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Abstract— Redundancy introduced using filterbank pre-
coders at the transmitter builds a unified framework for
modulation schems. Taking advantage of this diversity can
offer a powerful tool for removing interblock interference
and devising simple but effective precoders for suppressing
the intersymbol interference (ISI) and being robust to fre-
quency selective channels.. In this paper, we assume that
the transmitter knows the autocorrelation sequences of the
channel impulse response. Under this assumption, we de-
rive a lower and an upper bound on the free distance for a
precoded channel and with this, design the precoder that
maximizes the lower bound subject to a power constraint.
It turns out that the optimal preccder is a unitary matrix
which makes QR decomposition of its super-channel exhibit
equal diagonal entries in R-factor and the lower and the
upper bounds of its free distance equal. We show that for
the optimal precoded channel, the detection performance
using the decision feedback equalizer (DFE) based on QR
decomposition is asymptotically equivalent to that of the
mamximum likehood detector (MLD) when the signal to
noise ratio (SNR) is large.

I. INTRODUCTION

Block transmission is commonly used for communicat-
ing over dispersive channels affected by intersymbol in-
terference. The transmitted data stream is parsed into
consecutive equal-size blocks and redundancy is added
to each block in order to remove interblock interference.
Filterbank precoding framework [1}, [2], [3] unifies exist-
ing modulations including orthogonal frequency division
(OFDM)[4], discrete multione (DMT), time division mul-
tiplex acess (TDMA) and code division multiplex acess
(CDMA) schems encountered with single and multiuser
communications . Taking advantage of this diversity can
offer a powerful tool for removing interblock interference
and devising simple but effective precoders for suppress-
ing ISI and being robust to frequency selective channels.
Existing precoder design criteria are based on maximum
output SNR and minimum mean-square error criteria un-
der zero-forcing and fixed transmitted power constrains
(3], {4]. Idealy, an optimal precoder should minimize the
detection error probability of the MLD. But we know that
the average probability of error over all blocks is domi-
nated by the free distance for high SNR [5]. However,
directly maximizing the free distance is too expensive for
the complexities of both its design and detection to be
affordable. In this paper we are interested in designing
the precoder which maximizes the lowerbound of its free
distance.
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The main contribution in this paper is to derive the
lowerbound and upperbound of the free distance in terms
of the diagonal entries in the R-factor of the QR decom-
position of a channel and with this, reduce the precoder
design to the design of an unitary matrix whose QR de-
composition of the super-channel matrix exhibits equal
diagonal entries in the R-factor. We not only give a nec-
essary and sufficient condition to check if a matrix pos-
sesses this property, but also give a recursive algorithm
to construct the matrix. For this optimal precoder, the
free distance of the super-channel has a simple formula.
In addition, we derive an analytic expression for the block
error probability of the DFE detection based on QR de-
composition. By comparison, we find that the detection
performance of the optimal precoded channel is asymp-
totically equivalent to that of MLD when using the same
precoder.

Notation: The columns of an M x N matrix V are
denoted by vy,vs,--+,vy. Vi denotes a matrix consist-
ing of the first k colums of V, i.e., Vi = [v1,va, -+, vg].
By convention, Vy = 1. Ry denotes the autocorrelation
matrix of V, i.e., Rv = VEV.

1I. CHANNEL MODEL

Fig.1 shows the discrete-time equivalent model of the
baseband communication system using filterbank pre-
coders [2], [3]. The blocked signal s(n) = [s(nM), s(nM +
1), ,s(nM + M - 1)} is precoded by an N x N matrix
F and then transmitted through an equivalent M x N
matrix channel, where the channel matrix is

RO) 0 ... 0

i h(L) 0
0 h(0)
0 . 0 RI)

In this case, a received signal r(n) can be expressed as
r(n) = HFs(n) + £(n) 1)

Our task is to find the precoder F that maximizes the
lower bound of its free distance.
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Fig. 1. Equivalent matrix receiver model

I1I. REVIEW OF THE DECISION FEEDBACK EQUALIZER

We briefly review a decision feedback equalization
scheme based on QR decomposition. Consider a channel
model similar to (1),

r(n) = Cs(n) + £(n) 2

with the only difference from (1) being that Cisan M x N
full rank channel matrix with M > N. The QR decision
feedback is captured by these 3 steps:

« Perform QR decomposition, C = QR, where Q is a tall
orthonormal matrix and R is an upper triangular square
matrix,

RU R12 RIN
0 Ry Ron

R= . . . R >0
0 0 RyN

For k=N, -- ,1, this reduces (2) to

N
fe(n) = Reask(n) + D Remsm(n) + &(n)
m=k+1

where £(n) = QHr(n) and £(n) = Q¥ ¢(n).

