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Abstract—We consider efficient techniques for the design of A previous joint design technique for the transmitter and the
a transceiver for a matrix channel with minimum mean square DF receiver shows that the receiver that minimizes the (arith-
error (MMSE) decision-feedback (DF) detection when perfect metic) MSE between the input symbols and their estimates

channel information is available at both the transmitter and . L. . .
receiver. By combining the canonical property of the MMSE- also achieves the minimum geometric MSE [2]. To design the

DF detector and our recently developed equal-diagonal QRS transmitter, Yang and Roy [2] chose to optimize the geometric
decomposition of a matrix we obtain a uniform decomposition MSE rather than the (arithmetic) MSE. It turned out that their

of mutual information in which each of the synthesized scalar transmitter is same as the capacity-achieving input spectrum
subchannels has the same mutual information (under the as- o, the coordinated multiuser channel obtained by Branden-

sumption of error-free feedback). To assist our analysis of this . . : .
uniform decomposition, we provide a new QR interpretation of burg and Wyner [1]. However, this optimal transmitter is not

the MMSE-DF receiver. This enables us to show that the natural guaranteed to simultaneously minimize the (arithmetic) MSE.
detection order is optimal (in an SINR sense), and that for the In this paper we describe a new quadratic recursive algorithm
proposed transmitter, the MMSE-DF detector is asymptotically for efficiently computing (and implementing) a matriv

equivalent to the maximum likelihood detector when the SNR ot simultaneously minimizes the arithmetic and geometric

is high. We also derive a low-complexity quadratic recursive L . . .
algorithm for the characterization of all eligible S-factors in the MSEs and also maximizes the Gaussian mutual information.

QRS decomposition. When coupled with our QR interpretation T his algorithm advances our recent development of an equal-
of the MMSE-DF detector, this enables us to efficiently design the diagonal QRS decomposition of a matrix [3], which was
optimal transmitter and to efficiently implement the MMSE-DF  originally developed for jointly designing a transceiver with

receiver. zero-forcing (ZF) DF detector [3].
Notation: Matrices are denoted by uppercase boldface
. INTRODUCTION characters (e.g.A), while column vectors are denoted by

thipwercase boldface characters (elg), The (7, j)-th entry of
A is denoted by4; ; or [A]; ;. Thei-th entry ofb is denoted
by b;. The columns of an\/ x N matrix A are denoted by
y = /sur HTx + &, (1) ai,az,---,ay. The termA, denotes a matrix consisting of
the firstk columns ofA, i.e., Ay = [a1, as,- -+ ,a], and by
whereH is anM x N complex matrix that models the channelgconventionA, = 1. The matrix remaining after deletion of
T is an N x K linear precoding matrix ¥ > K), x is the columnski, ks, ..., k; from A is denoted byAy, ,... x,. FOr
block of K transmitted symbols, which is assumed to be zera- matrix A, A+ denotes the orthonormal complement!
mean, white and of unit variance, agdis an M x 1 white the transpose, and” the conjugate transpose.
Gaussian noise vector with unit variance. It is well known that
if the channel matrixH is known at both the transmitter and
the receiver, then the Gaussian mutual information betweenConsider a communication system of the form in (1) in
the input and the output of the model in (1) fg(x;y) = which T is absorbed intoH; i.e., y = /snr Hx + £. At
log det(I + snrTHPH®HT). For a given transmitted powerthe receiver, our task is to detect (estimate) the veetor
constrainttr(TH#T) < p, Ig(x;y) is maximized when the given the noisy observation = [y, - - ,yas]”. For notational
transmitterT is the water-filling solution [1]; i.e T = VEW, convenience, we defindyg = I + sarH7H, and we will
whereV is the eigen-vector matrix oI H, = denotes the call 111{/2 the mutual information matrix The DF receiver
optimal power loading matrix andV is an arbitrary unitary (with perfect feedback) makes successive decisions on the
matrix. Since the rotation of the white Gaussian vector vectorz = Fy — Bx, [4]-[6], [8]-[10], where F and B
does not change the channel capacity, we have a unitarg the feedforward and feedback matrices, respectively. For
matrix degree of freedom, within the water-filling solution the MMSE-DF receiverF = /sor (B+1)Z;'HY andB +1
family which can be designed so as to improve other aspeistshe upper triangular matrix with unit diagonal entries in the
of system performance. We will propose an efficient desigbholesky decompositiofiy; = (B+1)”D(B+1I), whereD is
technique forW for applications in which an MMSE-DF a positive-definite diagonal matrix. Using this decomposition,
receiver is employed. we observe that the feedforward matiik consists of three

