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Abstract— We consider reliable and secure communication
over intersymbol interference wiretap channels (ISI-WTCs).
In particular, we first derive an achievable secure rate for
ISI-WTCs without imposing any constraints on the input
distribution. Afterwards, we focus on the setup where the input
distribution of the ISI-WTC is constrained to be a time-invariant
finite-order Markov chain. Optimizing the parameters of this
Markov chain toward maximizing the achievable secure rates is
a computationally intractable problem in general, and so, toward
finding a local maximum, we propose an iterative algorithm that
at every iteration replaces the secure rate function with a suitable
surrogate function whose maximum can be found efficiently.
Although the secure rates achieved in the unconstrained setup
are potentially larger than the secure rates achieved in the
constrained setup, the latter setup has the advantage of leading to
efficient algorithms for estimating and optimizing the achievable
secure rates, and also has the benefit of being the basis of efficient
coding schemes.

Index Terms— Intersymbol interference (ISI), intersymbol
interference wiretap channel (ISI-WTC), finite-state machine
channel (FSMC), Markov source, secure rate, expectation-
maximization (EM).

I. INTRODUCTION

A. Motivation

THE increasing number of connected users and the
broadcasting nature of the wireless medium lead to

a flurry of security challenges for wireless communication
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applications. For example, typical cryptographic protocols
require significant communication resources for distributing
and maintaining secret keys. This issue noticeably decreases
the data transmission efficiency as the number of users
gradually increases [2]. In addition, traditional cryptosystems
rely on the assumption that eavesdroppers have limited compu-
tational power, making them vulnerable against more and more
powerful (quantum) computers [3]. Alternatively, information-
theoretic secrecy [4] utilizes the inherent randomness of
communication channels to achieve security at the physical
layer [5] without requiring secret key agreement and without
imposing any constraints on the eavesdroppers’ computational
power.

The emergence of different wireless applications gives rise
to diverse channel models for various channel conditions.
Intersymbol interference (ISI) channels are used as a model
for high-data-rate transmission over wireless channels when
the delay spread of the channel exceeds the symbol duration
[6, Ch. 9]. In order to be specific, consider a multipath fading
channel

Y (tc) ≜
mc∑
ℓ=0

gc,ℓ(tc)X(tc − τℓ) +N(tc),

with continuous-time variable tc ∈ R, where X(tc), Y (tc),
and N(tc) denote the input, the output, and the additive noise
signal, and where gc,ℓ(tc) and τℓ are, respectively, the gain
and the delay of the ℓ-th path, 0 ≤ ℓ ≤ mc. When the
symbol duration is smaller than τmc − τ0, the sampled output
of a filter matched to the shaping pulse at the receiver leads
to the ISI phenomenon. Such an ISI model usually appears
in single-carrier communication systems, which require a
higher power efficiency and a better peak-to-average power
ratio (compared with multicarrier communication systems)
and which appear in applications of the narrowband internet
of things (NB-IoT)1 [8] as outlined in specifications of 5G
and beyond-5G networks [9], [10]. Note that ISI is also
caused by multipath propagation in long-range underwater
acoustic communications [11], as well as in high data-rate
ultra-wideband communication systems [12].

Providing security at the physical layer of the above-
mentioned communication technologies without imposing
extra delay, power consumption, and processing burden, has

1In typical applications of the NB-IoT, ISI is mitigated by appending a
sufficiently large cyclic prefix to each transmitted block [7]. This method
decreases the effective throughput as the delay spread of the channel increases.
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Fig. 1. Block diagram of the ISI-WTC.

received significant attention recently [13], [14], [15]. In this
paper, we mostly use scenarios from the NB-IoT technology
for our examples and simulations. It is worthwhile to note
that the NB-IoT mostly inherits the long-term evolution (LTE)
infrastructure [9], so the essential channels operate in the
licensed sub-GHz spectrum range [16]. In this spectrum
range, in contrast to the broadcasting applications in the THz
carrier frequency range [17], one cannot choose a sufficiently
narrow angular divergence for the transmitter beam toward
preventing the eavesdropper from intercepting non-line-of-
sight transmission signals. This issue presents a vulnerable
environment at the physical layer of applications using the
NB-IoT.

