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Abstract-The QR decomposition is a commonly used tool 2. The optimal order of colums iELS. Namely, among

in various signal processing applications. The QR decom-all column vectors ofHS, Arbitrary k-th column vector of
position of a matrix H is a factorization H = QR, where HS has the minimal projection onto the space spanned by all
Q is a unitary matrix and R is an upper triangular ma- the column vectors before thieth column. Using this prop-
trix. In this paper we propose an optimal QR decompo- erty we show that the optimal detection order in the VBLAST
sition, which we call asQRS-decompositionHS = QR, detector [3] on a channel that has the equal-diagonal is the
where S is a unitary matrix. We shall show that the opti- natural order.

mal matrix S is one that delivers an upper triangular ma- Notation: NotationA ; denotes a matrix consisting of the

trix R whose diagonal entries are alequalto each other.  first & columns of matrixA, i.e., A, = [a1,as,---,a;]. By
convention,A, = 1. The remaining matrix after deleting
columnsay, , a,, - - -, ax, is denoted byA, k,... x,. Thej-

1. Introduction th diagonal entry of a matrid is denoted byjA]; = A, ;.

-~ . Notation A+ denotes the orthonormal complement of a ma-
The QR decomposition [1] is a commonly used tool iffix A in ¢'N. Notation A+ stands for the pseudo-inverse

various signal processing applications. In multiple-input agg A The transpose oA is denoted byA”. The Hermi-

multiple-output (MIMO) multiuser detection theory [2], thgj5p, transpose oA (i.e., the conjugate and transposedfis
QR decomposition can be used to form the back-cancellatjtyoteq byA .

detector. The QR decomposition of a matkkis a factor-
izationH = QR, whereQ is a unitary matrix an@® is an ) . )
upper triangular matrix. In this paper we propose an op?i'-_ Review o_f the QR decomposition for successive cancel-
mal QR decompositionHS = QR, whereS is a unitary |ation detection

matrix. We shall show that the optimal mati$xis one that
delivers an upper triangular matfX whose diagonal entries
are allequalto each other. We call this special matiik

We first briefly review the successive cancellation detec-
tion algorithm that uses the QR decomposition, then we re-
view the optimally ordered detector developed by Golden et

theequal-diagonal R-factorand the resulting decompositionaL [3], and finally we show how to equivalently represented

HS = QR, theQRS-decompOSItlon_ this detector as a precoded QR-decomposition cancellation
There are two reasons to explain why we call such QRRtector.

decomposition is optimal? We will show that the decompo- | o, _ [z1,--,2zn]T be anN x 1 vector of symbols

sition has two important properties for communication signf'g be transmitted over a noisy channel. Each symbdb

processing: chosen from a finite-size alphabat. Consider a general

1. The minimum Euclidean distance of the signal lattiGg tiple-input and multiple-output (MIMO) channel model
before the superchannglS is equals to the minimum Eu-

clidean distance of the signal lattice after the superchannel r=Hx+¢, (1)
up to the diagonal entry dR in the QRS decomposition of
H. We know that the free distance determines the detectishere H is an M x N full rank channel matrix (known

performance of the maximum likelihood detector when the the receiver) withM > N, ¢ = [&,---, &7 is a
signal to noise ratio is high. Therefore, for the optimal prevhite Gaussian noise vector whelg¢7¢) = 021, andr =
coderS, the detection performance of the QR successive can-, - - -, 7x/]7 is the observed received vector. Our task is to

cellation detector is asymptotically equivalent to that of thietect (estimate) the vectarc X'V given the noisy observa-
maximum likelihood detector as SNR cc. tionr. We denote the estimate gfby x = [21,---,2n]".



2.1. Successive cancellation detection using QR decomthen, project the received signabnto the nulling direction
position and perform the hard decision to detect the symhol That

H
The QR-decomposition-based successive cancellationige-seti;, = Quant [(e,&?) r], whereefc?) is the kq-th
tector is captured by the following three steps:

0) _ H
Algorithm 1 (QR-decomposition-based successive caf!Umn of E¥ = (H")™. _
2. Cancellation Subtract the detected signal from the

cellation): A !
1. QR-decompositian Perform the QR-decomposition/€ceived signal to get
H = QR, whereQ is atallM x N column-wise orthonormal r) =1 — hy, iy, (3)

matrix andR is an upper triangular square matrix,
wherehyg, denotes thé;-th column ofH.

Rigp Rip ... Rin 3. Recursion Repeat the above two steps until all sym-
0 Rop ... Ron bols are detected,
R | . e e
0 0 ... Rywn o= oas R [( ek ’“""7’“) L’
Left-multiplying (1) by QF, we get wheref = k., = Quant {(eg) )Hr(i)} ’
[/Flf"v’FN]T = QHr andg = [517"':€N]T = QHé- B
Equation @?) is equivalently written as vt = O by gy
N . (#)
~ fori = 1,2,---,N — 1, wheree,;’ denotes the; . -th
fk = [R]kl'k + Z Rk,mxm, + gkv ' ) H kit o
m—k+1 column of E() = (Hzlk) andhy, , denotes thé; ; ;-
where[R]; denotes thé-th diagonal entry oR. th column ofH.

