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ABSTRACT
In this paper, we present a simple signal design and transmission
technique to uniquely and blindly identify Alamouti space-time
coded channels under both noise-free and complex Gaussian noise
environments in whichpth-order andqth-order statistics (p andq
are co-prime) of the received signals are available. A closed-form
solution to determine the channel coefficients is obtained by ex-
ploiting specific properties of the Alamouti space-time code and
the linear Diophantine equation theory. When only finite received
data are given, we propose using the semi-definite relaxation algo-
rithm to approximate maximum likelihood (ML) detection so that
the joint estimation of the channel and symbols can be efficiently
implemented. Simulation results show that our signal design and
transmission method yields lower mean-square error in the estima-
tion of the channel when compared to other existing methods and
that the average symbol error rate approaches that of the coherent
detector which needs perfect channel information at the receiver.

1. INTRODUCTION

In recent development of wireless communications, multiple an-
tennas and space-time block codes (STBCs) technologies [1–4]
have been employed to improve the spectral efficiency, while
maintaining satisfactory performance over fading channels. In par-
ticular, orthogonal STBCs [4,5] have attracted much attention be-
cause they can achieve maximum diversity and need only linear
processing for the coherent ML receiver. To decode OSTBC ef-
fectively, however, perfect channel state information (CSI) is re-
quired at the receiver which, in practice, is not easily attainable
since wireless channels usually change constantly. Although CSI
can be obtained using training symbols, a substantial penalty has
to be paid for the loss in bandwidth efficiency [6, 7]. This loss
can be saved by using differential STBC (DSTBC) in flat fading
channels [8, 9] which, unfortunately, involve an approximate loss
of 3dB in performance compared to coherent detection. To arrive
at a more satisfactory solution, blind channel estimation and de-
coding algorithms were proposed for OSTBC [12–14]. However,
for the Alamouti space-time coded channel, there still exists the
ambiguity issue [12–14] for which the transmitted symbols may
not be determined uniquely.
In this paper, we propose a novel blind channel identification tech-
nique for the Alamouti space-time coded channel by properly de-
signing the transmitted signals. Using this new strategy we prove
that a) in the noise-free case, only two distinct pairs of symbols
are needed touniquelydetermine the channel coefficients, and b)
in the case for which complex Gaussian noise are added and for
which thepth-order andqth-order statistics on the received sig-
nals are available, the channel coefficients can also be uniquely

determined. In both cases, simple closed-form solutions are ob-
tained. In practice, when only finite received data are available,
we propose to use the semi-definite relaxation (SDR) algorithm to
approximate ML detection so that the joint estimation of the chan-
nel and symbols can be efficiently implemented.
Let us first examine the Alamouti space-time coded channel: Con-
sider a wireless communication system with two transmitter anten-
nas and a single receiver antenna in a flat-fading environment. For
the Alamouti space-time coding scheme, each set of two trans-
mitted symbols spans over two consecutive time slots which is
designated aframe. Thus, at theith frame, during the first time
slot, [spi, sqi] are transmitted simultaneously from Antennas 1 and
2, respectively. During the second time slot of theith frame, we
transmit−s∗qi ands∗pi respectively from Antennas 1 and 2. There-
fore, at the receiver antenna, the received signal in the two consec-
utive time slots of theith frame can be written as

[
zi(1)
zi(2)

]
=

[
spi sqi

−s∗qi s∗pi

] [
h1

h2

]
+

[
ξi(1)
ξi(2)

]
(1)

wherespi andsqi are the two symbols chosen to be transmitted at
theith frame,h1 andh2 denote the respective channel coefficients
from the transmitter Antenna 1 and 2 to the receiver antenna, and
ξi(1) and ξi(2) denote complex circular white Gaussian noises
with zero-mean and varianceσ2 in the two time slots. We assume
that|h1|2 + |h2|2 6= 0 andh1, h2 are constant withinT time slots.

2. SIGNAL DESIGN AND JOINT ESTIMATION

We now develop a novel signal design technique for the Alamouti
space-time coded channel so that the channel coefficients can be
uniquely identified under noise-free and noisy conditions.