These considerations motivate us to study theoretical aspects
of the physical layer security over ISI wiretap channels
(ISI-WTCs). As depicted in Fig. 1, the ISI-WTC comprises
two ISI channels, where the primary channel connects a
transmitter (called Alice) to a legitimate receiver (called
Bob and abbreviated by “B”), while the secondary channel
connects the transmitter to an eavesdropper (called Eve and
abbreviated by “E”). In order to focus on the key aspects of
this setup, the channel gains are assumed to be constant and
perfectly known to the receiver over each transmission block.2

B. Background, Related Works, and Contributions

ISI channels with finite memory length and finite input
alphabets are a particular case of finite-state machine
channels (FSMCs) [19]. Toward maximizing the achievable
information rates over FSMCs, the classical Blahut-Arimoto
algorithm (BAA) [20], [21] was generalized in [22] to
optimize finite-state machine sources (FSMSs) at the input of
FSMCs. Comparing lower bounds on the capacity of FSMCs
(i.e., the maximized information rates) [22], [23] with the
corresponding upper bounds [24], [25] typically shows a
small gap between them, which can be further narrowed by
increasing the memory order of the FSMS at the input [26].

Recently, Han and Sasaki [27], [28] derived the secrecy
capacity of memoryless wiretap channels with channel state
information at the encoder. Dai et al. [29] applied these
results to physically degraded Gaussian wiretap channels
with noiseless private feedback from Bob’s observations
to the encoder. It was shown in [29] that the considered
feedback enhances the secrecy capacity under the weak

2These assumptions are well established in slowly-varying channels and
appear also in other studies of ISI channels (see, e.g., [18]).

secrecy criterion. The delayed version of this feedback is
employed in [30] to enlarge the rate-equivocation region of
finite-state Markov wiretap channels.3 Besides employing the
feedback channel, the efficiency of secure communication over
ISI channels can be enhanced by injecting cooperative artificial
noise toward degrading Eve’s channel while minimizing the
impact on Bob’s channel, as done in [31] and [32].

Due to power efficiency requirements, artificial-noise-aided
communication has not received too much attention in recent
technologies. Also, establishing a private noiseless channel to
feed back the complete output of Bob’s channel to Alice’s
encoder imposes a tremendous delay and processing overload
on the higher layers of large cooperative networks. Hence,
we focus on the standard version of ISI-WTCs (with neither
feedback nor additional artificial noise), as it requires few
assumptions and consequently is more practically relevant.

In terms of the main focus of this paper, estimating the
secrecy capacity of a finite-state wiretap channel was already
considered in [33].4 However, the channel setup and the
approach to estimate the secrecy capacity in [33] have the
following limitations. Firstly, the assumptions for the channel
setup in [33] resemble the general assumptions for memoryless
wiretap channels as in [34], where Eve’s channel is assumed
to be noisier than Bob’s channel. However, as we will show,
these assumptions are inadequate for ISI channels (and more
generally, for FSMCs) due to the non-flat frequency responses
of these channels. Secondly, the gradient of the function that
is used for approximating the secure rate function is usually
not the same as the gradient of the secure rate function at a
given operating point. This issue leads to an inaccurate search
direction and eventually makes the algorithm unstable.

In the following, we highlight the main contributions and
results presented in this paper.

• In the first step, we derive the achievable secure
rates without imposing any constraints on the input
distribution. We then focus on the setup where the
input distribution is a time-invariant finite-order Markov
chain, henceforth called an input Markov source.5 Note
that employing Markov sources at the input of the
ISI channels has the benefit of leading to efficient
algorithms for estimation [36] and maximization [22]
of information rates, approaching the capacity in point-
to-point setups [26], and being a basis for efficient
encoding and decoding schemes [35], [37]. Accordingly,
we propose an efficient algorithm for optimizing the
parameters of an input Markov source toward maximizing
the obtained achievable secure rates over ISI-WTCs.

3A finite-state Markov wiretap channel, as in [30], is a wiretap channel
where Bob’s channel and Eve’s channel are FSMCs where the (joint) state
process is assumed to be a stationary ergodic Markov chain independent of
the transmitted message.

4Note that in [33] a finite-state wiretap channel is defined to be a wiretap
channel where Bob and Eve observe the input source through two distinct
FSMCs.

5Throughout the paper, when we talk about a Markov source at the input
of the channel, we refer to the Markov source that models the statistics of
the codebook [35]. It should not be confused with the source generating the
data that we want to transmit reliably and securely.
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• Maximizing the above-mentioned secure rate is chal-
lenging because it is not a closed-form function of the
input distribution and its evaluation is only possible
through Monte-Carlo simulations. The key idea behind
the proposed algorithm is to iteratively approximate the
zeroth-order and the first-order behavior of the secure
rate function by suitable surrogate functions that are well-
defined and can relatively easily be maximized.

