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Capacity and Nonuniform Signaling for
Discrete-Time Poisson Channels

Jihai Cao, Steve Hranilovic, and Jun Chen

Abstract—The Poisson photon-counting model is accu-
rate for optical channels with low received intensity, such
as long-range intersatellite optical wireless links. This
work considers the computation of the channel capacity
and the design of capacity-approaching, nonuniform sig-
naling for discrete-time Poisson channels in the presence
of dark current and underaverage and peak amplitude con-
straints. Although the capacity of this channel is unknown,
numerical computation of the channel capacity is imple-
mented using a particle method. A nonuniform mapper is
coupled to a low-density parity check code and a joint
demapper-decoder is designed based on the sum-product
algorithm. Simulations indicate near-capacity performance
of the proposed coding system and significant gains over in-
formation rates using traditional uniform signaling. A key
observation of this work is that significant gains in rate
can be achieved for the same average power consumption
by using optical transceivers with nonuniform signaling
and a modest increase in peak power.

Index Terms—Channel capacity; Discrete-time Poisson
channel; Intersatellite optical communications; Non-
uniform signaling.

1. INTRODUCTION

practical model for low-power optical communication

channels is the discrete-time Poisson channel [1-3].
These channels exist in long-range optical communications
such as intersatellite laser links. For satellite applications,
free-space optical (FSO) communications provides larger
bandwidth, smaller beam divergence, and higher antenna
gains from smaller apertures as compared with rf trans-
ceivers. This high gain translates into a significant reduc-
tion in the required transceiver power, volume, and mass.
Recently, an optical link between two low-Earth-orbit
(LEO) satellites has been demonstrated at a rate of
5.625 Gbps over a range of 3800—4900 km with a telescope
diameter of 12.5 cm, a total mass of 32 kg, and a power con-
sumption of less than 120 W for the entire transceiver [4].

In discrete-time Poisson channels, the intensity of
the transmitter is pulse amplitude modulated (PAM) in
discrete time slots. Both the mean, ¢, and peak, A, emitted
intensities (i.e., power) are constrained due to energy
and component limitations on spacecraft. In addition, all
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received counts are corrupted by dark current. Currently,
no closed-form expression exists for the capacity of this
channel. In [5], Shamai showed that the capacity-achieving
distribution for the discrete-time Poisson channel with
peak amplitude constraint is discrete and has a finite
number of probability mass points. Lapidoth and Moser [6]
derived asymptotic bounds on the capacity of the discrete-
time Poisson channel with dark current as ¢ and A tend
to infinity, but their ratio is fixed. The bounds are asymp-
totically tight but often are quite loose at low & In [7] ca-
pacity bounds on the discrete-time Poisson channel are
given asymptotically as ¢ —» 0 with A fixed. The bounds,
however, are loose for all but very small input powers.
In [8], Martinez obtained tight upper and lower capacity
bounds with no dark current and with only an average am-
plitude constraint.

Signaling design for discrete-time Poisson channels
often involves complex optimization to find the discrete
capacity-achieving distribution. Once a distribution is
found, a deterministic mapper is designed to induce the
correct nonuniform distribution [9]. Multilevel coding
(MLC) and multistage decoding (MSD) have been used
with a mapper to approach the capacity of terrestrial
FSO channels with Gaussian noise [10,11].

In this work, the capacity of the discrete-time Poisson
channel is computed by extending a particle-based algo-
rithm [12] to find both the capacity and required input dis-
tribution. Unlike earlier work, this approach produces a
sequence of upper and lower bounds that converge in prac-
tice and are computationally efficient even for large ¢ and
A. In addition, a constrained particle algorithm is pre-
sented that produces constellations with quantized prob-
ability masses. The resulting constellations have rates
close to the channel capacity and often require fewer mass
points, whereas their simple structure enables straightfor-
ward mapper design. In contrast to previous MLC-MSD
work, here the nonuniform mapper is combined with
a low-density parity check (LDPC) code and a joint
demapper—decoder is developed based on the sum-product
algorithm. Simulation results in a practical LEO context
show large gains in rate, outperforming uniform signaling,
at the same average power consumption at a small increase
in peak amplitude.

