also notice that inequality
2(λ2

1−λ2
2) sin 2ψ√

(λ2
1−λ2

2)
2 sin2 2ψ+4λ2

1λ2
2

> 1 is equivalent to
√

3(λ2
1 −

λ2
2) sin 2ψ ≥ 2λ1λ2, which is (

√
3 sin 2ψ)ρ2 − 2ρ −
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√
3 sin 2ψ > 0, where ρ = λ1

λ2
. Hence, we haveρ >

1+
√

1+3 sin(2ψ)√
3 sin(2ψ)

. This is our assumption. Therefore, under this
condition, equation (25) is equivalent toF2(B) ≥ F2(D),
which is Statement 1. This completes the proof of Statement 4
and thus, Lemma 6. ¤

B. Proofs of Theorems

1) Proof of Theorem 1:Without loss of generality, we
assume thatd1 ≥ d2 and thus, we only need to consider the
following three cases:

1) d2
3 > d2

1 > d2
2, max d2

2) d2
1 > d2

3 > d2
2, max d2

3) d2
1 > d2

2 > d2
3. max d3

In addition, It is not difficult to observe that the optimal
solution cannot be achieved whend2 = 0. Hence, to facilitate
our analysis, by utilizing the parameterization of the space
coding matrixF proposed in Subsection III-B, Cases 1), 2)
and 3) can be equivalently represented in terms ofµ, α and
βm respectively, as

a) 1 ≤ µ ≤ 1
2 cos(α− β)

, max d2

b) µ ≥ max
{ 1

2 cos(α− β)
, 2 cos(α− β)

}
, max d2

c) 1 ≤ µ ≤ 2 cos(α− β), max d3,

where(α, β) ∈ Ω, i.e.,θL ≤ α, β ≤ θU . Now, it is more clear
to see that in order to solve these optimization problems, we
need to consider when there is an intersection between the
squareΩ and Lines:|α− β| = π

3 .

α

β

0 3

π

3

π

•

•

•

•

••

•

( , )
U L

A θ θ

( , )
U U

B θ θ

( , )
L L

D θ θ

( , )
L U

C θ θ

Fig. 5. Feasible domainΩ in terms ofα and β has no intersection with
Lines |β − α| = π

3
.

(I) No intersection. By Lemma 1, we know that there is
no intersection, as shown in Fig. 5, between the squareΩ and
Lines: |α− β| = π

3 if 0 ≤ θU − θL < π
3 , which is equivalent

to the fact that the condition number of the channel satisfies
the following inequality: λ1

λ2
>

1+
√

1+3 sin(2ψ)√
3 sin(2ψ)

. Under this
condition, the feasible domain of Case a) is empty. Therefore,
we only need to consider Cases b) and c), each feasible set of
which is the whole squareΩ.

Caseb): µ ≥ 2 cos(α − β). In this case,
we need to maximize d2. Using (10), we have
max d2 = maxα,β maxµ

2PT
F (α,β,µ) = 2PT

minα,β minµ F (α,β,µ) =
2PT

minα,β F2(α,β) , where we have utilized the fact that
minµ F (α, β, µ) = F (α, β, 2 cos(α − β), since
µ ≥ 2 cos(α − β) and F (α, β, µ) is an increasing
function of µ. Now, following the discussion similar to
the proof of Lemma 4, we can conclude thatF2(α, β)
achieves its minimum at one of the four vertices ofΩ, i.e.,
minF2(α, β) = min{F2(A), F2(B), F2(C), F2(D)}.

Casec): 1 ≤ µ ≤ 2 cos(α − β). In this case, we need
to maximize d3. Combining the definition ofd3 and (10),
we can representd2

3 as d2
3 = d2

2(µ
2 − 2µ cos(α − β) +

1) =
4P 2

T

(
µ2−2µ cos(α−β)+1

)
F 2(α,β,µ) = 4P 2

T
∆2(λ1,λ2,ψ)

µ2−2µ cos(α−β)+1
f2(α,β,µ) .

Hence, we havemax d2
3 = maxα,β maxµ d2

3. Now, applying

Lemma 5 into functionµ2−2µ cos(α−β)+1
f2(α,β,µ) yields maxµ d2

3 =
4P 2

T
∆2(λ1,λ2,ψ)

1
f2(α,β,2 cos(α,β)) = 4P 2

T
F 2(α,β,2 cos(α,β)) = 4P 2

T
F 2

2 (α,β)

Therefore,max d3 = 2PT
min F2(α,β) , which is exactly the same

case as Case b).
Now, summarizing the above discussions on Cases b)

and c), we attain that the optimum is reached
when d2 = d3 and is given by 2PT

min F2(α,β) , where
minF2(α, β) = min{F2(A), F2(B), F2(C), F2(D)}.
Combining this with Lemma 6, we haveminF2(α, β) =
min{F2(C), F2(D)} when 0 ≤ ψ ≤ π

