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Abstract—In this paper we consider coherent flat fading wire-
less communication systems with multiple transmitter antennas
and single receiver antenna (MISO). We propose a Toeplitz linear
space time block code (STBC) that converts an original MISO
flat fading channel into a Toeplitz virtual multiple inputs multiple
outputs (MIMO) channel. We show that our proposed code has
the following main features: (a) The symbol transmission rate
is T=M+1 where M is the number of transmitter antenna
and T is the number of channel usesT > M). (b) Linear
receivers (zero-forcing and minimum mean square error) can
extract full diversity. Moreover, when the channel coefficients
are independent and the maximum likelihood (ML) detector
is employed, our Toeplitz STBC minimizes the exact worst
case average pair-wise error probability. (c) When channels are
correlated, we design our Toeplitz STBC that minimizes the exact
average worst case pair-wise error probability. By transforming
this non-convex optimization problem into a convex one, the
problem can be solved efficiently by employing an interior point
method. In particular, when the design criterion in question is
approximated by the Chernoff bound, we obtain a closed form
solution. (d) Finally, for the independent MISO flat fading system,
we prove that our proposed codes can approach the optimal
diversity-vs-multiplexing tradeoff developed by Zheng and Tse
with a linear zero-forcing receiver when the number of channel
uses is large.

I. INTRODUCTION

channels [15]. To overcome this, Hassibi and Hochwald [16]
proposed linear dispersion codes. Recent research [17]-[19]
based on number theory has shown that it is possible to design
linear space-time block codes and dispersion codes [20] which
are full rate and full diversity without information loss. The
main issue on these current designs is that the coding gain
vanishes rapidly as the constellation size increases. Therefore,
full rate full diversity non-vanishing space-time code designs
have recently drawn much attention [21]-[27] due to an
important potential [21] that such structured space-time codes
could achieve the optimal diversity-vs-multiplexing tradeoff
developed by Zheng and Tse [1]. More recently, a class of
random lattice space-time codes [28] has been designed to
achieve the optimal diversity-multiplexing tradeoff [1] for a
general coherent MIMO flat-fading channels under generalized
minimum Euclidean distance lattice decoding by exploit-
ing Erez and Zamir's nested lattice scheme [29]. Motivated
by [1], [21], [28], [30], we propose Toeplitz space-time codes
to asymptotically achieve the optimal diversity-multiplexing
tradeoff [1] for MISO channels with a linear ZF receiver.
Notation: Matrices and column vectors are denoted by
uppercase boldface characters and lowercase boldface char-
acters, respectively. Thé, j)-th entry of B is denoted by

In this paper, we consider a coherent flat fading wirele$B|; ;. NotationI; denotes a x K identity matrix. B” the
communication system with multiple transmitter and the singteanspose, aniB’’ the conjugate transpose.

receiver antenna; i.e., a multiple inputs single output (MISO)
system, which can be represented in a compact vector form as

r=x"h+¢, (1)

wherer is a received signah is anM x 1 channel vectork is
an M x 1 transmitting signal vector anglis a complex noise.

Throughout this paper, we adopt the following assumptions:
(a) The channeh is circularly-symmetric complex Gaussian (7 (a, L, K)i,; =
distributed, with zero-mean, and positive definite covariance
matrix 3; (b) £ is a circularly-symmetric complex Gaussian
noise with variances2. Our goal is to design linear space-
time block codes that minimize the worst case average pair-

wise error probability and asymptotically achieve the optimal
diversity-multiplexing tradeoff [1]. Utilizing channel covari-

ance information, the optimal transmitter design has been 7 (o, L,K) =
pursued on the basis of a capacity criterion [2]—-[6]. For MISO 0
communication systems, Zhou and Giannakis [7] designed
the precoder that minimizes the upper bound of the average
symbol error probability (SEP) based on maximum ratio 0 . 0
combining receiver and orthogonal space-time codes [8]-[10
However, orthogonal codes suffer from a limited transmissio
rate [11]-[14], and thus do not achieve full capacity in MIMO

II. TOEPLITZ SPACETIME BLOCK CODES

First we introduce the definition of Toeplitz space-time
block codes.