The channel model is rigorously specified in Section II.
Section III briefly reviews the numerical techniques used
to compute channel capacity, develops tight capacity
bounds, and applies these bounds to a realistic LEO inter-
satellite link. Section IV presents practical algorithms to
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approach the channel capacity and demonstrates their op-
eration in a variety of scenarios, including the LEO inter-
satellite link. The paper concludes in Section V with
suggestions for future work.

II. CHANNEL MODEL

In discrete-time Poisson channels, data are transmitted
by sending PAM intensity signals that are constant in dis-
crete time slots. In contrast to continuous-time Poisson
channels, which admit arbitrary waveforms, the discrete-
time Poisson model imposes a bandwidth limit by con-
straining transmitted signals to be rectangular PAM. The
PAM amplitudes are limited to Rt since the underlying
quantity modulated is the optical intensity.

In addition, due to device constraints and limited energy
storage on the spacecraft, both the mean, ¢, and peak inten-
sity, A, must be constrained. The receiver is a photon coun-
ter that outputs an integer representing the number of
received photons. Specifically, in each time slot, given chan-
nel input x, the channel output y obeys the Poisson distri-
bution with average value x + A, that is,

(x + 2y

y’

e—(x+,1)’ x € R+’

Pyx(ylx) = yezZt,
where 1 represents the combined impact of background ra-
diation and average dark current. Although intersatellite
links operate above the atmosphere, unintended light scat-
tered from the Earth as well as from other planets and
stars will impinge on the receiver [13]. Dark current repre-
sents the detector nonideality and corrupts the received
counts even in the absence of illumination [14, Ch. 5]. Dark
current arises in all photodetectors and is a fundamental
limitation on the performance of any optical receiver.
Furthermore, the constraints of the input signal x are

0<X<A and EX)<e.

The channel capacity, C, of a discrete-time Poisson
channel is the maximum mutual information over input
distributions satisfying channel constraints, namely,

C2 max I(X; Y) = max /pX(x)
px()eP px()eP

Y\X(y|x)

[ZPY\X()’/X) log — )

}dx @

where

7’é{px(x)! / px(@)dx = 1.px(x) 2 0.E, ({X} < e‘}.

III. CuHANNEL CaPaciTY AND NONUNIFORM SIGNALING
A. Capacity Computation

The Blahut—-Arimoto algorithm [15] can be used to find
the channel capacity and input distribution for constrained
channels where input and output are chosen from discrete
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finite sets. In [12], the algorithm is extended to channels
with continuous input distributions by discretizing them
into a list of points termed particles. In this section, the
techniques in [12,15] are adapted to the discrete-time
Poisson channel with peak and average amplitude con-
straints to compute tight bounds on the capacity and to find
the capacity-achieving input distribution. An advantage of
this approach is that it is able to produce accurate esti-
mates of the channel capacity even for large values of ¢
and A. Previous approaches using brute-force optimization
techniques suffer from very large dimensionality for large ¢
and A and take excessive amounts of computing time.

Consider approximating the input probability density
for X using a list of particles {(x;,p;)} to give

M
=) pidx-x).
i=1

where p;, i =1,...,M, are real and nonnegative with
YM pi=1 and x; € X = [0.A]. The value of M must be
chosen large enough to ensure the convergence of the algo-
rithm as discussed in [12].

Dpx(x) = px(x)

The optimization problem in Eq. (2) is solved iteratively,
where {(x(k) k))} denotes the list of particles at the kth
step. The list of particles is alternately updated using
the following two steps:

p® £ arg maxI({(x*V,p)}), (W-step). 3)
4

*® £ arg maxI({(x,p®)}).  (X-step). (4)
X

The W-step in Eq. (3) optimizes the weights p with the
positions x*-D fixed and can be accomplished by the con-
strained Blahut—Arimoto algorithm [15] with average con-
straint ¢. The X-step in Eq. (4) maximizes I({(x;,p;)}) by
optimizing the positions with the weights fixed. Practically
the X-step is accomplished by means of a steepest ascent
technique [12].

