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Abstract—We consider a distributed sensor network in which
several observations are communicated to the fusion center using
limited transmission rate. The observation must be separately
encoded so that the target can be estimated with minimum average
distortion. We address the problem from an information theoretic
perspective and establish the inner and outer bound of the ad-
missible rate-distortion region. We derive an upper bound on the
sum-rate distortion function and its corresponding rate allocation
schemes by exploiting the contra-polymatroid structure of the
achievable rate region. The quadratic Gaussian case is analyzed
in detail and the optimal rate allocation schemes in the achievable
rate region are characterized. We show that our upper bound
on the sum-rate distortion function is tight for the quadratic
Gaussian CEO problem in the case of same signal-to-noise ratios
at the sensors.

Index Terms—CEO problem, contra-polymatroid, decentralized
estimation, Gaussian source, multiterminal source coding, mean-
squared error, rate allocation, water-filling.

I. INTRODUCTION

I N this paper, we consider the following distributed sensor
network (see Fig. 1). is the target data sequence

that the fusion center is interested in. This data sequence cannot
be observed directly. sensors are deployed, which observe
corrupted versions of separately. The data rate at
which sensor may communicate informa-
tion about its observations to the fusion center is limited to
bits per second.1 Due to wide geographical separation of the sen-
sors or other reasons, the sensors are not permitted to communi-
cate with each other, i.e., sensor has to send data based solely
on its own noisy observations . Finally, the decision

is computed from the combined data at fusion center.

Manuscript received July 15, 2003; revised February 1, 2004. The work of
J. Chen and T. Berger was supported in part by the National Science Founda-
tion (NSF) under Grant CCR-0330059, Grant CCR-1980616, and Grant ARO
P-40116-PH-MUR, Cornell University, Ithaca, NY. The work of S. B. Wicker
was supported in part by the MURI Program and the NSF ITR and Sensor Net-
working Programs, Cornell University, Ithaca, NY.

The authors are with Cornell University, Ithaca, NY 14853 USA (e-mail:
jc353@cornell.edu).

Digital Object Identifier 10.1109/JSAC.2004.830888

1The communication channel between sensors and fusion center maybe noisy.
If channel coding is allowed, we can convert the noisy channel into an equiva-
lent noiseless channel with certain capacity which may depends on transmitter
power, allocated bandwidth or other factors. So the restriction on the trans-
mission rate for sensors may result from the restrictions on bandwidth, power,
and/or other resources. The restrictions on transmission rates may also be im-
posed due to the processing limitation of the fusion center.

Fig. 1. Model of distributed sensor network.

Gel’fand and Pinsker [1] considered a model analogous to
ours for noiseless reproduction of . Our model has
been studied by Flynn and Gray [2] in the case of two sen-
sors, where they derived an achievable rate-distortion region. A
closely related problem, called CEO problem, was introduced
in [3] for discrete case, and [4] for quadratic Gaussian case. For
CEO problem, we are only interested in the tradeoff between
the estimation distortion and the total rate at which the sensors
may communicate information about their observations to the
fusion center. Oohama [5] derived the sum-rate distortion func-
tion for the quadratic Gaussian CEO problem when there are
infinite sensors and the signal-to-noise ratio (SNRs) at all the
sensors are identical. Viswanath [6] formulated a similar multi-
terminal Gaussian source coding problem and characterized the
sum-rate distortion function for a class of quadratic distortion
metrics.

For simplicity, we also call our problem as CEO problem,
although our discussion is not restricted to the tradeoff between
sum rate and distortion.

A. Note About Notation

1) We usually use capital letters (say, ) to indicate
a random variable. denotes the random vector

and
denotes a realization of .

2) The notion means that form a
Markov chain.

3) We use calligraphic letters to indicate a set (say, ) and
use to denote the cardinality of .

4) for any positive integer .
5) If , then

.
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B. System Model and Problem Formulation

Let be a temporally memo-
ryless source with instantaneous joint probability distribution

on , where is the number
of sensors, is the common alphabet of the random variables

for is the common
alphabet of the random variables for .
Sensor encodes a block of length
from its observed data using a source code

of rate . The codewords from the
sensors are sent to the fusion center. The

task of fusion center is to recover the target data sequence
with minimal expected distortion de-

fined as , where is
a given distortion measure and is the estimate of random
target sequence . The fusion center implements a mapping

, i.e., the estimate at fusion
center is of the form .