4 . On the
other hand, we know that in this case,f2(θL, β) =√(

2 + cos 2(θL − θ)
)2 + sin2 2(θL − θ) cos(β − φ − θ),

where θL ≤ β ≤ θU . From the definitions ofθ and
φ in Lemma 2, when0 ≤ ψ ≤ π

4 , we can obtain
tanφ = 2 tan(θL−θ)

3+2 tan2(θL−θ) ≥ tan(θL − θ) and as a consequence,
θL ≤ θL + φ. Similarly, we can proveθU ≥ θ + φ. Hence,
when 0 ≤ ψ ≤ π

4 and θ + φ − θL ≥ θU − (θ + φ),
i.e., θ + φ ≥ θL+θU

2 , we havef2(θL, θL) ≤ f2(θL, θU ),
i.e., F2(D) ≤ F2(C) and thus,minF2(α, β) = F2(D).
Analogously, we can prove the case whereπ

4 < ψ ≤ π
2 .

(II) Intersection. By Lemma 1, there is an intersection, as
shown in Fig. 4, between the squareΩ and Lines:|α−β| = π

3
if θU −θL ≥ π

3 , which is equivalent to the fact that the condi-

tion number of the channel satisfies1 ≤ λ1
λ2
≤ 1+

√
1+3 sin(2ψ)√
3 sin(2ψ)

.
Under this condition, different cases have different feasible
sets. So we need to deal with each individual optimization
problem separately.

Casea): 1 ≤ µ ≤ 1
2 cos(α−β) . Note that this inequality

implies that the feasible set with respect to design variables
α and β must satisfy |α − β| ≥ π

3 , as shown in Figure
2. Our task in this case is to maximized2. Using (10),
we have max d2 = max(α,β)∈Ω1∪Ω2 maxµ

2PT
F (α,β,µ) =

2PT
min(α,β)∈Ω1∪Ω2 minµ F (α,β,µ) = 2PT

min(α,β)∈Ω1∪Ω2 F1(α,β) , where
we have utilized the fact thatminµ F (α, β, µ) = F (α, β, 1),
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since 1 ≤ µ ≤ 1
2 cos(α−β) and F (α, β, µ) is an increasing

function of µ.
Caseb): µ ≥ max

{
1

2 cos(α−β) , 2 cos(α − β)
}

. This in-
equality infers that the feasible set ofα andβ must meet the
inequality: |α− β| ≥ π

3 andθL ≤ α, β ≤ θU or |α− β| ≤ π
3

and θL ≤ α, β ≤ θU , as shown in Figure 2. Our goal in this
case is to maximized2. With (10), we obtain

max d2 = max
{

max
(α,β)∈Ω1∪Ω2

max
µ

2PT

F (α, β, µ)
,

max
(α,β)∈Ω3

max
µ

2PT

F (α, β, µ)

}

= max
{ 2PT

min(α,β)∈Ω1∪Ω2 minµ F (α, β, µ)
,

2PT

min(α,β)∈Ω3 minµ F (α, β, µ)

}
(26)

For any fixedα and β, since F (α, β, µ) is an increasing
function of µ, we have

min
(α,β)∈Ω3

min
µ

F (α, β, µ) = min
(α,β)∈Ω3

F2(α, β) (27a)

and

min
(α,β)∈Ω1∪Ω2

min
µ

F (α, β, µ)

= min
(α,β)∈Ω1∪Ω2

F
(
α, β,

1
2 cos(α− β)

)

≥ min
(α,β)∈Ω1∪Ω2

F1(α, β) (27b)

Combining (26) with (27) results in

max d2 ≤ 2PT

min
{

min(α,β)∈Ω1∪Ω2 F1(α, β), min(α,β)∈Ω3 F2(α, β)
}

Casec): 1 ≤ µ ≤ 2 cos(α − β). In this case, the feasible
set in terms ofα and β is Ω3 = {(α, β) : |α − β| ≤
π
3 , θL ≤ α, β ≤ θU}, as shown in Figure 2, and thus, we aim
at maximizingd3. Combining the definition ofd3 and (10),
we can representd2

3 as d2
3 = d2

2(µ
2 − 2µ cos(α − β) +

1) =
4P 2

T

(
µ2−2µ cos(α−β)+1

)
F 2(α,β,µ) = 4P 2

T
∆2(λ1,λ2,ψ)

µ2−2µ cos(α−β)+1
f2(α,β,µ)

Hence, we havemax d2
3 = maxα,β maxµ d2

3. Now, applying

Lemma 5 into functionµ2−2µ cos(α−β)+1
f2(α,β,µ) yields maxµ d2

3 =
4P 2

T
∆2(λ1,λ2,ψ)

1
f2(α,β,2 cos(α,β)) = 4P 2

T
F 2(α,β,2 cos(α,β)) = 4P 2

T
F 2

2 (α,β)
.

Therefore,max d3 = 2PT
min(α,β)∈Ω3 F2(α,β) .