2. Hard decision We first estimate the symbaiy by
making the minimum-error-probability hard decisior, = 2.3. QR interpretation of Algorithm 2
Quant [7r/[R]n]. The functiong = Quant(t) setsq to the
element ofY that is closest (in terms of Euclidean distanc%)0

ot subchannel whose SNR is the highest amongvapiossible

3. Cancellation Substitute the estimated symhbly . . .
. . subchannels. If we look at this problem from the viewpoint
back into the(N — 1)-th row so as to remove the interfer- : :
. . . . of the signal space that is spanned by the column vectors of
ence term inFy_; and then estimate_;. Continue this

) . . . H, then the first step (2) is equivalent to finding a column
procedure until we obtain the estimate of the first symhol vector of f whose projection onto the subspace spanned by

The above procedure is described by the following FECUSH other column vectors is the smallest. Repeat the above

We use the QR decomposition to explain the algorithm of
Iden et al. [3]. The first step (2) is equivalent to finding a

algorithm, procedure for the remaining columns. Finally, Algorithm 2
A N actually finds the optimal order. That is, it finds a permuta-
Zy = Quant Rl tion matrixP = [py,,- - -, Pry ], Wherep; denotes aV x 1
_ N Re 3 vector whose-th element is one, but others are zeros, such
#r, = Quant "k = Dom—ki1 Bhmim that the QR decomposition #8IP gives rise to the optimally
R ordered successive cancellation detector.
Algorithm 3(QR interpretation of Algorithm 2):
fork=N-1LN-2-,L 1. Initialization. Find the column vector ofl whose
) _ projection onto the space spanned by all other column vectors
2.2. Optimally ordered detection is the smallest,
Golden et al. [3] proposed a vertical Bell Laboratories lay- _ . = ==t 2
ered space-time (V-BLAST) system with an optimal ordered ky = arg @% H (I B HkH’“) th ’
detection algorithm that maximizes the SNR.

= Tt
Algorithm 2(see Golden et al. [3]): Letay = (I - HkNHkN) hy, andgy = an/ || an ||
1. Initial nulling. Find an initial nulling vector with the 2. Recursion Repeat the first step by trimming the col-
smallest norm using zero-forcing. That s, find the index k, amn vector one by one

the position of the smallest diagonal entry(#1/H) - k; = arg min (1 - Hy .
’ 1<k<N k#ki1, by Pk

- . H -1 .
ko= e o [ETR)T] @ CH



fori=N-1,N—-2,---.1. Let with

— — B
;= (I - Hki,ki+1,~~-’kNHki,ki+1,...’kN) hy, C(k):(FS%)H ﬁHﬁ<I _ §k<§kHﬁHﬁ§k) ! ngﬁHI':I> St.
and Ietqi = Oéi/ H (67 ||2 .
3. Permutation matrix formulationFinally, we obtainthe 3. Complete the S-factof = [Vrg,ml
optimal matrixP = [pg,, -, Pky] @ndQ = [q1, -, an]
such thatIP = QR. o
It is easily verified that Algorithm 2 is equivalent to ap3-3- An explicit S-factor

plying Algorithm 1 tor = H'x’ + ¢, whereH’ = HP and In the above subsection we established that the solution

x = Px'. Therefore, if we precode a vectaf with the/ PET for the S-factor is not unique. In the following we show how
mutation matrixP, and apply Algorithm 1 to deteot’, e 4 fing an explicit special solution of equations (5)-(8).
get the optimally ordered successive-cancellation detector OfAIgorithm 5(Construction of an explicit S-factor):

Golden et al. [3]. In the remainder of the paper, wendd 1. SVD Perform the SVD off — UAV and formil —
confine the precoder matrix to be a permutation matrix, aﬁdA ' - -
we derive the optimal QR decomposition. "

Initialization. An explicit solution for the first column o,

. ~ _ -~ T .
3. QRS decomposition i.e,s1 = (S1,1, . 51)" IS
In _this se_ction we develop_ the QRS decomposition and _ det(ﬁHﬁ)l/T — A
show its two important properties. Sip = A
3.1. QRS decomposition Sk1 = 0 fork=2,-.-,r—1
Theorem 1 (QRS decomposition) For an arbitrafy/ x N g, = \/h - det(HHH)l/T.
matrix H with rank r, there exists a unitary matri® such " AL — Ar

that HS has an equal-diagonal R-factor, i.e. N o ) i
2. Form the positive definite matrix for recursioBet (start-