The rest of this paper is divided into four sections. In
Section II, we derive the inner and outer bound of the ad-
missible rate-distortion region. In Section III, we establish
an upper bound on the sum-rate distortion function by ex-
ploiting the contra-polymatroid structure of the achievable
rate region. The rate allocation schemes to achieve this upper
bound are characterized. In Section IV, we consider the case
of correlated memoryless Gaussian observations and squared
distortion measure. The parametric representation of the inner
bound is computed. We derive an explicit formula of the upper
bound on the sum-rate distortion function and characterize
the corresponding rate allocation schemes. We show that the
rate allocation schemes that attain the upper bound possess a
generalized water-filling interpretation. Moreover, our upper
bound is shown to be tight for the quadratic Gaussian CEO
problem in the case of same SNRs at the sensors. In Section V,
we suggest several directions for further research.

For simplicity, in Sections II and III, we assume
and the distortion measure

to be bounded, i.e., .

II. INNER AND OUTER BOUNDS FOR

RATES-DISTORTION REGION

Definition 1: The rate vector is said
to be -admissible if such that there exist
encoders

...
...

and a decoder

such that .
Let denote the set of all -admissible rate vectors.

A. Inner Bound

Theorem 1: Given the joint distribution of the random vari-
ables , for , define
as the set of random vectors jointly
distributed with and such that the following two proper-
ties are satisfied.

1) for all .
2) There exists a function such

that , where .
Let

then convex hull2 of
. We call the achiev-

able rate region with respect to distortion .
The proof of this theorem is standard, which is based on

Cover’s random binning argument [7] and a Markov lemma
[8]–[10] that ensures the joint typicality of the codewords from
different sensors. (It will be made precise in the description of
the encoding scheme.) In the interest of conservation and sim-
plicity, we just describe the encoding and decoding procedures
and omit the details of the proof.

Let and function satisfy the conditions
given in Theorem 1. Construct the random codebooks

3 (where denotes the codebook of
sensor ) as follows.

At sensor , independently generate
codewords of blocklength , index them

, and let . The codewords
are generated by drawing independent identically distributed
(i.i.d.) symbols from the marginal distribution . Randomly
assign the codewords to one of bins4 using a uniform
distribution over the indices of the bins.

Encoding Scheme: At sensor , given observation , if
it is typical, map it onto the with the smallest
index such that are jointly typical. Let
denotes the onto which is mapped. (Note: By Markov
lemma, are jointly typical
as .) The index of the bin which contains is
sent. Let denote this bin index. If is not typical or
there does not exist such that are
jointly typical, then a special error symbol is sent. This special
error symbol does not increase the rate in the limit of large

, so we may safely ignore it.
Decoding Scheme: Given , if there exists a

unique such that the codeword is

2It follows directly from a time sharing argument.
3Here, C actually is not the C stated in the Definition 1. As we will

see, we will not send the codewords in C directly. Instead, we will send the
index of bin. That is why here we have 2 bins at encoder i, while generally
jC j > 2 .

4We suppose 2 is an integer. When n is large enough, this assumption
causes no essential loss.



CHEN et al.: AN UPPER BOUND ON THE SUM-RATE DISTORTION FUNCTION AND ITS CORRESPONDING RATE ALLOCATION SCHEMES 979

in (where denotes the bin with index at sensor
) and are jointly typical, then decode it

as ; otherwise, declare an error and incur
the maximum distortion . If the received vector contains
special error symbol, also declare an error and incur the max-
imum distortion . Assuming no error, produce the estimate

for . Here,

is the th symbol of the codeword .

B. Outer Bound

Theorem 2: Given the joint distribution of the random vari-
ables : , for , define
as the set of random vectors jointly dis-
tributed with and such that the following two properties
are satisfied:

1) for all .
2) There exists function such that

, where .
Let

then

Proof: See Appendix I.

C. Discussion

1) Our inner bound can be specialized to the results of
Wyner and Ziv [11], Draper and Wornell [12], and
Berger et al. [13].