After n iterations, a lower bound on the capacity C can be
shown to be

C>L™ =TI({", p™ )W), (5)
while an upper bound on C is given by

C< U™

= maX[D(PY\X(ﬂx)llP()’)(”)) - sMx] 4 5™ Zp Mx™ . (6)
i=1

where s™ is a parameter set to ensure convergence [15].

B. Numerical Results and Analytical Bounds

Figure 1 shows L™ and U®™ for the discrete-time
Poisson channel with A/e =4 and A =3 as a function of
the average input power. The value of M should be large
enough to ensure the convergence of the algorithm, and
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Fig. 1. (Color online) Bounds L™, U™ on channel capacity (on top
of each other) and closed form bounds from [6] with A/e = 4 and
A=3.

40 10

Fig. 2. (Color online) Capacity achieving input distributions for
AJe =4 and 1 = 3.

in these simulations M = 200. It can be seen that both
bounds nearly coincide over a wide range of powers. The
gap between L™ and U™ is about 10~® nats per channel
use after 100 iterations, and the accuracy could in fact
be improved further by increasing the number of iterations.
The lower and upper bounds of Lapidoth and Moser
[6, Eqgs. (12) and (13)] are also presented for comparison.
Notice that due to their asymptotic nature, these bounds
yield no insight at lower power levels.

Figure 2 shows the capacity-achieving distributions over
¢ with A/e =4 and 1= 3. As noted in [5], the capacity-
achieving distribution for the discrete-time Poisson chan-
nel with average power and peak power constraint is
discrete. Notice also that there are always probability mass
points at x; = 0. Additionally notice that when ¢ < 3 dB,
the capacity-achieving distributions are nonuniform binary
distribution. In Fig. 1, the mutual information for uniform
two- and three-point constellations are also plotted.
There is a large gap in the mutual information using equi-
probable constellations and the channel capacity, which
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Fig. 3. (Color online) Bounds L™, U™ on channel capacity (on top
of each other) and closed form bounds from [6] with A/e = 2 and
A=3.

demonstrates the importance of nonuniform signaling for
discrete-time Poisson channels.

Figure 3 plots similar mutual information curves with
peak-to-average ratio A/e = 2, which is common in many
optical transceivers. The analytical upper and lower
bounds of Lapidoth and Moser [6, Egs. (18) and (19)] under
the same conditions are also presented. Again, the analyt-
ical bounds only yield insight for very high values of .
Notice that equiprobable signaling achieves rates close to
the capacity. Indeed, for ¢ < 6.4 dB the capacity-achieving
distribution is binary and nearly uniform. Thus, nonuni-
form signaling is not essential in the case of A/e = 2 to
approach capacity. Comparing Figs. 1 and 3, however, illus-
trates that for a given average power consumption, large
increases in channel capacity are available by increasing
the peak emitted power. For spacecraft applications, ¢ is
a metric of the lifetime of the batteries. Thus, building
optical transceivers with higher peak powers and
nonuniform signaling can deliver far higher rates for the
same average power consumption.

C. Example: LEO Intersatellite Link

To quantify the possible gains using nonuniform signal-
ing, consider the example of an LEO laser communication
link demonstrated between TerraSAR-X and NFIRE satel-
lites [4]. This link operates at a data rate of 5.625 Gbps over
a link distance of 3800-4900 km. Table I provides a list of
parameters for these terminals [4] and realistic values for
the link.