2.1. Noise-free case

We now show that two distinct received signal vectors can de-
termine the channel coefficients and the transmitted symbols
uniquely in a noise-free environment. Using the Alamouti scheme
of transmission, for theith frame, we assign the symbolsspi and
sqi in Eq. (1) such thatspi ∈ Sp andsqi ∈ Sq, whereSp and
Sq arep-PSK andq-PSK constellations withp and q being co-
prime positive integers. Therefore, for two consecutive frames, say
i andi + 1, we will send out the symbols{spi, sqi}, {−s∗qi, s

∗
pi}

and{sp(i+1), sq(i+1)}, {−s∗q(i+1), s
∗
p(i+1)} for the four consecu-

tive time slots. At the receiver, if there is no noise, we can solve
Eq. (1) for the four consecutive time slots in framesi andi + 1,
[
h1

h2

]
=

1

2

[
s∗pi −sqi

s∗qi spi

][
zi(1)
zi(2)

]
=

1

2

[
s∗p(i+1) −sq(i+1)

s∗q(i+1) sp(i+1)

][
zi+1(1)
zi+1(2)

]



From this we can further obtain
[
zi+1(1)
zi+1(2)

]
=

1

2

[
sp(i+1) sq(i+1)

−s∗q(i+1) s∗p(i+1)

] [
s∗pi −sqi

s∗qi spi

] [
zi(1)
zi(2)

]
(2)

Let a=1
2
(sp(i+1)s

∗
pi +sq(i+1)s

∗
qi), b=

1
2
(spisq(i+1)−sqisp(i+1)).

Then, taking conjugates, Eq. (2) can be rewritten as
[
zi+1(1)
z∗i+1(2)

]
=

[
zi(1) zi(2)
z∗i (2) −z∗i (1)

] [
a
b

]
(3)

from which we obtain

a = (z∗i (1)zi+1(1) + zi(2)z∗i+1(2))/(|zi(1)|2 + |zi(2)|2)
b = (z∗i (2)zi+1(1)− zi(1)z∗i+1(2))/(|zi(1)|2 + |zi(2)|2)(4)

Substituting the definitions ofa andb into (4) results in

spisqia + b = spisq(i+1) (5a)

spisqia− b = sqisp(i+1) (5b)

Now, the key problem is whether the quadratic equations (5a) and
(5b) have a unique solution with respect to symbol variablesspn

andsqn, n = i, i + 1, for the givena andb in (4). The following
theorem provides the answer:

Theorem 1 Let spi, sqi andsp(i+1), sq(i+1) be symbols selected
to be transmitted in the time framesi and i + 1 respectively
such thatspn ∈ Sp and sqn ∈ Sq, n = i, i + 1, whereSp

and Sq are p-PSK andq-PSK constellations withp and q be-
ing co-prime positive integers. Letzi = [zi(1), zi(2)]T and
zi+1 = [zi+1(1), zi+1(2)]T be two distinct received signal vec-
tors from the Alamouti space-time coded channel within the two
consecutive time frames (four time slots). Leta and b be given
by Eqs. (4). Then, in noise-free case, there exists a unique pair of
positive integers̀ andk with 0 ≤ ` ≤ p− 1 and0 ≤ k ≤ pq − 1
such that

b

a− exp
(
j 2π`

p

) = exp

(
j
2πk

p q

)
, a 6= exp

(
j
2π`

p

)
(6)

Furthermore, two pairs of the transmitted symbols[spi, sqi] and
[sp(i+1), sq(i+1)] can be uniquely determined as follows:

spi = exp

(
j
2π

p

(
k

q

(
1− pϕ(q)

)
+ p

⌈
kpϕ(q)−1

q

⌉))
(7a)

sqi = exp

(
j
2π

q

(
kpϕ(q)−1 − q

⌈
kpϕ(q)−1

q

⌉))
(7b)

sp(i+1) = exp

(
j
2π`

p

)
spi (7c)

sq(i+1) =
2a− exp

(
j 2π`

p

)

a− exp
(
j 2π`

p

) b · s∗pi (7d)

whereϕ(q) is the Euler function [17], anddxe denotes the greatest
integer not exceedingx. In addition, the channel coefficientsh1

andh2 can be further uniquely determined by
[
h1

h2

]
=

1

2

[
s∗pi −sqi

s∗qi spi

] [
zi(1)
zi(2)

]
(8)

We would like to make the following remarks on Theorem 1.

1. Theorem 1 not only tells us that the channel coefficients
can be uniquely identified by transmitting two distinct sym-
bol pairs from two co-prime constellations in the four time
slots, but also provides simple and close-form solutions to
both the channel coefficients and transmitted symbols.