« Quantization, §x(n) = Quant [fx(n)/Rn,n] (for binary
signaling, Quant[-]=Sign[]);

» Remove the interference term in r(n) to obtain the es-
timate of sx(n) using the decision on sg41(n),...,sp(n),
ie,fork=N,---,1,

Fr(n) —~ EZ:]H.] Ri,m8m(n)
Ry

$k(n) = Quant

With the help of QR decomposition, we have:
Theorem 1: Let the free distance of a MLD detector for
a channel C be defined as

dfz'ree(c) = sn;ig (Sl - 52)HRC(51 - 52) (3)

for any s1,82 € S xS--- x S. Then,

dmin lgllcian Ry < dfree(C) < Ri18min, 4)
where dnin is the minimum distance between sequences,
ie.,

@min = min |81 — s3} for any $;1,52 € S
81782

IV. DESIGN OF MAXIMUM FREE DISTANCE
LOWERBOUND PRECODER

The following assumptions characterize channel (1).
1. For k < 0,k > L the channel coefficients are hy = 0;
2. M = N + L and the auto-correlation sequences of the
channel impuse response is known to the transmitter;

Our problem is now stated as

Problem 1: : Find the precoder matrix F that maxi-
mizes the lower bound of the free distance, min Ry, sub-
ject to the power constraint, tr (F#F) < p. More precisly,
it is formulated as the following optimization problem,

F*=arg max min  Rgg,

tr(FHF)<p 1<KSN

N 1/N
(H R%k) (5)
k=1

The equality here holds if and only if

First we note that

min R, <
1<k<N

Ri; = Ry =-+- = Ryn. (6)

On the other hand, note that the diagonal elements of the
upper triangular matrix R in the QR decomposition of
matrix HF can be expressed by the determinants of the
submatrices of the autocorrelation matrix of F/RyxF, ie.,

det(FHRHFk)
Rip = 4 —— k22287 7
kk \/det(Ff_lRHFk—l) ( )

for k = 1,2,--- |N. Since det(F{RxFy) = 1 and
det(FIRyFy) = det(FPRyF), combining (7) with (5)
yields

 min R}y < det (FYRyuF) = det (F7F) det (Ru) (8)
The equality holds if and only if (6) holds. Applying
Hadamard’s inequality leads to

N
det (FAF) < ] £ 4. 9

k=1

The equality here holds if and only if F¥F is a diag-
onal matrix. Furthermore, under the power constraint
tr(FHF) < p, we have

(Bats) < (z)"

The equalities hold if and only if the diagonal entries of
FHF are equal, i.e.,

N
I <
k=1

(10)

ff’f1=f{’f2=---=fﬁfN=% 1)
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Combining (8) and (9) with (10) results in

min R?, < % (det(RH))l/N.

1<kEN (12)

The equality holds if and only if (6) holds and the precoder
F has the following structure,

v, (13)

where V is an unitary matrix. Actually, (6) is equivalent

to
det(FFRyFy) _ det(Ff,RuFi41)

det(Ff_lRHFk_l) - det(FfRHFk)

for k=1,2,---,N — 1. This shows that det(Ff RizF}) is
a geometric sequence, i.e.,

det(FERyF}) = det(FARyF)F/V.

(15)

Therefore, our optimization problem is reduced to find a
unitary matrix V satisfying

det(VERu V) = det(Ru)*/N. (16)

That is equivalent to finding a unitary matrix V that
makes the QR decomposition of the super-channel C =
HYV* exhibit equal diagonal entries in the R-factor. Now
a natural question is whether such unitary marix exist
and how to construct it if exists. The following theorem,
whose proof is omitted, gives an answer.

Theorem 2: The solution F* to Problem 1 exists. For
this precoder F*, let the QR decomposition of HF* be
HF* = Q*R*. Then, we have
1. The diagonal elements in the upper triangular factor
R* are all equal.