A simplified link budget analysis can be used to estimate
the average number of received signal photons for a link at
wavelength 1, over a range z with signaling interval T' as
follows [16]:

Do (A \2 d,\2
s:PTnTanh—c(E) GTLT(’j1 ) T = 175027, (7)
w

where Py is the average transmitter power, 77 and gy are
efficiencies of the transmitter and receiver optics, 7 is the
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TABLE I
TERMINAL CHARACTERISTICS
Wavelength, 1, 1064 nm
Data rate, 1/T 5.625 Gbps
Link distance, z 4900 km
Peak transmit power, 2Pp 700 mW
Transmitter aperture diameter, d, 125 mm

Transmitter optical efficiency, n* 0.5

Receiver aperture diameter, d, 125 mm

Receiver optical efficiency, nR° 0.35

Detector quantum efficiency, 7° 0.7

Pointing error, 07 5 p radian (rms)
Spectral radiance of Earth, W* 5x 10~3 Watt/cm? — pm - sr
Receiver field-of-view, Q° 2 mrad
Bandwidth of receiver filter, A1 2 nm

%Assume 0.5 [16].

bAssume 0.35 T16].

¢ Assume 0.7 [16].

dThis value corresponds to the wavelength 1 pm (31
¢ Typically, this value is between 1.7-2.2 mrad [4].

quantum efficiency of the detector, d, and d, are the aper-
ture diameters of transmitter and receiver, 2 is Planck’s
constant, and c is the speed of light in a vacuum. The gain
of the transmit antenna relative to an isotropic emitter is

2
Gp = (’;—dt) , )

while the loss due to pointing error 0 is estimated by
Ly = exp(-Grb%). )

The primary noise source of the receiver is assumed to arise
from scattered light from Earth (i.e., earthshine). The aver-
age number of background photons received per signaling
interval can be estimated as follows [3]:

o _ 3.6649,

he (10)

dr\?2 n

where W(1,,) is the spectral radiance of Earth, Al is the
bandwidth of the receiver filter, and Q is the receiver
field-of-view.

The capacity of the LEO intersatellite link is computed
following Section III using the estimated ¢ and A2 and shown
in Fig. 4 versus the peak constraint A. As a metric of com-
parison, the mutual information rate achieved by the con-
ventional uniform binary signaling scheme with the same ¢
and /1 is computed to be Cy = 0.6718 nats per channel.
Figure 4 also presents the rate gain available by using non-
uniform signaling over C,,.

Even for A/e = 2, there is a gain in rate of 12% over the
baseline uniform binary scheme C;...Thus, nonuniform
signaling is useful in improving the data rate in all cases
in Fig. 4. Increasing the available peak power by 50% to
about 1 W gives A/e = 3 and yields a 30% gain in rate over
conventional binary uniform signaling for the same

11n fact, in this case the capacity-achieving distribution is nonuniform and
ternary.
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Fig. 4. (Color online) Channel capacity for LEO intersatellite link
versus A/e with ¢ = 7.5027 and 1 = 3.6649. For comparison, the
gain in rate versus uniform binary signaling, Cy, is also presented.

average power. Further increasing the peak constraint im-
proves the capacity with smaller relative increases in rate.
Thus, using laser emitters with larger peak powers and
nonuniform signaling can yield impressive gains in the
channel capacity of the LEO intersatellite link while keep-
ing the average power consumption constant. That is, this
improvement in rate does not come at the expense of
increased average energy usage.

The remainder of this paper considers practical algo-
rithms to approach these large gains in rate by employing
nonuniform signaling.

IV. NoNUNIFORM SIGNALING DESIGN For DISCRETE-TIME
PoissoNn CHANNELS

A. Practical Constellation Design: Constrained
Particle Method

The resulting capacity-achieving distribution obtained
in Section III has arbitrary probability mass values that
may not be practical for code design. Simply quantizing
the optimal distribution does not take full advantage of
the average power constraint. Consider a constrained
particle method that incorporates the quantization levels
into distribution design and is defined as follows:

1. Choose a large enough M and run the W-step and
X-step of Section III iteratively until convergence to
yield the capacity-achieving distribution {(x},p})}.

2. Select N € Z* according to the system requirements. In
general, larger N provide more precise quantization
results at the expense of complexity.