Specifically, it is easy to show that for any

where is the set of random variables jointly
distributed with and such that the following two
properties are satisfied.
i) .
ii) There exists a function

such that where
.

That is to say, the upper bound [reduced from inner
bound ] on the minimum rate required by
sensor is tight. Note: In order to minimize the rate
required by sensor , a sufficient condition is that the
rate constraints on sensor
are loose enough to guarantee the perfect recovery of

. (Note: By
Slepian–Wolf Theorem [14], if

then can
be recovered losslessly). But this condition is not
necessary because what we need is just a sufficient
statistic for , not the raw data

.
2) The inner and outer bounds generally do not meet, so the

complete characterization of the admissible rate-distor-
tion region is still an open problem. Furthermore, even
there exists a complete characterization of the admis-
sible region, it is still a formidable, if not impossible, task
to compute the explicit expression of the admissible re-
gion for a specific case since the associated optimization
problem is very complicated in general.

3) Our inner bound and outer bound differ from those of
[9], [8] only in the distortion constraint. But [9] and [8]
focus mainly on the case . As pointed out in
[15], CEO problem can be converted into Berger–Tung
problem and, thus, is a special case of the latter.

III. OPTIMAL RATE ALLOCATION SCHEMES IN THE

ACHIEVABLE RATE REGION

In this section, we analyze the minimum sum rate in the
achievable rate region with respect to distortion , i.e.,

(1)

We show that “inf” in (1) can be replaced by “min.” Further-
more, we characterize the following set:

(2)

in which every element corresponds to a rate allocation scheme
that minimizes the sum rate in the achievable rate region with
respect to distortion .

A major step toward the solutions to (1) and (2) is to ex-
ploit the contra-polymatroid structure of the achievable rate
region. The contra-polymatroid theory has been used to study
distributed source coding for years, see [6] and [10]. A similar
combinatorial structure called polymatroid has been applied to
study the capacity region of multiaccess fading channel in [16].

Definition 2: Let be a set function. The
polyhedron

is a contra-polymatroid if satisfies
1) (normalized).
2) if (nondecreasing).
3) (supermodular).
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If satisfies the three properties, is called a rank function.
Lemma 1: If for all

under the probability distribution , then

is a contra-polymatroid.
Proof: Let

We only need to show that satisfies the three properties of
contra-polymatriod.

1) By definition.
2)

3) Since

(where both and follow from the fact that
for all ), it follows that:

An important property on the characterization of the vertices
of contra-polymatroid is given in [16]. For completeness, we
restate it here.

Lemma 2 ([16, Lemma 3.3]): Let be a contra-poly-
matroid. If is a permutation on the set , define the vector

by , and for
.

Then, the points are precisely the vertices of .
Since it has been shown in Lemma 1 that is

a contra-polymatroid, we can conclude that for each per-
mutation on the set gives a
vertex of (where

) and, thus, the contra-poly-
matroid has totally vertices (Note: These vertices

may not be distinct). It is easy to check that for each of these
vertices, the sum rate . So the
sum-rate constraint is attainable. Furthermore,
let be the convex hull of these vertices. It is obvious
that we have and every point in
attains the sum-rate constraint .

We summarize the above result in the following lemma.

Lemma 3: Let

, then

and we have

Now, we proceed to show that “inf” in Lemma 3 can be re-
placed by “min.”

Lemma 4: There is no loss of generality to assume that
for all in Theorem 1.

Proof: By invoking the support lemma [17, pp. 310],
must have letters to preserve the probability distribu-
tion and more to preserve (for any
nonempty set ) and .

Lemma 5: Given the joint distribution of the discrete random
variables ,

, let be the set of joint distribution
of

with the following properties satisfied.
1)

.
2) for all .
3) There exists a function such

that .
Then, is compact.

Remark: Here, we view as a point in the
-dimensional

Euclidean space.
Proof: See Appendix II.

By Lemma 3, 4, and 5, it is straightforward to get the fol-
lowing theorem.