2. For the optimal precoder F*,

diveo(HF*) = [ £ droi (det(Rur))' Y. (17)
3. The optimal solution of Problem 1, F*, has the follow-

ing structure,
F* = ,/%VHW

where HPH = VHAVH and W is determined by the
following recursive algorithm,

(18)

(@) wi = (w11, - ,wn1)7 is determined by
N
Sl = det(Ra)/N (19)
k=1
wiw, = 1 (20)

(b) Wi41 = W 2gy1, where zxy; is determined by

det (Rg)*'™ (21)
1 (22)

H k
Zk+1A( )Zk+1 =

H
Zk+1Zk+1

for k=1,2,---,N — 1, where B®) = WIRyz W/, and

A® = (W;CL)HRH,(I - wk(B“))-‘w{jRH) Wi,
Remarks: To appreciate the physical meaning of the so-

lution F', we make the following comments.
« Equation (17) is equivalent to

N
1 1
10 [diree(HLF*)] = log 5 +logdumin+ 357 9 logA. (23)
k=1

N ’ n
For N large, % Y logh tends to & [ log|H (w)|*dw.
k=1 -7

Hence,

& [ loglH(w)|?dw
dfree(HF*) — %241! —jv.r g|H(w)| -
where we have used Kolmogorov’s result ([6], p. 274).

o For the optimal precoder F* and for BPSK input sym-
bols, we derive an analytic expression for P, the proba-
bility of correctly detecting a block using the DFE based
on QR decomposition. By the chain rule, we have

Pr(si(n),s5(n),- -, sx(n))

N
1 Prisi(m)isis (), s (n))  (25)
k=1

P, =

where s{(n) indicates that the detected symbol is correct,
i.e., sg(n) = 8x(n). If 5§ denotes that the detected symbol
is not correct, then (25) can be rewritten as

N
P. =[] {1- Prsi(m)ista(n), -+ sk(m)]}  (26)
k=1

For BPSK input symbols, we know

Pr(si (s (), - siv(n)) = gerfe (51%)

In this case, since Ry, are all equal, ie., Rp, =

VE (det®Ru))'/*N k = 1,2,---, N, substituting (27)
into (26) yields

N
P, = (1 - %erfc (, / f127'—7:det(RH)1/21"))

or equivalently, the block error probability is

(28)

N
P=1- (1 - %erfc (1 / f%det(RH)l/ZN)) , (29)

where snr = £, Combining this with (17), we see that
the detection perforamnce of the DFE is asymptotically
equivalent to that of MLD.
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» From the structure of the optimal precoder F* we see
that Vg diagonizes the autocorrelation matrix of the
channel mstrix H. The role of W is to adjust the diagonal
entries of A so as to equalize all the diagonal elements of
the upper triangular matrix R in the QR decomposition
of the super-channel AW.

¢ When N = 2, equations (19)-(22) have four solutions,
one of which is

% VM
1+A2 VAi+Az
W=V
e
A1tAz VAi+iz

For more general cases when N > 2, there are an in-
finite number of solutions, among which, we can obtain
a special solution as follows. Let the singular value de-
composition of A®) be AR = UBAE(UENH with
AP > AW > o> and let 744 = UMty Then,
Wiy = WEU®t, for k= 1,2,--- , N — 1, where

det(Rp)/N = A0
k k
RPN

tll—\

B _ det(Ryg) /Y

tn—kp = \ )‘gk)_,\%c)_k
tn = 0 fort=2--- N-k-1

det(Rg)/N — Ay

wy = AL — AN
v = i det R
N1 = /\1 — >\N
Wy = 0 fork=2,.-- ,N-1
N —wWnN1 01x(N-—2)
wi = Ov-2)x1 I(N-2)x(N-2)
w11 1x(N-2)

V. SIMULATION

We give an example to show the detection performances
of DFE and MLD for the optimal precoded channel. For
simplicity of comparison to the maximum likehood detec-
tor, we consider the case where h = [0.407,0.815,0.407]
and N = 4. Simulation results for this channel are shown
in Fig.2, where the solid line denotes the theoretic result
determined by (29), the stars and circles denote simula-
tion results of DFE detector and MLD detector for the
optimal precoded channel, respectively.

SNR(dB)
Fig. 2. Performance comparison of DFE with MLD for the optimal
precoded channel

VI. CONCLUSION

For high SNRs and for the autocorrelation sequences
of the channel’s impulse reponse known to the transmit-
ter, we have designed the precoder that maximizes the
lowerbound of the free distance for ISI channel in block
transmission. The optimal precoder turns out to be a uni-
tary matrix whose super-channel has a QR decomposition
that exhibits equal diagonal entries in the R-factor. At
the same time, the lowerbound and the upperbound of
the free distance become equal. For the optimal precoded
channel, the DFE detection performance based on QR de-
composition is comparable to that of mamximum likehood
detector. Our simulation verified the claim.
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