3. Enumerate all possible distributions of the form
{(x7.p;)}, where p; = k/2N for k € {0,1,...,2N - 1}. No-
tice that ) p; = 1 by definition. Denote the collection
of all such distributions by P and P, CP as the collec-
tion that satisfies the average amplitude constraint.

4. If |P,| > 0 (i.e., at least one combination satisfies the
average power constraint), choose the element in P, that
has the smallest Kullback—Leibler (K-L) divergence to
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{(x},p})}. Then, run the X-step in Eq. (4) under the aver-
age constraint.

5. Or, no elements in P satisfy the average constraint.
Choose the distribution in P - 75E that has the smallest
K-L divergence to {(x}, p;)} and denote it {(x;, p;)}. Scale
this distribution as {(ax;.p;)}, where a =¢/> x;p; to
ensure the average constraint is satisfied.

Notice that the resulting source distribution satisfies all
channel constraints and has quantized probability mass
values.

The mutual information of the constrained particle
method with N =2 and 3 as a function of 1/1 for fixed
e and A is shown in Fig. 5. For comparison, the channel

0.9
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Fig. 5. (Color online) Channel capacity and mutual information for
constellations from the constrained particle method for ¢ = 4 dB
and A/e = 4.
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capacity computed by the particle method of Section III
is also presented. The largest gap between the mutual
information and channel capacity is approximately
0.02 nats/channel use. Notice that as 1 decreases, constel-
lations with more quantization levels are required to
approach the channel capacity.

Figure 6 plots the capacity-achieving input distributions
and the results of the constrained particle method for ¢ =
4 dB and A/e =4 with 1 =10, 4, 0.1, 0.01, respectively.
When 4 = 10, the capacity-achieving distribution and the
constrained signal constellation coincide. For 1 = 4, the
output of the constrained method results in fewer mass
points than the capacity-achieving distribution. Thus,
the constrained technique often produces a less complex
transmitter with fewer output amplitudes while remaining
very close to the channel capacity.

B. Coding and Nonuniform Signaling

As seen in earlier sections, to approach the capacity of
the discrete-time Poisson channel, signaling at discrete
amplitudes with nonuniform probabilities is necessary.
In previous work on related channels [10,11], a mapper
is used to induce the correct distribution and coupled with
MLC and MSD to approach capacity. In general, however,
MLC-MSD suffers from error propagation and latency in
decoding and requires multiple encoders and decoders.

In this work, a single code is used to encode all bits, and
the mapper obtained from the constrained particle method
is implemented to induce the correct distribution. At the
receiver, demapping and decoding are done jointly via
the sum-product algorithm.
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£0.6} !
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Fig. 6. (Color online) The optimum and the proposed input distribution for different 2 when ¢ = 4 dB and A/e = 4. For (a) and (b) N = 2

and for (¢) and (d) N = 3.
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Fig. 7. System model for the developed encoding method and
mapping scheme.

Figure 7 presents a block diagram of the encoder and
mapper. Let the message U be composed of % bits that
are assumed to be uniformly distributed and input to
the LDPC encoder. Define the length of the LDPC code
to be nN, where 2V is the number of quantization steps
in the constrained particle method. The value n is an inte-
ger selected so that the capacity C > k/n. Additionally,
group the output coded bits as (W(ll),W(’) ,...,W](\‘,)), for
i =1,2,...,n. Notice that because the LDPC code is a linear
block code, the output distribution of the symbols in W
can be assumed to be uniform. Let f: {0,1}¥ - X be a
deterministic mapper that induces the desired distribution
as determined by the constrained particle method in
Subsection IV.A. This mapper is straightforward to imple-
ment because all probability masses are constrained to be
of the form %/2N.

Thus, each block of N coded bits, indexed by i, is input to
the mapper to yield a single channel input X;.