• We provide examples where the capacity of Eve’s channel
is higher than the capacity of Bob’s channel, yet a
nonzero secure rate is possible. These examples show
that it is feasible to optimize an input Markov source
such that spectral discrepancies between the frequency
responses of Bob’s and Eve’s channels can be exploited—
without any further power consumption for transmitting
interfering artificial noise toward jamming Eve’s channel.

C. Paper Organization

The remainder of this paper is organized as follows.
Section II introduces the system model and some preliminary
concepts related to FSMCs, ISI-WTCs, and achievable secure
rates. Section III describes the proposed algorithm for
optimizing the parameters of a Markov source at the input
of an ISI-WTC and analyzes it in detail. Section IV contains
some numerical results and discussions. Finally, Section V
draws the conclusions.

D. Notation

The sets of integers and complex numbers are denoted
by Z and C, respectively. The ring of polynomials with
coefficients in C and indeterminate D is denoted by C[D],
where “D” stands for “delay”. Other than that, sets are denoted
by calligraphic letters, e.g., S. The Cartesian product of two
sets X and Y is written as X × Y , and the n-fold Cartesian
product of X with itself is written as Xn. If X is a finite set,
then its cardinality is denoted by |X |.

Random variables are denoted by upper-case italic letters,
e.g., X , their realizations by the corresponding lower-case
letters, e.g., x, and the set of possible values by the
corresponding calligraphic letter, e.g., X . Random vectors are
denoted by upper-case boldface letters, e.g., X, and their
realizations by the corresponding lower-case letters, e.g., x.
For integers n1 and n2 satisfying n1 < n2, the notation
Xn2

n1
≜ (Xn1 , Xn1+1, . . . , Xn2) is used for a time-indexed

vector of random variables and xn2
n1

≜ (xn1 , xn1+1, . . . , xn2)
for its realization. Boldface letters are also used for matrices,
e.g., A, with the (i, j)-entry of A being called Aij .

For any real number x, the expression (x)+ stands for
max{x, 0}; similarly, f+(·) stands for

(
f(·)

)+
. Moreover, the

expression log( · ) denotes the natural logarithm function.
The entropy of a random variable X , the mutual information

between two random variables X and Y , and the mutual
information between two random variables X and Y
conditioned on the random variable Z are denoted by H(X),
I(X;Y ), and I(X;Y |Z), respectively. Finally, the variational
distance between the probability mass functions (PMFs) of
two random variables X and Y over the same finite alphabet

X is defined as

dX (pX , pY ) ≜
∑
x∈X

∣∣pX(x)− pY (x)
∣∣.

II. PRELIMINARIES

A. Channel Model

An ISI channel with transfer polynomial g(D) ≜∑m
t=0 gtD

t ∈ C[D], where gm ̸= 0 and where m is called
the memory length, has an input process {Xt}t∈Z, a noiseless
output process {Ut}t∈Z, a noise process {Nt}t∈Z, and a noisy
output process {Yt}t∈Z with

Ut ≜
m∑

ℓ=0

gℓXt−ℓ, t ∈ Z,

Yt ≜ Ut +Nt, t ∈ Z,

where Xt, Ut, Nt, Yt ∈ C for all t ∈ Z, and where the
noise process is independent of the channel input process.
In the following, we will assume that the noise process is
white Gaussian noise, i.e., {Nt}t∈Z are i.i.d. Gaussian random
variables with mean zero and variance σ2. Clearly, an ISI
channel is parameterized by the couple

(
g(D), σ2

)
.

An ISI channel described by
(
g(D) ≜

∑m
t=0 gtD

t, σ2
)
,

where m < ∞, and having an input process {Xt}t∈Z taking
values in a finite set X ⊊ C is a special case of the channels
in the class of finite-state machine channels (FSMCs), which
were called finite-state channels in [19]. Indeed, let st ≜
xt

t−ν+1 (with S ≜ X ν and ν ≥ m) denote the state of an
FSMC modeling an ISI channel at t ∈ Z. Then

pSt,Yt|St−1,Xt
(st, yt|st−1, xt)

= pSt|St−1,Xt
(st|st−1, xt) · pYt|St−1,Xt

(yt|st−1, xt),

where

pSt|St−1,Xt
(st|st−1, xt)

≜

{
1 (if st = xt

t−ν+1, st−1 = xt−1
t−ν)

0 (otherwise)
,

pYt|St−1,Xt
(yt|st−1, xt)

≜
1

2πσ2
· exp

(
−|yt − ut|2

2σ2

)
,

with st−1 = xt−1
t−ν(∈ X ν) and ut =

∑m
ℓ=0 gℓxt−ℓ.