Definition 1: Let @ = [ay, a0, ,ar]T. Then, a(K +
L — 1) x K Toeplitz matrix generated by and a positive
integer K, denoted by7 («, L, K), is defined as

Qj—j+1, if ¢ >3 and: -7 < L (2)
0, otherwise
which can be explicitly written out as
a1 0 . 0
(65) (651 . O
a2
o o 3)

L / (KyL-1)xK

hen, a Toeplitz space-time block coda (s) is defined as
Xa(s) =T (s, N, M)A (4)



where A is an M x M invertible matrix. B entry is nonzero. In this cas&,(«, L, K) defined by (3) can
At time slott, thetth row of XA (s) is fed to M transmitter be partioned as
antennas for transmission. At the receiver, all Theeceived

signals can be written as a vector such that T(a, LK) = (2) ,
r=Xa(s)h+¢, ®)  \Wwhere B contains the firstZ rows of T(a, L, K) and
wherer = [ri,ro,---,rp]T and & = [¢1,&, -, &7 is therefore lower triangular, andC denotes the re-
Substituting (4) into (5), we have maining submatrix of7 («, L, K). Hence, we can write
- TH(a,L,K)T (o, L, K) = BB + CHC and as a result,
r=T(h,M,N)s+¢, ®) det (TH(ax, L, K)T (v, L, K)) > det(B¥B)+det(CHC) >
where N = T — M + 1, h — Ah and we have utilized the d¢t(B”B) = |au|** > 0. Therefore,C is positive. =
fact that By Lemma 1, it is immediate to get
_ Corollary 1: The positive constant (' in
Xa(s)h=7(h,M,N)s. (7) Lemma 1 renders the following inequality

-1

o, L, K)T (e, LK) ']

H 2
Now in (6), the original MISO channel is transformed into E{(T ( 2 Clel® is true for

Toeplitz visual MIMO channel. Such a channel is a speci |;v1,2,--- K. h . ; I he fi :
convolutive channel and hence, we can utilize the eﬁidenmtai:rzrseulrt]sw In the position to formally state the first of our

Vitterbi algorithm [31] to detect the signal with perfect ) . . .
channel knowledge at the receiver. Also, we can take d_Thgorem 1:The Toeplitz space-tlm'e block code provides
vantage of the second order statistics to blindly ident?&lg£|ver5|ty for thpe\l\;er_o-folrcmg receiver Wgeﬂ-ary PAM,
the channel. In addition, we see from Definition 1 that thg ernguare Q d&gnzs are trr]ansmltte . ¢ . bol
symbol transmission rate of our Toeplitz space-time codgéoo' Irst we hee to derive the expressions of symbo
is R — T=M+1 per channel use. Therefore, for a fixad, error prpbabmtles forD-ary PAM, ESK and square QAM
the transmigsion rat& can approach one if channel uses ariodulations when the ZF receiver is employed. for notional
sufficiently large simplicity, letP = 7" (h, M, N)T (h,M,N).

' 1) PAM signals: The SEP of the ZF receiver fob-ary

Ill. DIVERSITY OF ZF RECEIVER FORTOEPLITZSTBCs  PAM signals; is

In this section, we will show that our Toeplitz space-time _2(D-1) 3B,
block codes can provide full diversity even for the linear zF 1 Fav(hse) = =—5—@ (D2 -~ 1)o2 [P~ i | (10)
receiver. To do that, we first establish the following lemma. )
Lemma 1: There exists a positive definite constafitsuch ~whereD is the constellation size ar@l(z) = —= [~ e~ da.
that for any nonzero vectax, the following inequality holds, Further, (10) is upper bounded by

Clla™ < det (T (e, L K)T (@, LK) <[l @) Prasithion) < 25 oxp (~ o= poariy— )
- k.k

[ |
Proof: First we notice that the diagonal entries of matrix 2) PSK signals: The SEP of a ZF receiver for the PSK
TH(a, L, K)T (o, L, K) are same and equal to signal s, is given by

(D=1)r/D 2
[T" (e, L, K)" T (e, L K], = ]| Pes(h, 1) =+ | p<,2ﬁﬁ<ﬁ/m9) b,
0 k,k
By employing Hardamard's inequality [32], the right side of
inequality (8) can be obtained immediately. The left hand sid
is proved as follows. Fomx # 0, let v, = |ax|/|le] and (D-1) E, sin®(1/D)
oy = |o| exp(j270)). Then, we have Pesk(h, si) < D P~ 202 P i ) (11)

det (T (e, L, K)"T (v, L, K)) = ||*" D(~,0), (9)  3) Square QAM signalsThe SEP of a ZF receiver for the
square QAM signak, is given by