2. In the noise-free case, two different received signal vectors
are the smallest number of data requirement for the unique
identification of the Alamouti space-time coded channel
and symbols. In other words, from (1), one received sig-
nal vector will not enable us to determine the transmitted
symbols[spi, sqi] or the channel coefficientsh1 andh2.

3. In [12–14], it has been shown that if the transmitted sym-
bols are chosen from the same constellation for transmis-
sion through the Alamouti space-time coded channel, then,
information symbols and channel coefficients cannot be
uniquely determined no matter how many data sets are sent.

2.2. Complex Gaussian noise case

Let us now consider the Alamouti space-time coded channel model
with white complex Gaussian noises. We assume that at any time
framei, the two symbolsspi andsqi sent over the two transmit-
ter antennas are independent and are equally likely chosen respec-
tively from the p-PSK andq-PSK constellations,p and q being
co-prime positive integers. In this case, the received signal vector
can be expressed as
[
zi(1)
zi(2)

]
=

[
spi sqi

−s∗qi s∗pi

] [
h1

h2

]
+

[
ξi(1)
ξi(2)

]
, i = 1, 2, · · · (9)

Now we formally state our second main result without proof.

Theorem 2 Let two positive integersp andq be co-prime. Then,
we have

{
hp

1 = E[zp
i (1)]

hq
1 = (−1)qE[zq

i (2)]

{
hp

2 = E[zp
i (2)]

hq
2 = E[zq

i (1)]
(10)

whereE[·] denotes the expectation operator. From this, the chan-
nel coefficientsh1 andh2 can be uniquely determined by

h1 = |E[zp
i (1)]|1/pejθ1 , h2 = |E[zp

i (2)]|1/pejθ2 (11)

with

θ1 =
arg(E[zp

i (1)]) + 2n1π

p
=

arg((−1)qE[zq
i (2)]) + 2m1π

q

θ2 =
arg(E[zp

i (2)]) + 2n2π

p
=

arg(E[zq
i (1)]) + 2m2π

q

Here, 0 ≤ m1, m2 < q and 0 ≤ n1, n2 < p. arg(·) denotes
the phase angle in an interval0 < arg(·) ≤ 2π. Integersm1,
m2 andn1, n2 can be uniquely obtained by solving the following
Diophantine equation using the Euclid algorithm,

arg((−1)qE[zq
i (2)])p− arg(E[zp

i (1)])q

2π
= n1q −m1p

arg(E[zq
i (1)])p− arg(E[zp

i (2)])q

2π
= n2q −m2p

with 0 ≤ m1, m2 < q and0 ≤ n1, n2 < p.



Theorem 2 shows that even in complex Gaussian noise case, our
signal design approach is also able to provide a unique closed-
form solution to the channel coefficients if thepth- andqth-order
statistics of the received signals are available. However, in prac-
tice, the channel coefficients of a wireless communication system
will change randomly from the one observation period to the next.
Thus, only a limited number of samples will be available during
one observation period. Under such conditions, it is well known
that the optimal solution is the joint estimation of the channel and
signals based on maximum likelihood (ML) detection. Unfortu-
nately, in general, this is anondeterministic polynomial-time(NP)
hard problem, i.e., the globally optimal solution cannot be found
in polynomial-time complexity. In the next section, taking advan-
tage of the orthogonality of the Alamouti space-time code, we will
exploit the semi-definite relaxation (SDR) method [10, 11] to ef-
ficiently approximate the ML decoder for our designed constella-
tion.

2.3. Semi-definite relaxed maximum likelihood decoding

In this section, we will use ML detection to jointly estimate the
channel coefficients and signals. Suppose we have receivedL time
frames in which we receiveL signal vectors{zi}, i = 1, 2, · · · , L
during2L observable time slots wherezi = [zi(1) zi(2)]T . Let

Xi =

[
spi sqi

−s∗qi s∗pi

]
, i = 1, · · · , L (12)

Then, the received signal can be represented in a compact form as:

z = Xh + ξ (13)

wherez = [zT
1 , zT

2 , . . . , zT
L ]T , X = [XT

1 ,XT
2 , · · · ,XT

L ]T , h =
[h1, h2]

T andξ = [ξT
1 , ξT

2 , · · · , ξT
L ]T with ξT

i = [ξi(1) ξi(2)]T .
Then, our problem can be formulated as

{X̂, ĥ} = arg min
X,h

||z−Xh||2 (14)