Theorem 3:

1)

2) Let
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We have convex hull5 of .
Proof: is a continuous function of

and, thus, is able to attain its minimum
value over the compact set . Here, the Euclidean metric
is assumed implicitly in both the domain and the range of

.
Remark: is the minimum sum rate in the achievable

region with respect to distortion and, thus, is an upper bound
of the sum-rate distortion function of the CEO problem.
is the collection of rate vectors in that attain the sum
rate bound . We call as the optimal rate alloca-
tion region in the achievable rate region. Every point in region

corresponds to a rate allocation scheme (Note: the cor-
responding coding scheme is guaranteed by Theorem 1) that
achieves the sum rate bound .

In the next section, we apply the results obtained in Sections II
and III to analyze the quadratic Gaussian CEO problem. Al-
though we focus on the finite discrete case with bounded distor-
tion measure in Sections II and III, many of our results hold for
more general cases. For example, Theorem 1 can be extended to
the Gaussian case with squared distortion measure by standard
techniques [18], [19]. Specifically, the Markov lemma which is
fundamental in the proof of Theorem 1 has been generalized by
Oohama [19] to the Gaussian case. Lemma 3 in Section III also
holds for the quadratic Gaussian case.

IV. QUADRATIC GAUSSIAN CEO PROBLEM

In this section, we will evaluate the achievable rate region de-
fined in Theorem 1 for the Gaussian case with squared distortion
measure.

Let be i.i.d. Gaussian
vectors such that are independent
conditional on . We let auxiliary random variables

be joint Gaussian6 with .

5It follows from a time sharing argument. Note that although #(W ) is
convex, f #(W )g may not be convex.

6It is not clear whether such a restriction will cause any loss of generality, but
it greatly simplifies the computation.

Since for any
, we can get the following two equations7

(3)

(4)

where are independent Gaussian
noises at the sensors with variance ,
respectively; is a scalar matrix;

are mutually independent Gaussian random
variables with variance . are independent of and
are independent of .

A. Distortion

We rewrite (3) in the form

where and is a Gaussian r.v. with

variance and independent
of . Due to the fact that and
are independent. For the Gaussian case with squared distortion
measure, the optimal estimate of from , i.e., ,
is linear minimum mean-square error (MMSE) estimate. So
we have

(5)

To get the expression for the covariances, we introduce the fol-
lowing lemma first.

Lemma 6: If matrix (where
, and ) has the form

then, we have the equation, shown at the bottom of the page.
Proof: See Appendix III.

7We can also let Y = kX + N , where k = (k ; k ; . . . ; k ) , but
since all are zero-mean, (3) can always be acquired by scaling. In the case when
k = 0, we can let � = 1 in (3).

...
. . .

...

and
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Now, we start to evaluate (5)

where .
Using Lemma 6, we directly get

where for .
So the distortion constraint becomes

(6)

Clearly, a nontrivial should be in the range of
, where , which is

the MMSE of given .

B. Rates

For joint Gaussian random vectors , we have

where .
So

By Lemma 6

Also, notice that

we get the rate constraints

(7)

By (6) and (7), we get the achievable rate region

where

Oohama [20] derived an expression different than ours and
claimed it to be the rate-distortion region. But his result seems
not very correct. Since one can let for all and show
that the resulting rate region contains unachievable points. The
reason is probably the lack of proper constraints between

and distortion in his result.
Now, we proceed to derive the minimum sum-rate distortion

function and optimal rate allocation region in the
achievable rate region .

By Lemma 3 in Section III, the sum-rate constraint
is attainable. We have

Note that both and
are monotone

increasing functions of . So in order to minimize
, the

distortion constraint should be tight

So we can apply Lagrange multiplier to find the op-
timal that minimizes
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. Moreover, it is easy to see that minimizing
is equivalent to mini-

mizing . Define

Without loss of generality, assume . Find the
largest such that

where . Then, we
get

(8)

and

(9)

The optimal rate allocation region in is the
convex hull of the vertices , where

is a permutation on the set . The coordinates of vertices
are determined, as shown in the equation

at the bottom of the page.
The 3-D case is illustrated in Fig. 2, where corresponds to

.
From the above analysis, it is clear that the number of sen-

sors we use depends on the amount of available sum-rate and
we always choose the sensors with small noise variances first.
We call this phenomenon as “Generalized Waterfilling.” We can

Fig. 2. Achievable rate region for the quadratic Gaussian CEO problem.

also see that generally the optimal rate allocation scheme in the
achievable rate region is not unique unless some further con-
straints are imposed.