All possible state sequences of an ISI channel (and more
generally, of an FSMC) can be represented by a trellis diagram.
Because of the assumed time invariance, it is sufficient to show
a single trellis section. For example, Fig. 2(a) shows a trellis
section of an ISI channel characterized by the couple

(
g(D) ≜

1 − D, σ2
)

with ν = 1 and input alphabet X ≜ {+1,−1}.
In this diagram, branches start at state st−1 ≜ xt−1, end
at state st ≜ xt, and have noiseless channel output symbol
ut = xt − xt−1 shown next to them.

Let B (⊆ S×S) denote the set of all valid consecutive state
pairs (st−1, st) for which pSt|St−1(st|st−1) is allowed to be
non-zero for any t ∈ Z. Moreover, let

−→
S i ≜

{
j
∣∣ (i, j) ∈ B}, ←−

Sj ≜
{
i
∣∣ (i, j) ∈ B},

Authorized licensed use limited to: McMaster University. Downloaded on September 27,2023 at 21:10:09 UTC from IEEE Xplore.  Restrictions apply. 



3304 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 6, JUNE 2023

Fig. 2. (a) Trellis section of an FSMC, modeling an ISI channel with g(D) = 1−D, when used with ν = 1 and X = {+1,−1}. The noiseless channel
output symbol ut is shown next to the branches. (b) Trellis section of an FSMC, modeling an ISI-WTC with gB(D) = 1−D and gE(D) = 1+D−D2−D3,
when used with ν = 3 and X = {+1,−1}. Noiseless channel output symbols (ut, vt), one noiseless channel output symbol for Bob’s channel and one
noiseless channel output symbol for Eve’s channel, are shown next to the branches.

be the set of states St ∈ S reachable from St−1 = i and the
set of states St−1 ∈ S that can reach St = j, respectively.
For every (i, j) ∈ B, let pij ≜ pSt|St−1(j|i) be the time-
invariant state transition probability assigned by an ergodic
and non-periodic Markov source of memory order ν. Then
there is a unique stationary state PMF {µi}i∈S such that
pSt

(i) = µi for all t ∈ Z, i ∈ S. Finally, let Qij ≜ µi · pij ,
for all (i, j) ∈ B.

In the above statements, we started with {pij}(i,j)∈B and
derived {µi}i∈S and {Qij}(i,j)∈B from {pij}(i,j)∈B. However,
for analytical purposes, it turns out to be beneficial to start
with {Qij}(i,j)∈B and derive {pij}(i,j)∈B and {µi}i∈S from
{Qij}(i,j)∈B. Note that the set of all valid {Qij}(i,j)∈B for a
fixed set B is given by the polytope Q(B), where

Q(B) ≜

{Qij}(i,j)∈B

∣∣∣∣∣∣∣∣∣
Qij ≥ 0, ∀(i, j) ∈ B,∑

(i,j)∈B
Qij = 1,∑

j∈
−→
Si

Qij =
∑

k∈
←−
Si

Qki, ∀i ∈ S

.
(See [22] for similar observations.) In the following, we will
use the short-hand notation Q for {Qij}(i,j)∈B. Moreover,
similar to [22, Assumption 34], we will only be interested
in sets B where the Markov sources corresponding to relative
interior points of Q(B) are ergodic and non-periodic.

Remark 1 (Parameterized Family of Q): Frequently, we
will consider the setup where Q is a function of some
parameter θ. More precisely, for every (i, j) ∈ B, we let
Qij(θ) be a smooth function of the parameter θ, where θ
varies over a suitable range. For every θ, we require that
Q(θ) ≜

{
Qij(θ)

}
(i,j)∈B ∈ Q(B). Moreover, for every (i, j) ∈

B, we denote the derivative of Qij(θ) w.r.t. θ and evaluated
at θ̃ by Qθ

ij(θ̃). We denote the corresponding steady-state
and state transition probabilities parameterized by θ by µi(θ)
and pij(θ), respectively. Similarly, we denote their derivatives
w.r.t. θ and evaluated at θ̃ by µθ

i (θ̃) and pθ
ij(θ̃), respectively.