\évhich can be upper bounded by

Wher87 = h/h’YQa e 7FYL]T and@ = [917927' o 70L}T' Let

D denote the feasible set d¥(~, 0); i.e., Poaw (h, 5¢) =4 (1 3 L) 0 BE; -
2 vD 2(D = 1)o? [P~ ek
D:{<’770)||’Y|| :170S9€§27Tf0r£:1727"'7L}
. . . Y (R 5L (12)
Since D(x, 6) is polynomial with respect toy,,cos6, and VD 2D — 1)o2[P—ps |

sin#, for £ =1,2,---, L, there exists the minimum value of
D(~,0) in the feasible seD. Let C = min(, g)ep D(7,6), It is convenient to use the2 following alternative expressions
and it suffices to prove that > 0. Sincea # 0, without loss OF the @ function and theR~ function [33]
of generality, we can always assume that~ 0. Otherwise, 1 /ﬂ/2 < 22 &0
- P\ ===
0 2sin 0)

we can permute the rows d&f (e, L, K) such that the first Q(2) p (13)



Q(2) = l/ﬁ/4 exp(— .222 ) do (14) WhereSM =S xS§...x 8. -
mJo 2sin”0 To solve this problem, we introduce the following definition

Substituting (13) and (14) into (12), we obtain and lemmas.
Definition 2: Define the minimum distance of the constel-
Pqam(h, sk) - . /
/4 lation S asduyin(S) = min  |s — |
da- L)/ exp (- 3Es do Tes
7 VD So TP\ 2D 1) Pk esin6 _ =
4 1 /2 aF The following lemma relates a measure of the distance
+ (1- —)/ exp <— T — >d9.between matricesty,, (s) and Ay, (s") t0 dmin(S). For no-
mV/D' VD e 2D = 1o P krsin®0 ) otional convenience, ley,, (e, {i1,i2, - ,in}) denote the
Similarly, this can be upper bounded by matrix that remains after the columns &t,, (s) indexed by
D_ 3B {41,142, ,i,} have been removed.
<= - — 5 :
Pqam(h, sx) < o oXP ( 5D = 1)02[P*1]k,k) Lemma 2:For any nonzero vectos, we have

Therefore, we obtain a unified upper bound on the symbtt (Xiy(e.{it iz, ,in}) ALy (e, {in iz, - ,in})) > doi "(S)

error probability forD-ary PAM, PSK and QAM signals; i.e., forn—0,1,--- , M—1, where the equality holds if and only
D-1 a 15 if s ands’ are neighbours; i.e., if and only fie|| = duyin(S). W

D Xp{— P1r/’ (15) The following lemma provides a lower bound on the worst-

= case average pair-wise error probability.

_ 2 2 _ Essin®(n/D) . .
where apay = 3E,/(D* — 1)o*,apsx = ==55*— and  Lemma 3:Let D = diag(di,d, - ,da) With d, > 0
aqam = 3E,/2(D — 1)o?. Combining (15) with Lemma 1, for n = 1,2,---, M. Then, for any nonzero vectas, the
we have that the arithmetic mean of all SEPs is upper boundeflowing inequality holds
by

D—1 exp (—aC[b]?) (16) det (D + X{ (e)A1,, (e)) > det (D + d2,;,(S)In)  (19)

P#) (h) <
with equality holding if and only i ands’ are neighbours

Therefore, taking an average over the random veletgields g proofs of Lemmas 2 and 3 are omitted because of space

E [P(h)] SD -1 det(I+aCs) ! SD -1 det(C2) oM. (17) limitation, which vyill be provided in somewhere else. We now
D state another main result.
This completes the proof of Theorem 1. O Theorem 2:Let the eigenvalue decomposition Bfbe 3 =
VAVH, whereV is an M x M unitary matrix andA =
IV. DESIGN OF OPTIMALTOEPLITZSTBCs diag(A1, Aoy -+, Aar) With Ap > Ao > -+~ > Ay > 0. Then,

In this section, we will design the matriA in a Toeplitz we have the following statements.
space-time block code such that the worst case pair-wise errofy an optimal solution for Problem 1 is given -
probability is minimized when a maximum likelihood detector
is employed.

