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Abstract–The QR decomposition is a commonly used tool
in various signal processing applications. The QR decom-
position of a matrix H is a factorization H = QR, where
Q is a unitary matrix and R is an upper triangular ma-
trix. In this paper we propose an optimal QR decompo-
sition, which we call asQRS-decomposition, HS = QR,
whereS is a unitary matrix. We shall show that the opti-
mal matrix S is one that delivers an upper triangular ma-
trix R whose diagonal entries are allequal to each other.

1. Introduction

The QR decomposition [1] is a commonly used tool in
various signal processing applications. In multiple-input and
multiple-output (MIMO) multiuser detection theory [2], the
QR decomposition can be used to form the back-cancellation
detector. The QR decomposition of a matrixH is a factor-
izationH = QR, whereQ is a unitary matrix andR is an
upper triangular matrix. In this paper we propose an opti-
mal QR decomposition,HS = QR, whereS is a unitary
matrix. We shall show that the optimal matrixS is one that
delivers an upper triangular matrixR whose diagonal entries
are all equal to each other. We call this special matrixR
theequal-diagonal R-factor, and the resulting decomposition
HS = QR, theQRS-decomposition.

There are two reasons to explain why we call such QRS
decomposition is optimal? We will show that the decompo-
sition has two important properties for communication signal
processing:

1. The minimum Euclidean distance of the signal lattice
before the superchannelHS is equals to the minimum Eu-
clidean distance of the signal lattice after the superchannel
up to the diagonal entry ofR in the QRS decomposition of
H. We know that the free distance determines the detection
performance of the maximum likelihood detector when the
signal to noise ratio is high. Therefore, for the optimal pre-
coderS, the detection performance of the QR successive can-
cellation detector is asymptotically equivalent to that of the
maximum likelihood detector as SNR→∞.

2. The optimal order of colums inHS. Namely, among
all column vectors ofHS, Arbitrary k-th column vector of
HS has the minimal projection onto the space spanned by all
the column vectors before thek-th column. Using this prop-
erty we show that the optimal detection order in the VBLAST
detector [3] on a channel that has the equal-diagonal is the
natural order.

Notation: NotationAk denotes a matrix consisting of the
first k columns of matrixA, i.e.,Ak = [a1,a2, · · · ,ak]. By
convention,A0 = 1. The remaining matrix after deleting
columnsak1 ,ak2 , · · · ,aki is denoted byAk1,k2···,ki . Thej-
th diagonal entry of a matrixA is denoted by[A]j = Aj,j .
NotationA⊥ denotes the orthonormal complement of a ma-
trix A in CN . NotationA+ stands for the pseudo-inverse
of A. The transpose ofA is denoted byAT . The Hermi-
tian transpose ofA (i.e., the conjugate and transpose ofA) is
denoted byAH .

2. Review of the QR decomposition for successive cancel-
lation detection

We first briefly review the successive cancellation detec-
tion algorithm that uses the QR decomposition, then we re-
view the optimally ordered detector developed by Golden et
al. [3], and finally we show how to equivalently represented
this detector as a precoded QR-decomposition cancellation
detector.

Let x = [x1, · · · , xN ]T be anN × 1 vector of symbols
to be transmitted over a noisy channel. Each symbolxi is
chosen from a finite-size alphabetX . Consider a general
multiple-input and multiple-output (MIMO) channel model

r = Hx + ξ, (1)

where H is an M × N full rank channel matrix (known
to the receiver) withM ≥ N , ξ = [ξ1, · · · , ξM ]T is a
white Gaussian noise vector whereE(ξHξ) = σ2I, andr =
[r1, · · · , rM ]T is the observed received vector. Our task is to
detect (estimate) the vectorx ∈ XN given the noisy observa-
tion r. We denote the estimate ofx by x̂ = [x̂1, · · · , x̂N ]T .



2.1. Successive cancellation detection using QR decom-
position

The QR-decomposition-based successive cancellation de-
tector is captured by the following three steps:

Algorithm 1 (QR-decomposition-based successive can-
cellation):

1. QR-decomposition. Perform the QR-decomposition,
H = QR, whereQ is a tallM×N column-wise orthonormal
matrix andR is an upper triangular square matrix,

R =




R1,1 R1,2 . . . R1,N

0 R2,2 . . . R2,N

...
...