Because Q(θ) ∈ Q(B), we have
∑

(i,j)∈BQ
θ
ij(θ̃) = 0, and∑

i∈S µ
θ
i (θ̃) = 0. □

Definition 1 (Intersymbol Interference Wiretap Channel
(ISI-WTC)): In this paper, we consider an ISI-WTC, where
Alice transmits data symbols over Bob’s channel and over
Eve’s channel, which are both assumed to be ISI channels
with finite input alphabet X ⊊ C. (See Fig. 1.) Specifically,
Bob’s channel is an ISI channel described by the couple(
gB(D), σ2

B

)
, with transfer polynomial gB(D) =

∑mB
t=0 g

B
t D

t,
noiseless output process {Ut}t∈Z, noise process {NB

t }t∈Z,
and noisy output process {Yt}t∈Z. Similarly, Eve’s channel
is an ISI channel described by the couple

(
gE(D), σ2

E

)
,

with transfer polynomial gE(D) =
∑mE

t=0 g
E
t D

t, noiseless
output process {Vt}t∈Z, noise process {NE

t }t∈Z, and noisy
output process {Zt}t∈Z. We assume that the noise process
of Bob’s channel and the noise process of Eve’s channel are
independent. Clearly, the ISI-WTC is parameterized by the
quadruple

(
gB(D), gE(D), σ2

B, σ
2
E

)
. □

By choosing ν ≥ max(mB,mE), FSMCs and their
associated trellises can be used for visualizing ISI-WTCs
as well. Since such trellis representations are well known,
we omit the details and conclude this section with the
following example. (See [1] and [33] for more details.)

Consider an ISI-WTC with X = {+1,−1}, where Bob’s
channel is described by gB(D) = 1 − D (see Fig. 2(a)),
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and where Eve’s channel is described by gE(D) = 1 +D −
D2 − D3. Let ν = 3. Then all possible state sequences of
an FSMC modeling this ISI-WTC can be represented by a
trellis diagram. Because of the assumed time invariance, it is
sufficient to show a single trellis section, as shown in Fig. 2(b)
for the present example.

B. Secure Rate

Definition 2: An
(
enRs , n

)
code for the wiretap channel

consists of a message setM with |M| ≜
⌈
enRs

⌉
, a stochastic

encoder f :M→ Xn, and a decoder ϕ : Cn →M.6 □
Let M be a random variable corresponding to a uniformly

chosen secret message from the alphabetM. The reliability of
Bob’s decoder is measured by the probability of a block error
Pr
(
M ̸= ϕ(Yn)

)
and the secrecy performance of the code is

measured by the statistical independence between M and Zn
1

in terms of the variational distance dM×Zn(pM,Zn
1
, pMpZn

1
).

(See Appendix A for more details.)
Definition 3: A secure rate Rs is said to be achievable if

there exists a sequence of codes
(
enRs , n

)
as in Definition 2,

with n→∞, satisfying the reliability criterion

Pr
(
M ̸= ϕ(Yn)

)
→ 0, (1)

and the secrecy criterion

dM×Zn(pM,Zn
1
, pMpZn

1
)→ 0. (2)

The secrecy capacity is the supremum of all achievable secure
rates. □

Definition 4: Consider an ISI-WTC with an input Markov
source described by Q ∈ Q(B). For all (i, j) ∈ B, define
TB

ij (Q) and TE
ij(Q) in (3) and (4), shown at the bottom of the

next page.7 □
Proposition 1: Consider an ISI-WTC with an input Markov

source described by Q ∈ Q(B). Let

Rs(Q) ≜

( ∑
(i,j)∈B

Qij ·
(
TB

ij (Q)− TE
ij(Q)

))+
. (6)

Then all secure rates Rs satisfying

Rs < Rs(Q)

are achievable over this ISI-WTC under the reliability
criterion (1) and the secrecy criterion (2).

Proof: See Appendix B. □
The expressions in (3) and (4) make it appear very unlikely

that there is a closed-form expression for Rs(Q) in terms of
Q. Accordingly, the best one can do is to estimate Rs(Q)
for a specific Q ∈ Q(B) through Monte-Carlo methods (e.g.,
variants of the algorithms in [36]).

We are now in a position to introduce the notion of
constrained secrecy capacity, which is a key quantity to be
studied in the subsequent parts of this paper.

6The message set M, the encoding function f , and the decoding function
ϕ implicitly depend on the block length n.

7The expressions ŤB
ij (Q,yn

1 ) and ŤE
ij(Q, z

n
1 ) in (3) and (4) are similar

to the expression for Ť (N)
ij in [22, Lemma 70], part “second possibility.”

Definition 5: Consider an ISI-WTC with an input Markov
source described by Q, varying over Q(B). The constrained
secrecy capacity (or, more precisely, the Q(B)-constrained
secrecy capacity) is defined as

CQ(B) ≜ max
Q∈Q(B)

Rs(Q).