HS = QR, (4) ing initially with & = 1)
whereQ is an M x r column-wise orthonormal matrix and . S NH
R = [ Ry Opx(v_p | With Ry, being the equal- c® = (Sk) H"H

diagonal R-factor. N T
x (I ~ S (SkHHHHSk) SkHHHH> St
3.2. Construction of the S-factor

The following recursive algorithm is to find the S-factop" Eigenvalue decompositioRerform the eigenvalue decom-

> iti (k)
of the QRS decompositicHS = QR. position of C**,
Algorithm 4(Construction of the S-factor): B i
1. SVD Perform the SVD oH = UAV and formH = CH) = VAR (V“”) ,
UA.,.
Initialization. Determine the first row oS, ie., 51 = whereV® isa(r —k) x (r — k) unitary matrix and\(¥) =
(S1.1,+-+,5-1)T, such that constraints diag(kgk),“w)\ik_)k) with AP > AP > > >\§.k_)k > 0.
T N 4. Recursion Setsy, 1 = SEVHFy® fork = 1,--- r — 2,
SUHTHS, = det (A7H) ®) 0L w7 _
wherey (%) = [yl Ys sy | is determined by
sisy =1 (6)
are satisfied. det(AHH)Y/r — \P)
. . . (k) r—k
2. Recursion(reduce the dimension and decouple con- Y1 = NCINC)
straints). Se§; 1 = Sﬁzkﬂ, wherez,,, ; is any vector that L7 Tk
satisfies yW o= 0 fore=2-..r—k-1
~ o ~\1/7 — _
2 CWgy | = det (HHH) @) o A det(HHE)/7
r—k k k
Zilzen = 1 (8) AP = A,




Whenk = r — 1, sets, = S1 , V(=2 y(=1 where Property 1 shows that for a channel matkk with an
equal-diagonal R-factor, the minimum Euclidean distance of

\/det(ﬁHﬁ)l/v'_)\g"m the signal lattice before the channé).{, (X)) and the mini-
B AT A2 mum Euclidean distance of the signal lattice after the channel

y('r—l) —

_ . (deee (H)), satisfy relationship (10). We know that the free
\/Ayz’det(Hf’H)W distance determines the detection performance of the max-
AN imum likelihood detector when the signal to noise ratio is
high. From Property 1 we conclude that if the chanHel
has an equal-diagonal R-factor, then the free distance is com-
puted by the QR decomposition. Therefore, this suggests that
if the channel matrix has an equal-diagonal R-factor, the de-
tection performance of the QR successive cancellation detec-
3.4. Properties of equal diagonal R-factors tor is asymptotically equivalent to that of the maximum likeli-
hood detector as SNR- co. In addition, Property 1 indicates
Definition 1 Define the minimum distance of the constell# which positions of a block the free distance is reached, i.e.,

5. Complete the explicit S-factor

S= [(VH)Tga (ﬁ)l,w,r]- (9)

tion X as which positions are the weakest links. This may be exploited
to design an encoder so as to increase the free distance of the
doin(X) =  min |z—2'| = \/ min ||x — x’||2 encoded signal, which is well beyond the scope of this paper.
a7 x,a €X x,x/ €N x#x! Suppose we wish to use the VBLAST detector [3] on a

o ' _ channel that has the equal-diagonal R-factor, a natural ques-
Definition 2 Define the free distance of an’ x IV channel tion is what is the optimal detection order? The following

matrix H as property gives the answer.

dfree(H) = min (x —x')HHHH(x — x') Property 2 If a channel matrix has the equal-diagonal R-
x,x/ €N x#x! factor, the optimal detection order (that ensures that the high

SNR components are detected first) is the natural order, i.e.,
The following theorem shows that the free distance can, — z_; — --- — 21, in other words, the-th symbol to

be bounded in terms of the diagonal entries of the R-factorjg detected is the symbol; ;.
the QR decomposition of a channel matrix.
Property 2 essentially characterizes a geometric prop-
Definition 3 The columnh; of a channelH is called the erty of a channel with the equal-diagonal R-factor. Namely,
weakest linkif h; is orthonormal to all previous columns,among all column vectors df, the last column vectoh y
i.e,h’h; =0fori=1,---,j — 1. The corresponding sub-has the minimal projection onto the space spanned by all the
script j is called theweakest link index Theweakest link other column vectors. Equivalently, has the maximal dis-
index set7 consists of all weakest link indexes, i.e., tance from the space spanned by all the remaining column
vectors. After we have eliminatel,, among all remain-
J ={j : h; is the weakest link ing column vectors oH, the second to last column vector
hy_; has the maximum distance from the space spanned by
Note that7 is non-empty sinch; is always a weakest link.all the remaining column vectors (excdpt;). We continue

For every weakest link index we define thaveakest link this procedure until we reach the first column vedigr
difference set

X0 = {x—x':x,x e &Y and only thej-th elements References
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