In many block-by-block communication systems,
discrete-time baseband model for the received signal is

I[I. QR INTERPRETATION OFMMSE-DF DETECTION



parts. Specifically,F = /snarD~!(B + I)""#H#, where algorithm is a simplified version of the algorithm in [3] to
V/snr H is the channel matched filtgi3+1)~# decorrelates find the S-factor.

the error covariance matrix, and—! is a diagonal scaling.  Algorithm 1 (Construction of the S-factor):

MMSE decision feedback detection can be also interpreted) SvD Perform the SVD (3).

using the QR decomposition of a certain virtual channel?) Initialization. Determine the first colums; of S such
matrix [11], [12]. However, that virtual channel matrix has  that the following constraints are satisfied,

twice the number o_f rows aH. In order to plg_ce our recent!y _ $fAs, = D (4a)
developed equal-diagonal QRS decomposition of a matrix in % = 1 (4b)

a similar context, we now provide a new QR interpretation _ ) _

of the MMSE-DF receiver that uses the QR decomposition of3) Recursion (reduce the dimension and decouple con-

73{% e, 7{{* = QR, whereQ is an N x N orthonormal tsﬁraints)_. f.SeﬁkH = Syzk41, Wherez, is any vector
matrix andR is an N x N upper triangular matrix with at satisfies
Rpr > 0 for all k = 1,2,---,N. If we observe that zt 1 CMzpyy = D (4c)
HH = sir'(Zg — I) = sor Y(RYR — I), then we iz = 1, (4d)
can writtR-"H”y = snr~'/2(R — R~ ")x + R-7TH"¢, 3 L\t
Therefore, after having been processed by MMSE-DF detector, Where C = <(S¢)HA715?> :
the original model (1) witiI' absorbed intdH is transformed ~ 4) Complete the S-facto8 = [V,.S, V... .. u
into the following model, We would like to make the following remarks on this quadratic
o Y recursive algorithm.
y=Rx+¢, (2) (@) The structure of the matrixC®) in Step 3) provides
wherey = R-YH"y, R = snr~/2(R — diag(R™H)), a substantial reduction in the computational cost of the
é — gnr—1/2 (diag(R_H) — R—H) x + R-TH"¢. When recursion over that of the original recursion in [3].

combined with the fast QRS decomposition described bé) Characterization of the S-factor: In [3] we proved that
low, (2) exposes an efficient algorithm for implementing the Algorithm 1 has a solution, and that when> 2 it has

MMSE-DF receiver. an infinite number of solutions. Moreover, the solution
obtained in the:ith recursion does not affect whether

I1l. FAST CLOSED-FORM EQUAL DIAGONAL QRS the set of equations in the next recursion is solvable.
DECOMPOSITION OF MATRIX Therefore, Algorithm 1 characterizes all S-factors such

that the matrixHS has an equal-diagonal R-factor. By

choosing a particular solution for each recursion one can

significantly reduce the complexity of computing the S-

factor, as we show in the next section.

) Characterization of the Q-factor: Notice that @, R
and S are the Q-R-S factors of an invertible mati,
then,S,R~! and Q are the Q-R-S factors of its inverse,

A. Equal diagonal QRS decomposition H~!. This observation implies that there is a companion

algorithm for H-! which has the same structure as

Algorithm 1. This inverse algorithm actually characterizes

the Q-factor in the equal diagonal QRS decomposition of

In this section, we first state our equal diagonal QRS decom-
position theorem [3] and then give a simplified version of the
guadratic recursive algorithm to characterize all the S-factors
in this decomposition. In particular, we derive specific closed-
form recursions for the S, Q and R-factors for a nonsingulé?
matrix and its inverse.