. . .
...

0 0 . . . RN,N


 .

Left-multiplying (1) by QH , we get where r̃ =
[r̃1, · · · , r̃N ]T = QHr and ξ̃ = [ξ̃1, · · · , ξ̃N ]T = QHξ.
Equation (??) is equivalently written as

r̃k = [R]kxk +
N∑

m=k+1

Rk,mxm + ξ̃k,

where[R]k denotes thek-th diagonal entry ofR.
2. Hard decision. We first estimate the symbolxN by

making the minimum-error-probability hard decisionx̂N =
Quant [r̃N/[R]N ]. The functionq = Quant(t) setsq to the
element ofX that is closest (in terms of Euclidean distance)
to t.

3. Cancellation. Substitute the estimated symbolx̂N

back into the(N − 1)-th row so as to remove the interfer-
ence term iñrN−1 and then estimatexN−1. Continue this
procedure until we obtain the estimate of the first symbolx1.
The above procedure is described by the following recursive
algorithm,

x̂N = Quant
[

r̃N

[RN ]

]

x̂k = Quant

[
r̃k −

∑N
m=k+1 Rk,mx̂m

[R]k

]

for k = N − 1, N − 2, · · · , 1.

2.2. Optimally ordered detection

Golden et al. [3] proposed a vertical Bell Laboratories lay-
ered space-time (V-BLAST) system with an optimal ordered
detection algorithm that maximizes the SNR.

Algorithm 2(see Golden et al. [3]):
1. Initial nulling. Find an initial nulling vector with the

smallest norm using zero-forcing. That is, find the index k, as
the position of the smallest diagonal entry of

(
HHH

)−1
,

k1 = arg min
1≤j≤N

[(
HHH

)−1
]

j
. (2)

Then, project the received signalr onto the nulling direction
and perform the hard decision to detect the symbolxk1 . That

is, setx̂k1 = Quant
[(

e(0)
k1

)H

r
]
, wheree(0)

k1
is the k1-th

column ofE(0) = (H+)H .
2. Cancellation. Subtract the detected signal from the

received signal to get

r(1) = r− hk1 x̂k1 , (3)

wherehk1 denotes thek1-th column ofH.
3. Recursion. Repeat the above two steps until all sym-

bols are detected,

ki+1 = arg min
1≤j≤N−i

[(
H

H

k1,···,ki
Hk1,···,ki

)−1
]

j

,

x̂ki+1 = Quant
[(

e(i)
ki+1

)H

r(i)

]
,

r(i+1) = r(i) − hki+1 x̂ki+1

for i = 1, 2, · · · , N − 1, wheree(i)
ki+1

denotes theki+1-th

column ofE(i) =
(
H+

k1,···,ki

)H

andhki+1 denotes theki+1-

th column ofH.

2.3. QR interpretation of Algorithm 2

We use the QR decomposition to explain the algorithm of
Golden et al. [3]. The first step (2) is equivalent to finding a
subchannel whose SNR is the highest among allN possible
subchannels. If we look at this problem from the viewpoint
of the signal space that is spanned by the column vectors of
H, then the first step (2) is equivalent to finding a column
vector ofH whose projection onto the subspace spanned by
all other column vectors is the smallest. Repeat the above
procedure for the remaining columns. Finally, Algorithm 2
actually finds the optimal order. That is, it finds a permuta-
tion matrixP = [pk1 , · · · ,pkN

], wherepi denotes anN × 1
vector whosei-th element is one, but others are zeros, such
that the QR decomposition ofHP gives rise to the optimally
ordered successive cancellation detector.

Algorithm 3(QR interpretation of Algorithm 2):
1. Initialization. Find the column vector ofH whose

projection onto the space spanned by all other column vectors
is the smallest,

kN = arg min
1≤k≤N

∥∥∥
(
I−HkH

+

k

)
hk

∥∥∥
2

.

Let αN =
(
I−HkN H

+

kN

)
hkN andqN = αN/ ‖ αN ‖.