Given a channel realizatidh, the probabilityP (s — s’|h)

I'VH, where the optimal = diag(ji, fiz, - » fiar)
can be obtained by solving the following optimization

it PP ) problem:
of transmittings and deciding in favor 0§’ # s with the ML )
detector is given by [34] Foag min Juy (AI‘, dngS) ) | 0

d(s,s) tr(T)<M e
/ _ 9
P(s—s'h)=Q ( 2% ) ) (18) whereT = diag(u1, fia, - - , puas) and Jas (AT, ) de-

where d(s,s’) is the Euclidean distance between note the integral
T(h, M,N)s and T(h,M,N)s', d*(s;s) = (s - LM 2

h h —_ k
sYHTH(h,M,N)T(h,M,N)(s — s'). From (7) we JM(AI‘,E)_TF/O kl;[l (1+ sin29> de for e > 0.

have d*(s,s’) = h"X{(e)Xa(e)h, where] = s — ¢,
By employing (13) and taking the average of (18) over the 2) For such an optimal solutioA., the worst case pair-

Laensvc:irtrge\r/]e;tsorh, the average pair-wise error probability can wise error probability achieves the lower bound; i.e.,

/2 2. (S
Pa(s—s) _1 / do ) max Pp (s —s)=Jy (AI‘, “““(2)> . (21)
7 Jo det (I + (802 sin? 9)*12.)(‘5 (e)Xa (e)) 5,8’ €SN s#s’ 8o
Now, our design problem can be stated as: In addition. P n_ (AI‘ di.i[,(3)> if and
Problem 1: Find a matrixA that minimizes the worst-case ) ' f*“‘“ (s =) = Ju ' 807
average pair-wise error probabili/a (s — s’), subject to the only if [|s — s'|| = diin(S).
power constraintir (A#A) < M, i.e., ]
i , Proof: First we establish an lower bound on the worst case
Aopy = arg tr(Anélf\l)gp mgM Pa(s —s), average pair-wise error probability. For an arbitrarily given

o positive integerl < m < N, setle,| = dmin(S) and



e =0,k=1,2,--- N,k # m. Then, exploiting the results where notation[z], denotesmax(z,0). Particularly when

in [35], [36], we get > = I, any M x M unitary matrix is one of the optimal
1 solution of Problem 1. ]
det(IM + %QEXf(e)XA(e))
802 sin” 0
2
= det(Ins + %gﬁhy) V. OPTIMAL DIVERSITY-VS-MULTIPLEXING TRADEOFF
o< S1n

M A2 (S) - In this section we assume that the channel coefficients are
< H (1+ 8';"“7.29%)%) (22) independent; i.eX = I, and show that the linear ZF receiver
k=1 gosm enables to achieve diversity-vs-multiplexing tradeoff [1] for
where equality in (22) holds ifA — T'VH. Therefore, our Toeplitz code. In the following, the notion is adopted

the worst case average pair-wise error probability is low&eM [1]- Consider the square QAM constellation with size

bounded by V'D per real dimension. Then, the transmission data fate
) is R = %log2 D, where % is the symbol rate withV
max  Pa(s—8) > Jur (I‘A dmin(S)) being the length of the transmitted signal vectorDefine
s,/ €SK s£s/ - © 802 the multiplexing gainr as [1] R = rlog, SNR. Notice that

In the following, we establish an upper bound of the wordY® always have) < r < 1 since the system has only one

H . B ! H Tr/N
case average pair-wise error probability. Notice that when  T€Ceiver antenna. Hence, we obtdin= SNR”"/. Now, the
I'VH we have averaged transmission enerdy for square QAM signal is

[37] E, = 2(D —1). Hence the averaged transmission energy
zxf{(e)xA(e)) per block isE,p = 2(D — 1)MN. Giveno? being the noise
variance at the receiver antenna, the averaged noise power per
1 M " block isco?, = 0T, whereT' = M + N — 1, the block length
= (m) det(A)det (D + X1y, (e)XIM(e)) > (23) in time dimension. Therefore, we have