Let the singular value decomposition (SVD) of &h x N
matrix H be represented by

H_U AL/2 O (V) Vv 3) the original matrixH, and this observation leads to an
- ( Om—ryxr  O(M—r)x(N—r) ) ’ efficient algorithm for finding the S and Q factors.

, ] (d) Uniform decomposition of information: In principal, the
wherer is the rank ofA, U and V are unitary andA = quadratic recursive algorithm is based on Schur’'s decom-
diag(A1, Az, -+ Ar) W'th At 2 )‘2_ > 02 A >0.10n [3]” position of the determinant of a positive definite matrix
we proved the following equal-diagonal QRS decomposition jnig the product of the determinant of an arbitrary principal
lemma. _ _ _ submatrix and the determinant of its Schur complement.

Lemma 1:For an arbitraryM x N matrix H with rank Therefore, Algorithm 1 implicitly describes a process for
r, there exists a unitary matri§ such thatHS has an successively and evenly distributing the total information
equal-diagonal R-factor; i.eHS = QR, where Q is quantityD = det(A) over each one-dimensional subspace
an M x r column-wise orthonormal matrix an(Rl -~ (or subchannel). We expand on this observation in Sec-
[ Rrxr 07-><(N—r) } with [Rrxr]kr,k: = (Al)\Q v )\r) / Tv tion IV.
where /), is the k-th singular value off. [ |

The key to obtaining such decomposition is to find thB- Fast closed-form Q-R-S factors
unitary matrix S. Once we have ha®, we can apply the In this subsection, we will give closed-form equal diagonal
conventional QR decomposition to the maflS to obtain the QRS decompositions for both a matrix and its inverse by
equal-diagonal QRS decomposition. The following recursivaarefully choosing such particular solutions in the quadratic



recursion equations (4a)—(4c) that all the matri€®$) are S«, 8 Is anr x r unitary matrix that can be represented by the
diagonalized simultaneously. To this end, we first defiffellowing two kinds of decompositions:
canonical eigen-diagonal matrix sequences from the original) Column decomposition: The:-th column of S, g is

singular value matrix.

Definition 1: Let A = diag(A1, Ao, -+, A) with Ay >
Ay > > A > 0 and D (AlAQ'-.AT;W.
A canonical eigen-diagonal matrix sequent{ék,A(k =
diag(Agk),Aék), e ,/\gi)k) "—1 generated by is defined as

follows: =
1) AW =A,
2) If % > A we let AT = %,Agm -
/\g’“),dc;-(,k))\ﬁ'i*,f) =A% ands, = 1.
3) If ki < A we let ARFY = A AFHD =
T T
r—k.

4) If there exists the largest positive integér with 2 <
(k) y (k)
0 < v —k—1such thatA®® > 2 2orer > 3(0

k L +17
then, we letA{"*" = AJ AP = AP ... ,Ag‘;tlf =
(k) (k)
()) \Ge41) _ MMk (k1) (R (k1) _
Aék’AZk == D k’)‘ék+1 = A5k+1"“’Ar7k =
)\(k)
r—k-*
Correspondingly, @asic rotation sequegc@xk,ﬁk};;} and
its basic inverse rotation sequende, ﬂk}’,;;} are defined,
respectively, as
D**(k)k 2B _p
r—k41 _ 1
ag > B = — (5a)
A(lk)*)‘ikf)kﬂ ’ A(lk)*)‘ili)kﬂ
(5b)

3 3 (k)
—k+1_)‘1

where, for simplicity and symmetry of the algorithm structure,

D and A", ,, denoteD~! and (A", , )", respectively.m

determined by

st = br—2,a1,,31 (%2)
r—2
Sy = H Lop,ap, B r—kbP-1,0,_1, 8,1 (9b)
k=1
n—1
Sn = H sz7 akaﬁkvr_kb?”_”_laanaﬁn (9C)
k=1
forn=2,3,---,r — 1, where
015 (m—1) B O1x(n—m)
— Tm—1 O(m-1)x1 O(m-1)x1
Linapn = O(n—m)x(m-1) On—m)x1 In-m o 69
01><(-m,—1) fe 01><(n—-m>

«@
Ok x1

b,l,a,@:(g)andbk,a,ﬁ: ©%
2) Product decomposition'S, g3 can be factored into
Sa»ﬁ = H::_ll Sau@uﬁi’ where
o L1 Oi—1yx1 OG—1)x(r—4)
So"hei’ﬂ'i - <0(7‘+1—i)><(i—1) bro1—i,a;.8 rﬁi,ai,ﬁi,r—a,) :

The same results holds 8, 3 by replacing the basic rotation

sequences{ak,gk}zj in Sq, g by its inverse basic rotation

sequencesdy, Br } ] []

We would like to make the following observations.