C. Code Design: Example I

Consider channel constraints A/e =4 and 1 = 3. From
Fig. 2, it is apparent that for the range -10 <¢ <2 dB
the capacity-achieving distribution has two mass points
at {0,A} and py = 3/4. In this example, the encoding, map-
ping, and joint demapping-decoding processes are de-
scribed in detail and their performance is simulated.

1) Encoding and Mapping: For N =2 and assuming
uniformly distributed input bits, the mapper f induces
the desired distribution

11
0, otherwise. (1)

WPWHHXX = {A’ Wy =Wy =1,
The equivalent channel seen by bit W; (and W4 due to the
symmetry of the mapper) can be found by marginalizing
the conditional probability

Pyw(lwy =1) = ) Py (y, walwy = 1)
wsg

1 1
= §PY|X0’|A) + §PY|X(3’|0)7

Pyw(ylw, = 0) = Pyx(y]0),
where Pyx(:|") is the channel law.

2) Joint Demapping and Decoding: Consider represent-
ing the LDPC code and the mapper together in a factor
graph. An example for N = 2 with the mapper in Eq. (11)
is presented in Fig. 8. Message passing on this graph using
the sum-product algorithm can demap and decode the bits
jointly.
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The lower part of the graph represents a traditional
LDPC code and the mapping function f is represented
by the triangular nodes. Furthermore, both w® and x;
are binary in this example. Following the standard sum-
product algorithm [17], the message from the mapper to
the message bit w{ is

P (w(li) =1) = py,p(x; ZA)ﬂwguf(wg) ~1
+ bop (6 = O)Mw;w_,f(wg) =0),
Hpgo @Y = 0) = py 0 = O)pro_ (w0l = 1)
+ p (X = O)Mw;w_,f(wg) =0).
@)
2

An analogous message from f to w,, is also simple to derive

based on Eq. (11).

For this example, the message from x; to f can be written
as the log-likelihood ratio

1 Hep;=0)  P(x; = 0ly;)
Mot =1 @ =1 Pl = 1)
4. 3P(y;lx; = 0)
=In 7P(}’i|xi 4 (12)

All other message passing for the LDPC code takes place in
the standard manner [18]. Due to the symmetry of the
mapper in w(ll) and wg), the update rules for both are the
same. After several rounds of message passing, a hard
decision is made for each w.

3) Simulation on BER Performance: Notice that the pre-
vious discussion of the joint demapping-decoding technique
depends only on the particular mapper chosen. To have a
concrete example, referring to Fig. 1, the channel capacity
when ¢ = -1.21 dB, A/e =4, and 1 = 3 is approximately
0.2438 bits (0.169 nats) per channel use. As shown in Fig. 2,
the capacity-achieving distribution in this case has two am-
plitude points at 0 and A and has probability mass p, =
0.75 corresponding to the previously developed mapper
(for N = 2).

To realize the code design for this system, an LDPC code
with rate R = 0.12 bits/channel use is required since two
encoded symbols are mapped to a channel symbol. An
LDPC code with rate 0.12 bits/channel use is designed
using [19] for an additive white Gaussian noise (AWGN)
channel to yield the degree distributions

Pey(x 1)

Peyy (%, 13,)

Fig. 8. Developed factor graph for joint demapping and decoding.



Cao et al.

AMx) = 0.5513x + 0.2031x% 4 0.0917x* + 0.0045x5
+0.017x7 4+ 0.0995x% + 0.033x,
p(x) = x2.

The total length of the code is set to 10,000 bits, which cor-
responds to 5000 transmitted channel symbols.

The BER performance of the system is shown in Fig. 9
versus 1/1 for ¢ and A fixed. The figure indicates the point
corresponding to 1 = 3, which was used for design. Notice
that the BER drops as 1/1 increases. For comparison, a uni-
form distribution that satisfies the same average power
constraint is also considered. At 1/2 = 1.31, the informa-
tion rate using uniform signaling is 0.24 bits/channel
use, which is identical to the designed rate. Clearly,
uniform signaling is quite far from the channel capacity,
and a nonuniform signaling scheme, such as the one
presented here, is required to take full advantage of
discrete-time Poisson channels.