□
Roughly speaking, CQ(B) is the tightest lower bound

on the secrecy capacity of an ISI-WTC that can be
obtained by optimizing an input Markov source described
by Q ∈ Q(B).

The next section (Section III) discusses an efficient
algorithm for finding a local maximum of Rs(Q) over Q(B).
In a first reading of this paper, readers might want to skip this
(rather technical) section and go straight to Section IV that
discusses some simulation results.

III. SECURE RATE OPTIMIZATION

A first challenge when optimizing the function Rs(Q) over
Q(B) is the fact that we do not have a closed-form expression
for Rs(Q), i.e., the best we can do is to approximate Rs(Q) by
estimating it with the help of Monte-Carlo methods. However,
instead of applying a standard zeroth-order optimization
method that is based on estimates of Rs(Q), in this section
we pursue a more efficient approach that is based on estimates
of the gradient of Rs(Q).8

A second challenge when optimizing the function Rs(Q)
over Q(B) is the fact that Rs(Q) is (typically, accord-
ing to our numerical investigations in Section IV) a
fluctuating, non-concave function. Therefore, we will aim
at finding a local maximum of Rs(Q) instead of the
global maximum. (Of course, by running the optimization
algorithm with different initializations, one can potentially
get different local maxima. Finally, the maximum among
all local maxima is then selected. See also the discussion
in Section IV.)

Our iterative optimization method operates as follows:
• Assume that at the current iteration the algorithm has

found a Markov source described by Q̃ ≜
{
Q̃ij

}
(i,j)∈B.

• Around Q = Q̃, the algorithm approximates the secure
rate function Rs(Q) by the surrogate function ψQ̃(Q)
over Q(B) satisfying the following properties:

– The value of ψQ̃(Q) matches the value of Rs(Q) at
Q = Q̃.

– The gradient of ψQ̃(Q) w.r.t. Q matches the gradient
of Rs(Q) w.r.t. Q at Q = Q̃.

– The function ψQ̃(Q) is concave in terms of Q and
can be efficiently maximized.

• Replace Q̃ with the Q maximizing ψQ̃(Q).
As sketched in Fig. 3, a well-defined concave surrogate
function with the mentioned properties enables us to search
throughout the polytope Q(B) and find a local maximum of

8Note that in the following we ignore the, essentially irrelevant, (. . .)+

operator in (6) when approximating Rs(Q) and when optimizing Rs(Q)
over Q ∈ Q(B).
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Fig. 3. Sketch of the functions appearing in the optimization algorithm
discussed in Section III. Note that while the domain is one-dimensional in
this sketch, it is |B|-dimensional in the actual optimization problem.

Rs(Q) over Q(B), iteratively. Similar techniques have also
been proposed in [22] and [38].

A. The Surrogate Function

In this section, we first introduce the surrogate function.
Then, we show that the employed surrogate function fulfills
the promised properties.

In the following, in the same way that we derived
{pij}(i,j)∈B and {µi}i∈S from Q = {Qij}(i,j)∈B , we will
derive {p̃ij}(i,j)∈B and {µ̃i}i∈S from Q̃ = {Q̃ij}(i,j)∈B. For
every (i, j) ∈ B, let

(δQ)ij ≜
Qij − Q̃ij

Q̃ij

, (δµ)i ≜
µi − µ̃i

µ̃i
.

Moreover, let ψ̄Q̃(Q) be as defined in (5), shown at the bottom
of the page, where the real parameters 0 < κ ≤ 1 and
κ′ > 0 are used to control the shape of ψ̄Q̃(Q). For a given
operating point Q̃ ∈ Q(B), the surrogate function is specified
by (see also Fig. 3)

ψQ̃(Q) ≜
∑

(i,j)∈B

Qij ·
(
TB

ij (Q̃)− TE
ij(Q̃)

)
︸ ︷︷ ︸

①

− ψ̄Q̃(Q) .︸ ︷︷ ︸
②

(7)

Note that, for a fixed Q̃, the expression ① is linear in Q, while
the expression ② is concave in Q and has a zero gradient for

Q = Q̃. The role of the expression ① is to be a first-order
approximation of Rs(Q) at Q = Q̃, while the role of ② is
to regularize ψQ̃(Q). While many other expressions than ②
could have been chosen as a regularization term, the expression
in ② yields the following desirable features for ψQ̃(Q):
first, the function ψQ̃(Q) can be efficiently maximized over
Q, second, maximizing ψQ̃(Q) implicitly also improves
the entropy rate of the input Markov source described
by Q.9

In the following, we examine the promised properties of
the employed surrogate function (7). For brevity, we use the
short-hand notations Rs(θ), ψQ̃(θ), and Q̃ for Rs

(
Q(θ)

)
,

ψQ̃

(
Q(θ)

)
, and Q(θ̃) ∈ Q(B), respectively.