1) Different eigen-diagonal matrix sequences result in differ-
ent rotation sequences and thus, different specific Q-R-S
triples.

2) Combining Lemma 1, Theorem 1 and Algorithm 1 we
have a specific Q-R-S triple in the equal-diagonal QRS
decomposition of a general mati#; i.e., Q = U, S B
R.xr =Rq,a,pgandS=[V,S, 3, Via.. rl

The canonical eigen-diagonal matrix sequence and the basic

rotation sequence have the following properties, which wilV: UNIFORM DECOMPOSITION OF MUTUAL INFORMATION

play a key role in deriving our fast closed-form equal-diagonal In this section we combine the canonical property of the

QRS decompositions. _ MMSE-DF detector [6], [7], [13] with an equal-diagonal QRS
Lemma 2: Sequence$ay, (1 }.—; and{ax, 5x};_; satisfy decomposition of the mutual information matfiy. to obtain

conditions a uniform factorization of the Gaussian mutual information for

ad+s=1 APag+A¥, =D (6a) the MMSE-DF detector. Then, we give some perspective to
a+m=1 rPaz+ X(Tk,)kﬂﬁi -D (6b) suc_h fa.ctorlzauon frorr_1 both mformathn theo_ret|c and S|gngl
‘ estimation and detection error viewpoints, with an emphasis
< am s A on building a comprehensive understanding of the MMSE-DF
ag 5Ok, Bk o Bk (6c) ; . ) .
m receiver and the resulting optimal transmitter.

Now we are in a position to formally state our main result. |t is known that under the assumption that the channel
A proof is provided in the appendix. matrix H is available to both the receiver and the transmitter,

Theorem 1:Let AY?2 = diag(v A1, VA2, -, VA with the Gaussian mutual information for the precoded channel
A1 > X2 > -+ A > 0 and let the basic rotation sequencesodel (1) is given by (x;y) = log det(I+snrT#H”HT).
{ak,ﬁk};;} and {&k,ﬁk};j be defined by (5a) and (5b), The standard approach to the design of a transmitter that
respectively. Then, we have the following closed-form equedaximizesI;(x;y) subject to a power constraint uses the
diagonal QRS decompositions, singular vector decomposition (SVD) to diagonalize the origi-

A8, 5 = (7) nal matrix channel matrifl in (1). That results in an optimal
AV2S, . = SepRa xsa g T of theformT = V| é,OKX(.N_K) ]TW = TW, where
&P AP V is the singular value matrix oH given in (3), 2 =
whereRa A, g andR&’A,Ifj are upper triangular matricesdiag(ul7ﬂ27,,. 1x) and W is a K x K unitary matrix.
with [Ra. A glkr = MAg---Ap)2r = [Ra’A_ly[;],;}C and For this choice ofT, I(x;y) = Zszl log(1 + snrAgu?),

Sa’BRa,A,[j,



and optimal power loading is performed over the eigefound on the Gaussian mutual information is equivalent to
subchannels. minimizing the arithmetic MSE. This can be shown to be

An alternative decomposition oflz(x;y) is the QR equivalent to first maximizing the Gaussian mutual informa-
decomposition of the mutual information matrix. It wagion and then uniformly distributing total channel capacity into
proved [13] that under an assumption of error-free feedach R-factor subchannel by choosing the free unitary matrix

back, the mutual information between t& — i)th sym- in the water-filling solution family as the S-factor. O
bol (or user) zx_; and y conditioned onxk~—"*! = The following two propositions further describe the opti-
[k, Tr-1, - ,xx—i+1] for the model (1) can be ex- mality of the uniform distribution of mutual information into
pressed adg(rx_i;ylxk T = 1°g([RI;,/2]§<4,K7¢)' R-factor subchannels for the MMSE-DF detector.