2. Recursion. Repeat the first step by trimming the col-
umn vector one by one

ki = arg min
1≤k≤N,k 6=ki+1,···,kN

∥∥(I−Hk,ki+1,···,kN

×H
+

k,ki+1,···,kN
)hk

∥∥2



for i = N − 1, N − 2, · · · , 1. Let

αi =
(
I−Hki,ki+1,···,kN

H
+

ki,ki+1,···,kN

)
hki

and letqi = αi/ ‖ αi ‖2 .
3. Permutation matrix formulation. Finally, we obtain the

optimal matrixP = [pk1 , · · · ,pkN
] andQ = [q1, · · · ,qN ]

such thatHP = QR.
It is easily verified that Algorithm 2 is equivalent to ap-

plying Algorithm 1 tor = H′x′ + ξ, whereH′ = HP and
x = Px′. Therefore, if we precode a vectorx′ with the per-
mutation matrixP, and apply Algorithm 1 to detectx′, we
get the optimally ordered successive-cancellation detector of
Golden et al. [3]. In the remainder of the paper, we donot
confine the precoder matrix to be a permutation matrix, and
we derive the optimal QR decomposition.

3. QRS decomposition

In this section we develop the QRS decomposition and
show its two important properties.

3.1. QRS decomposition

Theorem 1 (QRS decomposition) For an arbitraryM × N
matrix H with rank r, there exists a unitary matrixS such
thatHS has an equal-diagonal R-factor, i.e.

HS = QR, (4)

whereQ is anM × r column-wise orthonormal matrix and
R = [ Rr×r 0r×(N−r) ] with Rr×r being the equal-
diagonal R-factor.

3.2. Construction of the S-factor

The following recursive algorithm is to find the S-factor
of the QRS decompositionHS = QR.

Algorithm 4(Construction of the S-factor):
1. SVD. Perform the SVD ofH = UΛV and formH̃ =

UΛr.

Initialization. Determine the first row of̃S, i.e., s̃1 =
(S̃1,1, · · · , S̃r,1)T , such that constraints

s̃H
1 H̃HH̃s̃1 = det

(
H̃HH̃

)1/r

(5)

s̃H
1 s̃1 = 1 (6)

are satisfied.
2. Recursion(reduce the dimension and decouple con-

straints). Set̃sk+1 = S̃⊥k zk+1, wherezk+1 is any vector that
satisfies

zH
k+1C

(k)zk+1 = det
(
H̃HH̃

)1/r

(7)

zH
k+1zk+1 = 1, (8)

with

C(k)=
(
S̃⊥k

)H

H̃HH̃
(
I− S̃k

(
S̃H

k H̃HH̃S̃k

)−1

S̃H
k H̃HH̃

)
S̃⊥k .

3. Complete the S-factor. S = [VrS̃, (VH)1,···,r].

3.3. An explicit S-factor

In the above subsection we established that the solution
for the S-factor is not unique. In the following we show how
to find an explicit special solution of equations (5)-(8).

Algorithm 5(Construction of an explicit S-factor):
1. SVD. Perform the SVD ofH = UΛV and formH̃ =

UΛr.

Initialization. An explicit solution for the first column of̃S,
i.e., s̃1 = (S̃1,1, · · · , S̃r,1)T , is

S̃1,1 =

√
det(H̃HH̃)1/r − λr

λ1 − λr

S̃k,1 = 0 for k = 2, · · · , r − 1

S̃r,1 =

√
λ1 − det(H̃HH̃)1/r

λ1 − λr
.

2. Form the positive definite matrix for recursion. Set (start-
ing initially with k = 1)

C(k) =
(
S̃⊥k

)H

H̃HH̃

×
(
I− S̃k

(
S̃H

k H̃HH̃S̃k

)−1

S̃H
k H̃HH̃

)
S̃⊥k .

3. Eigenvalue decomposition. Perform the eigenvalue decom-
position ofC(k),

C(k) = V(k)Λ(k)
(
V(k)

)H

,

whereV(k) is a(r− k)× (r− k) unitary matrix andΛ(k) =
diag(λ(k)

1 , · · · , λ(k)
r−k) with λ

(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)
r−k > 0.

4. Recursion. Set̃sk+1 = S̃⊥k V(k)y(k) for k = 1, · · · , r − 2,

wherey(k) =
[
y
(k)
1 , y

(k)
2 , · · · , y(k)

r−k

]T

is determined by

y
(k)
1 =

√√√√det(H̃HH̃)1/r − λ
(k)
r−k

λ
(k)
1 − λ

(k)
r−k

y
(k)
` = 0 for ` = 2, · · · , r − k − 1

y
(k)
r−k =

√√√√λ
(k)
1 − det(H̃HH̃)1/r

λ
(k)
1 − λ

(k)
r−k

.