Lemma 1 (Property 1 of the Surrogate Function ψ): The
value of ψQ̃(Q) matches the value of Rs(Q) at Q = Q̃,
i.e., ψQ̃(Q̃) = Rs(Q̃), and, in terms of the parameterization
defined above, ψQ̃(θ̃) = Rs(θ̃).

Proof: We start by noting that Q = Q̃ implies (δQ)ij =
0 and (δµ)i = 0 for all (i, j) ∈ B, which in turn implies that
ψ̄Q̃(Q̃) = 0. The result ψQ̃(Q̃) = Rs(Q̃) follows then from
(7) along with (6) in Proposition 1. □

Lemma 2 (Property 2 of the Surrogate Function ψ): The
gradient of ψQ̃(Q) w.r.t. Q matches the gradient of Rs(Q)
w.r.t. Q at Q = Q̃, i.e.,

d
dθ
ψQ̃(θ)

∣∣∣∣
θ=θ̃

=
d
dθ
Rs(θ)

∣∣∣∣
θ=θ̃

for any parameterization as defined above.
Proof: We start by showing that d

dθ ψ̄Q̃(θ)
∣∣∣
θ=θ̃

= 0.
Indeed,

d
dθ
ψ̄Q̃(θ)

∣∣∣∣
θ=θ̃

= κκ′ ·

( ∑
(i,j)∈B

Qθ
ij(θ) · log

(
1 + κ · (δQ(θ))ij

)
−
∑
i∈S

µθ
i (θ) · log

(
1 + κ · (δµ(θ))i

))∣∣∣∣∣
θ=θ̃

= 0. (8)

9Let us make the latter statement more precise for κ = 1 and κ′ =
1. Namely, after some algebraic manipulations, one obtains −ψ̄Q̃(Q) =
−

∑
(i,j)∈B Qij · log(pij) +

∑
(i,j)∈B Qij · log(p̃ij). Here, the first term

equals the entropy rate of a Markov source, whereas the latter term, which is
linear in Q, guarantees a zero gradient of −ψ̄Q̃(Q) for Q = Q̃.

TB
ij (Q) ≜ lim

n→∞

∫
pYn

1
(yn

1 ) · ŤB
ij (Q,y

n
1 ) dyn

1 , ŤB
ij (Q,y

n
1 ) ≜

1
n

n∑
t=1

log

(
pSt−1,St|Yn

1
(i, j|yn

1 )pSt−1,St|Yn
1

(i,j|yn
1 )/µipij

pSt−1|Yn
1
(i|yn

1 )pSt−1|Yn
1

(i|yn
1 )/µi

)
,

(3)

TE
ij(Q) ≜ lim

n→∞

∫
pZn

1
(zn

1 ) · ŤE
ij(Q, z

n
1 ) dzn

1 , ŤE
ij(Q, z

n
1 ) ≜

1
n

n∑
t=1

log

(
pSt−1,St|Zn

1
(i, j|zn

1 )pSt−1,St|Zn
1

(i,j|zn
1 )/µipij

pSt−1|Zn
1
(i|zn

1 )pSt−1|Zn
1

(i|zn
1 )/µi

)
, (4)

ψ̄Q̃(Q) ≜ κ′ ·

( ∑
(i,j)∈B

Q̃ij ·
(
1 + κ · (δQ)ij

)
· log

(
1 + κ · (δQ)ij

)
−
∑
i∈S

µ̃i ·
(
1 + κ · (δµ)i

)
· log

(
1 + κ · (δµ)i

))
. (5)
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We then have
d
dθ
ψQ̃(θ)

∣∣∣∣
θ=θ̃

=
d
dθ
(
ψQ̃(θ) + ψ̄Q̃(θ)

)∣∣∣∣
θ=θ̃

=
d
dθ

 ∑
(i,j)∈B

Qij(θ) ·
(
TB

ij (θ̃)− TE
ij(θ̃)

)∣∣∣∣∣∣
θ=θ̃

=
d
dθ

 ∑
(i,j)∈B

Qij(θ) ·
(
TB

ij (θ)− TE
ij(θ)

)∣∣∣∣∣∣
θ=θ̃

=
d
dθ
Rs(θ)

∣∣∣∣
θ=θ̃

, (9)

where the first equality follows from (8), the second equality
follows from (7), the third equality follows from [22,
Lemma 64], and the fourth equality follows from (6). □

Despite the close similarity between the third and the fourth
expressions in (9), this is a non-trivial result because of the
non-triviality of [22, Lemma 64].