Therefore, Io(x;y) = Zfiﬁl I(xKii;y‘ngfiH) _ Proposition 2: Suppose we wish to use an ordered MMSE-

K—1 2 HyTH DF detector for a channel where the mutual information matrix

o log(|R o) =logdet(I T"H"HT). : . .

%ligoshgf\fv(s[ tr%?t}h]é _Il\hlli/l_ézz-DFo gresei(veT iS:rinformation )Iosshas the equal-diagonal R-factor. Then, the optimal detection

; e . order (that ensures that the high SINR components are detected

less. For a given matriH, its singular values are fixed underf. . : .

) . Y rst) is the natural order, i.e., theth symbol to be detected

any unitary transformation and hence, its eigen-subchannel ?Jsefhe symbolzy

.. . . 1—g-

composition of mutual information does not change. However, Definition 2: D+efine the minimum distance of a finite con-

the R-factor diagonal entries of the mutual information matrigellation X as

change with the unitary transformation, and as a result the

capacity of each R-factor subchannel of the MMSE-DF deteC-dy,in(¥) =  min |z — 2| = \/ min [lx — x'||2.

tor will change too. (These subchannels are implicit in (2).) v eX X EXT X

In other words, different unitary matricé&v result in the —_— - ; -
. ' . Definition 3: Define the free distance of al x N channel

different R-factors, and hence different R-factor subchannghtrix H as

capacities and different detection error performance for the

MMSE-DF detector. Therefore, a natural question is that what 4, ..(H) = \/ min  (x —x)PHPH(x — x').

is the “best” distribution of the total mutual information to xox! EXN xtx! -

each R-factor subchannel (2) for the MMSE-DF detector? As

proved in the appendix, a candidate is the uniform distribution, 1€ following proposition shows the asymptotic behavior
Theorem 2:Under an assumption of error-free feedbacl?,f the free distance, and hence that of the MMSE-DF detector

the total mutual information for the system in (1) can bIeor a chgnnel W|.th the equal-diagonal R-factor of its mutual
ormation matrix.

. ) i f
uniformly decomposed into the sum of that of each R factd Proposition 3: Let the SVD ofH be given by (3) and the

subchannel (2) for the MMSE-DF detector by rotating th&gnaling point in constellatiod’ be PAM or PSK or QAM.
input signal vector with the S-factor of its mutual informationypen T — v=Es — TS with tr(THT) < p, where$ is

matrix. [ | . . . 1/2
. . ) obtained by applying Algorithm 1 t@_’>, we have
In order to provide some properties of the uniform decom- y appying Alg HT
position of mutual information, we provide the following three r L j2r
propositions. Lek =x — x = (/sar FHT — I — B)x + F¢ lim  dpree(HT) = \/E(H Ak> Aenin (X). (10)
k=1

denote the error vector between the transmitted symbols and

the corre§pond|ng receiver e§t|mates. Therefore, under the Gaussian approximation (e.g., [14]), the
Proposition 1: The arithmetic MSE [2] of the MMSE-DF MMSE-DF detector is asymptotically equivalent to the ML
receiver isMSE, (HT) = +tr(E[ee’]). Let C denote the detector in the sense that

capacity of the channel in (1). The; > Ig(x;y) >

—log(MSE, (HT)). Maximizing this lower bound is equiva-
lent to minimizingMSE,(HT). The maximum value of this
lower bound isC', which is achieved by choosiri§j such that  \here Py (snr) and Pyse_pre(snr) denote the block

I (x;y) is maximized, and then using the remaining unitargrror probability of the ML detector and MMSE-DF detector,
degree of freedom to achieve the uniform decomposition pfspectively. ]
|

mutual information.
Proof: It is clear that C > Ig(x;y). Since the
error covariance matrix [13] of the MMSE-DFE is

In Py, (snr) 1 (11)

m
snr—oo In Pyvse—prE (snr)