D. Code Design: Example 11

Consider the design of a nonuniform mapper and coding
scheme under the conditions for an LEO intersatellite
link described in Subection III.C (i.e., e = 7.5027 and
A = 3.6649). A value of A/e = 2.62 is selected (from Fig. 4)
because the channel capacity is approximately 25% greater
than the uniform signaling case (i.e., 1.22 bits/channel
use). Notice that this is a mild increase in the peak-to-
average ratio over the uniform system, which inherently
has A/e = 2. The goal of this example is to quantify the
practical gains in rate that can be realized by exploiting
the small increase in peak amplitude for the same ¢ and 4.

1) Encoding and Mapping: For ¢ = 7.5027, 1 = 3.6649,

and A/e = 2.62, the channel capacity is 1.22 bits/channel
use, which is achieved by the following input distribution:

10 T T T T T T T

-~ LDPC Code Performance
1 : :Rate = 0.24 bits/channel use

4 Non-uniform Distribution
10" E:0:7588(x) +:0.255(x~3:027:3)
. )

1h=1.31

L L L
0.38 0.4 0.42 0.44

1/h

1 Al 1 1
0.32 0.34 0.36

Fig. 9. (Color online) BER versus 1/2 for the nonuniform signaling
using finite-length LDPC codes for ¢ = -1.21 dB, A/e = 4. The
value of 1/4 corresponding to optimal uniform (out of range) and
nonuniform signaling at 0.24 bits/channel use is presented for
comparison.
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pi(x) = 0.44445(x) + 0.20015(x — 7.1835)
+0.08835(x — 9.2315) + 0.26725(x — 19.6503).

Setting N = 2 in the constrained particle method results
in the following distribution:

Py (x) =0.56(x) +0.256(x—8.76) 4 0.256(x — 19.6505), (13)

with the mutual information rate 1.20 bits/channel use.

Notice that this distribution can be induced through the
simple mapper f

Ay, Wi =0
DY O i ;
WPW)sX X =14, W =1, WY =0,
Ay, Wi =1, W =1

(14)

where Ag = 0, A; = 8.76, and Ay, = 19.6505.

The equivalent channel seen by bit W; and W4 as well as
the message passing rules can be found by simple exten-
sion of the results in Subsection IV.C.

2) Simulation on BER Performance: Since the informa-
tion rate with the input in Eq. (13) when 1 = 3.6649 is
1.20 bits/channel use, an LDPC code with rate R =
0.568 bits/channel use and degree distributions [20]

A(x) = 0.181804x + 0.1975792 + 0.011671x3
+0.098834x* + 0.063856x + 0.239152x2*
+0.207105x25,

p(x) = 0.839350x0 + 0.160650x11

is applied in the this system with a code length of
10,000 bits.

Figure 10 plots the BER of the coding system with
mapper in Eq. (14) versus 1/1. The BER of the joint coding-
mapping system is less than 107° for the target 1 = 3.6649
computed in the LEO link budget (Subsection III.C). Thus,
for the same ¢ and 4, the resulting system has a rate that is

10 T T T T T T

LDPC Code Performance
Rate = 1.136 bits/channel use

10
[ \
W
o 10 \
10" ] ;
i \/x =3.6649
107 \

L
0.25 0.3

i

i
0.05 0.1

0.15 0.2
1/h

0.35

Fig. 10. (Color online) BER versus 1/1 for the nonuniform signaling
using finite-length LDPC codes with R = 1.136 bits/channel use
as e = 7.5027, A/e = 2.62.
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LDPC Code Performance
Rate = 0.75 bits/channel use

10°
o
w5
m 10
Non-uniform Distribution Uniform Distribution

10~ X)+0:258(x:5.0: 4)]:1:¢ \ [0:58(%)+0:55(x=5:02)[3

L i L L L L L L i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
/A

Fig. 11. (Color online) BER versus 1/1 for the nonuniform signaling
using finite-length LDPC codes as ¢ = 4 dB, A/e = 4. The 1/ cor-
responding to optimal uniform signaling and nonuniform signaling
with R = 0.75 bits/channel use is presented for comparison.