Now, summarizing the above discussions on Cases a), b)
and c), we conclude that the optimum is reached whend2 = d3

and is given by

2PT

min
{

min(α,β)∈Ω1∪Ω2 F1(α, β),min(α,β)∈Ω3 F2(α, β)
}

On the other hand, by Lemmas 3 and 4, we
know that minF1(α, β) = {F1(C), F1(H), F1(G)},
since F1(A) = F1(C), F1(H) = F1(E) and
F1(G) = F1(F ), and that minF2(α, β) =
{F2(B), F2(D), F2(H), F2(G), F2(E), F2(F )}. To further
simplify this optimization problem, let us consider the
case when0 ≤ ψ ≤ π

4 . In this situation, we notice

that f1(α, θU ) = cos(α − θ) + cos(θU − θ), where
θL ≤ α ≤ θU − π

3 . by the definition ofθ in Lemma 2
and by Lemma 2, we know thatθL ≤ θ and θU − π

3 < θ.
As a result, we havef1(θL, θU ) ≤ f1(θU − π

3 , θU )
and thus, F1(C) ≤ F1(G). In addition, we also note
that f1(θL, β) = cos(θL − θ) + cos(β − θ), where
θL + π

3 ≤ β ≤ θU . Hence, if θL + π
3 ≥ θ, then,

f1(θL, θL + π
3 ) ≥ f1(θL, θU ) and thus, we have

F1(H) ≥ F1(C). If θL + π
3 < θ, then, by Lemma 2, we know

φ + θ − θL > π
3 . In addition, we also know thatf2(θL, β) =√(

2 + cos 2(θL − θ)
)2 + sin2 2(θL − θ) cos(β − φ − θ),

where θL ≤ β ≤ θL + π
3 . As a result, we obtain

f2(θL, θL) < f2(θL, θ + l + π
3 ) and thus,F2(D) < F2(H).

Therefore, in any case, the pointH is not any optimal
point. SinceF2(H) = F1(H) andF2(F ) = F1(G), we have
min{minF1(α, β),minF2(α, β)} = {F1(C), F2(D)}. Now,
by Lemma 6, we can prove the result on Theorem 1 regarding
the considered case. Similarly, we can prove the case when
π
4 < ψ ≤ π

2 . This completes the proof of Theorem 1. ¤
2) Proof of Theorem 2:SinceF = VG, the nonnegative

constraint onF is transfered toG such that

g11 cos ψ − g21 sinψ ≥ 0 (28a)

g11 sinψ + g21 cos ψ ≥ 0 (28b)

g12 cos ψ − g22 sinψ ≥ 0 (28c)

g12 sinψ + g22 cos ψ ≥ 0 (28d)

From (28) we can attaing11 ≥ 0 and g12 ≥ 0. In addition,
when0 ≤ ψ ≤ π

4 , from (28b) and (28d) we have

g21 ≥ −g11 tanψ (29a)

g22 ≥ −g12 tanψ (29b)

and whenπ
4 < ψ ≤ π

2 , from (28a) and (28c) we obtain

g21 ≤ g11 cot ψ (30a)

g22 ≤ g12 cot ψ (30b)

On the other hand, the nonnegative power constraint (4b) in
terms ofF is transfered into that in terms ofG such that

(cos ψ + sinψ)(g11 + g12)
+(cos ψ − sinψ)(g21 + g22) = 2PT (31)

Now, combining (29) with (31) results in the largest feasible
domain in terms of design variablesg11 andg12, i.e.,

g11 + g12 ≤ 2PT cos ψ for g11 ≥ 0, g12 ≥ 0 (32)

when 0 ≤ ψ ≤ π
4 , while combining (30) with (31) produces

the largest feasible domain in terms of design variablesg11

andg12, i.e.,

g11 + g12 ≤ 2PT sinψ for g11 ≥ 0, g12 ≥ 0 (33)

when π
4 < ψ ≤ π

2 . In addition, notice that in this case,
from (5) we know thatg11 = d1/λ1, g12 = d2/λ1 anda12 =
λ2

1g11g12 = d1d2. Hence, by the definition ofd3, we obtain
d3 = d1− d2 and thus, the objective function in Problem 2 is
reduced tomaxmin{d2, d1 − d2}. This optimization problem
can be split into two sub-problems:max d2, d1 ≥ 2d2 and
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max(d1 − d2), d1 ≤ 2d2 subject to either constraint (32) for
0 ≤ ψ ≤ π

4 , which is equivalent tod1 + d2 ≤ 2λ1PT cos ψ,
or constraint (33) forπ4 < ψ ≤ π

2 , which is equivalent to
d1 + d2 ≤ 2λ1PT sinψ. No mater which case occurs, the re-
sulting optimization problem is linear and thus, the maximum
is achieved when all the corresponding equalities hold, i.e.,
when0 ≤ ψ ≤ π

4 , we haved1 = 2d2, d1 + d2 = 2λ1PT cos ψ
and the equality in (29) holds, and whenπ

4 < ψ ≤ π
2 , we have

d1 = 2d2, d1 + d2 = 2λ1PT cos ψ and the equality in (30)
holds. This completes the proof of Theorem 2. ¤