Whenk = r − 1, set̃sr = S̃⊥r−2V
(r−2)y(r−1) where

y(r−1) =




−
√

det(H̃HH̃)1/r−λ
(r−2)
2

λ
(r−2)
1 −λ

(r−2)
2

√
λ

(r−2)
1 −det(H̃HH̃)1/r

λ
(r−2)
1 −λ

(r−2)
2


 .

5. Complete the explicit S-factor.

S = [(VH)rS̃, (VH)1,···,r]. (9)

3.4. Properties of equal diagonal R-factors

Definition 1 Define the minimum distance of the constella-
tionX as

dmin(X ) = min
x6=x′,x,x′∈X

|x−x′| =
√

min
x,x′∈XN ,x 6=x′

||x− x′||2

Definition 2 Define the free distance of anM × N channel
matrixH as

dfree(H) =
√

min
x,x′∈XN ,x 6=x′

(x− x′)HHHH(x− x′)

The following theorem shows that the free distance can
be bounded in terms of the diagonal entries of the R-factor in
the QR decomposition of a channel matrix.

Definition 3 The columnhj of a channelH is called the
weakest linkif hj is orthonormal to all previous columns,
i.e.,hH

i hj = 0 for i = 1, · · · , j − 1. The corresponding sub-
script j is called theweakest link index. Theweakest link
index setJ consists of all weakest link indexes, i.e.,

J = {j : hj is the weakest link}.

Note thatJ is non-empty sinceh1 is always a weakest link.
For every weakest link indexj, we define theweakest link
difference set

X (j) = {x− x′ : x,x′ ∈ XN and only thej-th elements

in x andx′ are different}

Property 1 LetH be anM×N full rank tall matrix that has
an equal-diagonal R-factor. Then,

dfree(H) =
(
det

(
HHH

))1/2N
dmin(X ) = [R]k · dmin(X ).

(10)
Furthermore,(x − x′)HHHH(x − x′) = dfree(H) if and
only if the difference signalx− x′ of two transmitted vectors
x and x′ belongs to some weakest link difference set, i.e.,
x− x′ ∈ X (j) for a j ∈ J .

Property 1 shows that for a channel matrixH with an
equal-diagonal R-factor, the minimum Euclidean distance of
the signal lattice before the channel (dmin(X )) and the mini-
mum Euclidean distance of the signal lattice after the channel
(dfree(H)), satisfy relationship (10). We know that the free
distance determines the detection performance of the max-
imum likelihood detector when the signal to noise ratio is
high. From Property 1 we conclude that if the channelH
has an equal-diagonal R-factor, then the free distance is com-
puted by the QR decomposition. Therefore, this suggests that
if the channel matrix has an equal-diagonal R-factor, the de-
tection performance of the QR successive cancellation detec-
tor is asymptotically equivalent to that of the maximum likeli-
hood detector as SNR→∞. In addition, Property 1 indicates
in which positions of a block the free distance is reached, i.e.,
which positions are the weakest links. This may be exploited
to design an encoder so as to increase the free distance of the
encoded signal, which is well beyond the scope of this paper.

Suppose we wish to use the VBLAST detector [3] on a
channel that has the equal-diagonal R-factor, a natural ques-
tion is what is the optimal detection order? The following
property gives the answer.

Property 2 If a channel matrix has the equal-diagonal R-
factor, the optimal detection order (that ensures that the high
SNR components are detected first) is the natural order, i.e.,
xN → xN−1 → · · · → x1, in other words, thei-th symbol to
be detected is the symbolxN+1−i.

Property 2 essentially characterizes a geometric prop-
erty of a channel with the equal-diagonal R-factor. Namely,
among all column vectors ofH, the last column vectorhN

has the minimal projection onto the space spanned by all the
other column vectors. Equivalently,hN has the maximal dis-
tance from the space spanned by all the remaining column
vectors. After we have eliminatedhN , among all remain-
ing column vectors ofH, the second to last column vector
hN−1 has the maximum distance from the space spanned by
all the remaining column vectors (excepthN ). We continue
this procedure until we reach the first column vectorh1.
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