1

det (T 4+ ——
¢ <M+802sin29

whereD = (802 sin? 9)A~'I'~2. Using Lemma 3 we obtain o2 — 2(D—-1)MN . 2DMN _ 2MN SNR¥ 1 (28)
that for any nonzero vectas and nonzerd in the interval 3TSNR 3TSNR 3T
[0,7/2],

where the second step comes from the assumption of high
SNR. Now, consider the SEP for square QAM signals with

802 sin? 0 . !
I (3)), (24) ZF receiver. Using the upper bound (17), we have

M
det (D + XH (B)XIM (e)) > ( 2)\k: min

In

D-1

Here, the equality holds if and only i ands’ are neighbor E[P(h)] < det((1+ agamC)D) ™' < C™Magiy.

points, i.e.,[|s — s'|| = dwin(S). Therefore, combining (23)

with (24) yields The second inequality comes from the assumption of high
) ) SNR. On the other hand, notice that

dmin (S)/"’k:Ak) .

det (IMJF 802 sin? 6

M
H
— >
8072 sin’ 0XA°P°(e)XA°”(e)A)_,£[1 1+ aqan = oL 2 3T gupi-TN
This results in WM T 202D 1) 2MN '

2 . : -M MT,.
B e (o (87 ) < o (AF’ dmin(&), (25) Therefore, we obtairE [P(h)] < (§57%)  SNR~N "M,

s,s'€SN, s#s’ 802 Hence, the diversity order i€roo(r) = M — %r Define
where the equality in (25) holds if and only s — s’| = d = 5+ which is nonnegative, then we havr.(r) =
dumin(S). Combining (25) with Lemma 2 yields M(1—=7)=0Mr = dopi(r) — 6 Mr, wheredop(r) = M(1 —
2. (S) r) is the optimal diversity-vs-multiplexing tradeoff proposed
max Pa_, (s — s')=Ju (AF, me) , by [1] for a MISO system. For any smail, we can always
SSS;‘SN 80 chooseN = [=1] + 1, where[-] is the integer part of a

quantity. Hencedr.(r) is the § approximation ofd,p ().
and hence. Statements 1 and 2 of the theorem are truel  Thgrefore, we can say that the ZF receiver is able to approach

Corollary 2: I the pair-wise error prob:':lbi'lity.is UPPET the optimal diversity-vs-multiplexing tradeoff for the proposed
bounded by Chernoff bound, then, the optimization prOble%eplitz code.

in (20) can be relaxed by the following optimization problem

d?. (S) ~ <~
Aopt = arg _max det <I+ mln(2 )AEAH) . (26) VI. SIMULATIONS
tr(AHA)<M 8o . :

_ _ o ~ - To demonstrate our Toeplitz STBC code, we consider a
Therefore, its optimal solutio.,; = I'V™, whereI' =  coherent MISO system with three transmitter antennas and
diag(py, /i, - -, finr) C€an be obtained by employing they gingle receiver antenna. Fig. 1 shows the average bit error
water-filling strategy [36], ; .

performance comparison of our code with the orthogonal

1 e 1 STBC with a half symbol rate [9], in whic" = 8 and the
An
+

2 1
dQSO(S) Z% transmitted signal i46-QAM for our code and 64-QAM for
min ¢ the orthogonal STBC.

=1



(13]

(14]

tError Rate
O‘

] (15]

ge Bi

(16]

= Avera(

O‘

(17]
—— ZF-TOEP-STBC
ML-ORTH-STBC

- - ML-TOEP-STBC

(18]

0 5 10
SNR [dB]

Fig. 1. The error performance comparison of our code with the orthogor%IQ]
STBC. The dash curve and solid curve denote the ML receiver and ZF receiver
for our code, respectively. The dotted curve denotes the ML detector for %]
orthogonal STBC.

[21]
VII. CONCLUSION

In this paper, we designed Toeplitz linear space time block
codes that minimize the exact worst case average pair-w
error probability for coherent correlated MISO flat fading
channels. For the independent MISO flat fading channels, V#él

proved that our proposed codes can approach the opti

diversity-vs-multiplexing tradeoff with a linear ZF receiver
when the number of channel uses is large.
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