17% larger than that of uniform signaling (i.e., Cy). This
corresponds to a data rate of 6.6 Gbps. This increase in
rate, however, is achieved at the expense of an increase
in peak-to-average ratio from 2 to 2.62.

E. Code Design: Example 111

In some cases to approach the channel capacityan N = 3
encoder and decoder are necessary. For example, from Fig. 5,
for e =251, AJe =4, and A = 2.59, the channel capacity
is 0.7668 bits per channel use. Applying the N = 3 con-
strained particle method yields the following distribution:

A 2
r0 =5 o(5) =

and the corresponding
0.75 bits/channel use.

Symbols are drawn three at a time from an LDPC code
with rate R = 0.25 bits/channel use and applied to the
mapping function f, defined in Eq. (16), to yield a channel
symbol. An LDPC code of length 12,000 bits with rate R =
0.25 bits per channel use and the degree distributions [20]

1
pA) = 3’ (15)

mutual information is

A(x) = 0.602x + 0.238x2 + 0.0309x3 + 0.021x* + 0.0491x°
+0.0141x° + 0.0208x7 + 0.023x% + 0.001x?,
p(x) = 0.0001x + 0.1017x2 + 0.8982x3

is combined with the mapper f in Eq. (16):

Ao, W]_ == 0,
f A(), W1=1,W2=1,W3=0,
W= [W1W2W3]|—)X.X = Al, W]_ = 1,W2 = 0,W3 =0,
A, Wy=1W,=0Ws=1,
Ay, Wy=W,=Ws=1

(16)
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The equivalent channel law as well as the messages passed
during the sum-product algorithm can be derived in a simi-
lar fashion to those in the example in Subsection IV.C.

The BER performance of the system is shown in Fig. 11
versus 1/A for ¢ and A fixed. For the nonuniform distribu-
tion in Eq. (15), at 1/A = 0.389, the information rate is
identical to the design rate; however, to implement the
rate 0.75 bits/channel use with the BER less than 1077,
1/2 = 0.89 is needed for this system. The information rate
with the input in Eq. (15) and 1/4=0.89 is about
0.886 bits/channel use. A uniform distribution with the
same average power constraint has an information rate
equal to 0.75 bits/channel use when 1/4 = 1.068. There-
fore, the practical coding scheme illustrated here is reliable
at a higher value of 4 than the optimal uniform signal-
ing scheme satisfying the same average optical power
constraint.

V. CONCLUSION

This work presents capacity calculations and a non-
uniform signaling design for intersatellite discrete-time
Poisson channels corrupted by dark current under peak
and average power constraints. On the basis of a realistic
link budget of an LEO satellite communication link, for a
given average power, significant gains in rate can be
achieved using nonuniform signaling with a modest in-
crease in peak power. Thus, nonuniform signaling is neces-
sary and important to extract the maximum rate from such
intersatellite communication links.

The channel capacity and the capacity-achieving distri-
bution are found by adapting a particle-based Blahut—
Arimoto algorithm. A constrained particle method is also
developed that leads to practical signal constellations that
can be applied directly to code design. A joint demapper—
decoder using the sum-product algorithm is developed and
requires a single encoder and decoder. Three code design
examples, including the one based on the practical param-
eters of the LEO satellite link, are presented to quantify
performance.

Simulation results show that the rate performance is
close to the capacity with the BER less than 105 and
far outperforms uniform signaling schemes in all scenarios.
For the LEO example, for typical values of ¢ and 4, a gain in
rate of 17% over uniform signaling is realized with practi-
cal codes at a cost of moderate peak amplitude increase.

Future work includes optimizing the degree distribution
of the parity check matrix for this channel through density
evolution to achieve better performance and extending
results to downlink LEO-to-ground scenarios.
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