V. CONCLUSION

Elee] = diag([Rzur)i 1 Rurlas » Riurl g k) In this paper we have shown that if the precoder in (1) is
we have MSE,(HT) = Zl<k<K[RIHT]I;i' On the chosen to bél = VES = TS, whereT performs a water-
other hand, I (x;y) = logdet(I + serTHH#HT) = filling power allocation over the eigen vectorsHf’H andS

log (TTieiRzurli i) > —Klog (% 3 [Rayrly;) = is determined by applying Algorithm 1 tbil/; then we obtain

—Klog(MSE,(HT)) with equality holding if and only if a uniform decomposition of the maximum Gaussian mutual
all [Rz,. )7, are equal. (Here we have used the arithmetiaformation of the channel matri® into implicit scalar
geometric mean inequality.) Therefore, maximizing the loweubchannels, each of which has the same mutual information.



APPENDIX

A. Proof of Theorem 1

First, we show thaS, s defined by (9) is an orthonormal
matrix. Lets,, ands,, dﬂenote them-th and n-th columns
(n < m) of S, 3, respectively. Since the matrl;, o, g..r—k

is column-wise orthonormal, we have that

m—1

T T
susm = b1 an.8, | Texan, oo r—kDr—m—1, a0, - (12)

k=n

In addition, we notice thab , | . 5 T¢, o, p,.rn =
01 (r—n)- Combining this with (12) yields’s,, = 0 for
n < m. For n = m, equation (12) becomesls,, =
bzlﬂl_17anaﬁn
S&. 5 Is also an orthonormal matrix in a similar way.

We now show thas” ~A'?8,, 45 is an upper triangular
matrix with equal dlagonal entries. Let, denote then-th col-

T

umn of ST . Note thatl'y _ = VAW, o 5,0k =
VA, WhereA(
sequence in Definition 1. Therefore, when > n, we can
use the fact that/)\(l'”)ﬁnoz )\ffi)nﬂanﬂn = 0 to show
that 37 A'/?s,, = 0 Whenm = n, we haves?A'/%s,

/\( )Oé Oén+\/)\(7in+1ﬁn6n

1

V/D. Similarly, we can prove

the product decomposition &, g. O
B. Proof of Proposition 3

We first note thatT" HYHT = snr—'(Zgr — I). Now
consider two different signal vectorg: = [z, 72, , 2x]T

andx’ = [z}, 2}, - TN oy =af fork=2,--- K,

T
but z, # 24, then

(x —x)Y"TPH"HT (x — X))
=snr ! ((x — ) Tgr(x — %) — |21 — x’1|2>
YR]: = Dz — 24)%. (13)

=snr

Hence, by taking the minima of both sides of (13), we havel’]

d?ree(HT) S Snril([Rﬁ - 1) . d1211in(X)~ (14)
Sincelimgnr oo snr ' [R]2 = 2 (T _; A Ae)", (14) implies
that
1/2r
i diee(HT) < \[ (H M) (). (15)
On the other hand, we note that
(x —x)"TPHHT(x — X))
=sor™! ((x— )" Tar(x - x') — HX||2)
K K 9
- snr*l(z‘z Ry (x; — )" - |\x\|2>. (16)

i=1 j=i

Assumex # x’. Let k be an integer such that = z7, fori >

k, butzy, # x}.. Then, from (16), using the upper triangularity

b,—n-1,a,,8, = 1, where we have used (6a).
Therefore S, g is an orthonormal matrix. We can prove that

*) is the canonical eigen-diagonal matrix

of R, we have
NATPFHPHT (x — X))

(x—x

(@

i=1 j=1
> s (([RIT — Dok — a3, — [1x]%)
>snr™! (([R]F — 1) - doin(X) — [I%[7) - 17)
Taking the minima of both sides of (17) yields
Broe(HT) > snr " (([R]1 — 1) - dinin (X) — [|x|[2as) - (18)

Since the constellatiork is finite, the quantity||x||2
bounded. Therefore, using (18) we have that

1/2r
(HT \/7 <H )\k) . dmin(X)' (19)

Combining (15) with (19), we complete the proof of (10).
Moreover, we know from [15] and [8] that

max

lim  dfree

snr— oo

In Py (snr) In Pymse—pre(snr)

Him /E0T dfp oo (HT) T /Enr diyeo (HT) )
( S féee ) snr—oo ln Q < S| faee )

snraoclncg
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