Differentiating the object function w.r.t.h, and using the orthogo-
nality of Alamouti code, we have:

h = (XHX)−1XHz =
1

2L
XHz. (15)

Substituting (15) into (14) yields

{X̂} = arg min
X
{zHz− 1

2L
zHXXHz}. (16)

Since the termzHz is constant, the above optimization problem is
equivalent to

{X̂} = arg max
X

(XHz)H(XHz). (17)

Note thatXHz =
∑L

i=1 XH
i zi with

XH
i zi =

[
0 −zi(2)

zi(2) 0

] [
spi

sqi

]
+

[
zi(1) 0

0 zi(1)

] [
s∗pi

s∗qi

]
. (18)

Hence,XHz can be represented as

XHz =

[−∑L
i=1 zi(2)sqi +

∑L
i=1 zi(1)s∗pi∑L

i=1 zi(2)spi +
∑L

i=1 zi(1)s∗qi

]
.
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Figure 1: Channel MSE vs. SNR and the block length. The ran-
domization number of the SDR-ML is set to be 40.

It can be verified that problem (17) can be reformulated as a
homogenous quadratic problem

max s̃HUUH s̃ (19a)

s.t. |s̃i| = 1, for i = 1, · · · , 2L. (19b)

where

U =

[
z∗1(1), · · · z∗L(1), −z∗1(2), · · · −z∗L(2)
z1(2), · · · zL(2), z1(1), · · · zL(1)

]T

,

and s̃T = [s∗p1, · · · , s∗pL, sq1, · · · , sqL]. Since s̃HQs̃ =

Trace(s̃s̃HQ), problem (19) can be further reduced to

max
S∈C2L×2L

tr(SQ) (20a)

s.t. S = s̃s̃H (20b)

Sii = 1, i = 1, · · · , 2L (20c)

whereQ = UUH , andQ = QH ∈ C2L×2L. Relaxing this
rank-1 constraint (20b) , problem (20) can be reformulated to

max
S∈C2L×2L

tr(SQ) (21a)

s.t. S º 0 (21b)

Sii = 1, i = 1, · · · , 2L (21c)

whereS º 0 means thatS is symmetric and positive semi-definite
(PSD). Thus, this complex-valued SDR problem can be efficiently
solved using the interior-point method [15]. Once the solution of
the SDR problem (21) has been obtained, we use the Goemans-
Williamson randomization technique [10, 11, 16] to obtain the ap-
proximate solution of the original problem (19).

3. SIMULATIONS

We now carry out two simulations wherep = 4 andq = 3, i.e.,
QPSK and TPSK constellation. The first simulation compares the
mean square error performance of channel estimation using our
proposed signal design method with that of the method transmit-
ting symbols from only one constellation. The results are shown in
Fig. 1. We see that the method transmitting only one constellation
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Figure 2: SER vs. SNR for coherent detection and our proposed
method with the increasing block length. The randomization num-
ber of the SDR-ML is set to be 40.

has very poor performance of channel estimation no matter how
large the data block size and no matter how high the signal-to-noise
ratio (SNR) is. This poor performance is due to the rotational am-
biguity with the signal constellation at the receiver end [12]. Our
signal design which employs two signal constellations eliminates
such rotational ambiguity and thus, offers substantially better MSE
performance without using any pilot symbols. The second simu-
lation compares the average symbol error rate of our joint estima-
tion method to that of coherent detection that has perfect channel
knowledge at the receiver. The result is shown in Fig. 2, in which
we can observe that the performance of our method is close to that
of coherent detection (which necessitate full CSI) when SNR is
high.

4. CONCLUSION

In this paper, we proposed a novel blind channel identification
technique for Alamouti space-time coded channel by properly de-
signing and transmitting signals. Using our strategy we proved
that in the noise-free case, only two distinct pairs of symbols are
needed to uniquely determine the channel coefficients, while in
the complex Gaussian noise case whenpth-order andqth-order
statistics of the received signals are available, we are still able to
uniquely determine the channel coefficients. In both cases, sim-
ple closed-form solutions were derived. When only finite received
data are given and under Gaussian noise environment, we em-
ployed the semi-definite relaxation algorithm to approximate ML
detection so that the joint estimation of the channel and symbols
can be efficiently implemented. Simulation results showed that our
signal design and transmission method provides much better mean
square error performance of channel estimation when compared to
the method transmitting only one constellation and that the average
symbol error rate approaches that of the coherent detector.
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