For the quadratic Gaussian CEO problem studied in [4] and
[5], the SNRs at different sensors are identical, i.e.,

. In this case, we have

and

(10)

Actually, equation (10) is exactly the sum-rate distortion
function, not just an upper bound. The direct coding theorem is
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provided by Theorem 1. For the converse we apply Oohama’s
bounding technique [5, Sec. 3] with the single difference that
we do not let at the end of this proof.

It is easy to check that if we let in (10)

which coincides with the result in [5]. Here

As to the corresponding optimal rate allocation region, it is
convex hull of the vertices with

where is a permutation on the set .
A surprising consequence of the above rate allocation result

is that:

Even when the SNRs are identical at different sensors,
there exists a (actually uncountably infinite) rate allocation
scheme that assigns different rates to different sensors but
is still able to minimize the sum rate.

This is fundamentally different from the classic water-filling
results. The main reason is that the observed processes at dif-
ferent sensors are correlated. So it is possible to compensate
the performance loss due to the decreasing of the rate allocated
at one sensor by an increasing of same amount of rate at an-
other sensor. Furthermore, the classic water-filling method tries
to equalize the marginal utility of different components. For our
model, different components are not independent, so marginal
utility is not a correct measure. Instead, we shall consider “con-
ditional marginal utility.”

V. CONCLUSION

In this paper, we studied the rate distortion region for the CEO
problem with emphasis on the sum-rate distortion function and
the optimal rate allocation schemes in the achievable rate re-
gion. It will be extremely nice if one can find a complete char-
acterization of the rate distortion region for the CEO problem
or even just for the quadratic Gaussian case. It is very clear that
the CEO problem is close related with many other distributed
source coding problems, say Berger–Tung problem. One can ex-
pect that a complete solution to one of them will automatically
lead to complete solutions to all the others.

For real applications, simple, robust, and universal distributed
coding schemes are preferred, but the existing literature [21],
[22] in this direction is very limited. Much more work should
be done in the near future. The final goal is to obtain a com-
prehensive understanding of distributed source coding systems,
which involves the fundamental tradeoffs among system com-
plexity, compression efficiency and performance robustness.
A parallel tradeoff between diversity (i.e., performance ro-
bustness) and multiplexing (i.e., transmission efficiency) in
multiple-input–multiple-output (MIMO) systems has already
been established by Zheng and Tse in [23].

APPENDIX I
PROOF OF THEOREM 2

Proof:

where .

1) Since

it implies that and are condition-
ally independent given .

2) is the th coordinate of so
that we can write as a deterministic function of

. Let
and .

From 1) and 2), we can see that
.
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Let . Theorem 2 follows from Lemma 7
which we shall prove below.

Lemma 7: Let and
, then there exists

such that
, for all .

Proof: Let .
Let be a random variable such that

with independent of
. Let

if , for . We should note that
, if is given, then is determined; while and

are independent of .
It is easy to check the following.

1) for all since

2) There exists function such that
where . This is be-

cause the decoder can use the function corresponding
to .

So .
We can check the following.

Now, Lemma 7 follows by setting .

APPENDIX II
PROOF OF LEMMA 5

Proof: The boundedness of is obvious. So, we only
need to show that is closed.

Consider a Cauchy sequence in
. Let be the limiting distribution. It is

obvious that satisfies Property (i).
Without loss of generality, suppose .

Note that implies

and

Since

we have

Hence, under , we have
. Similarly, we can show that under

. So satisfies Property (ii).
Let be the function associated with

such that .
Since , there are only finite
number of functions from to . So there
exists a function that appears infinite times in . Let

be a subsequence of such that . We
have

So also satisfies Property (iii). Hence
and we can conclude that is

compact.

APPENDIX III
PROOF OF LEMMA 6

Proof: First, we consider the following special case. If
matrix of the form

...
. . .

...

we get

...
...

. . .
...
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Since

...
...

. . .
...

where is a minor of , obtained by taking
the determinant of remainder of with row
and column “crossed out” and

So

Back to . Since
. Apply the

above results

Similarly

and
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