Lemma 3 (Convexity of the Function ψ̄Q̃): The function
ψ̄Q̃(Q) is convex over Q ∈ Q(B).

Proof: See Appendix C. □
Lemma 4 (Property 3 of the Surrogate Function ψ): The

surrogate function ψQ̃(Q) is concave over Q ∈ Q(B).
Proof: This follows immediately from Lemma 3 and

from
∑

(i,j)∈BQij ·
(
TB

ij (Q̃)−TE
ij(Q̃)

)
being a linear function

in terms of Q. □

B. Maximizing the Surrogate Function
Let Q̃ ∈ Q(B) denote the parameter of a Markov source

attained at the current iteration of the proposed algorithm.
In the next iteration, Q̃ is replaced by Q∗ =

{
Q∗ij
}

(i,j)∈B,
where

Q∗ ≜ arg max
Q∈Q(B)

ψQ̃(Q). (10)

Proposition 2 (The Optimum Distribution Q∗): The opti-
mum Markov source distribution Q∗ in (10) is calculated as
follows. Let A ≜

(
Aij

)
i,j∈S be the matrix with entries

Aij ≜

 p̃ij · exp

(
T̃B

ij − T̃E
ij

κκ′

) (
(i, j) ∈ B

)
0 (otherwise)

, (11)

where T̃B
ij ≜ TB

ij (Q̃) and T̃E
ij ≜ TE

ij(Q̃) are defined according
to Definition 4. Note that A is a non-negative matrix, i.e.,
a matrix with non-negative entries. Let ρ be the Perron–
Frobenius eigenvalue of the matrix A, with the corresponding
right eigenvector γ = (γj)j∈S .10 Define

p̂∗ij ≜
Aij

ρ
· γj

γi
, (i, j) ∈ B. (12)

10Recall that the Perron–Frobenius eigenvalue of an irreducible non-
negative matrix is the eigenvalue with the largest absolute value. One can
show that the Perron–Frobenius eigenvalue is a positive real number and that
the corresponding right eigenvector can be multiplied by a suitable scalar such
that all entries are positive real numbers.

Calculate {Q̂∗ij}(i,j)∈B from {p̂∗ij}(i,j)∈B (in the same way that
we derived {Qij}(i,j)∈B from {pij}(i,j)∈B). If

κ ≥
Q̃ij − Q̂∗ij

Q̃ij

, (i, j) ∈ B, (13)

then the parameter Q∗ is given by solving the following
system of linear equations in terms of

{
Q∗ij
}

(i,j)∈B
Q∗ij − p̂∗ij

∑
j′∈
−→
Si

Q∗ij′ − 1−κ
κ ·

(
µ̃ip̂
∗
ij − Q̃ij

)
= 0, (i, j) ∈ B,∑

r∈
←−
Si
Q∗ri −

∑
j∈
−→
Si
Q∗ij = 0, i ∈ S,∑

(i,j)∈BQ
∗
ij = 1.

Proof: See Appendix D. □
Note that Proposition 2 applies Perron–Frobenius theory

for irreducible non-negative matrices. One can verify that A
is irreducible except for uninteresting boundary cases. Note
also that increasing the real parameters κ and κ′ makes the
surrogate function to be narrower and steeper, which reduces
the aggressiveness of the searching step size.

The proposed optimization procedure is summarized in
Algorithm 1. Note that this optimization procedure can
be considered as a variation of the well-known EM
algorithm [39] comprised of two steps: Expectation (E-step)
and Maximization (M-step). Namely, identifying a concave
surrogate function around a local operating point resembles the
E-step and maximization of the surrogate function to achieve
a higher secure rate corresponds to the M-step. Given this,
Algorithm 1 has a similar convergence behavior as the EM
algorithm [40].

A similar manipulation as performed in [22, Eqs. (52),
(53)] shows that, indeed, ψQ̃(Q̌∗) ≥ ψQ̃(Q) for
all Q ∈ Q(B). Consequently, at each iteration r,
we have ψQ⟨r⟩(Q⟨r+1⟩) ≥ ψQ⟨r⟩(Q⟨r⟩), where the equality
ψQ⟨r⟩(Q⟨r+1⟩) = ψQ⟨r⟩(Q⟨r⟩) occurs at the stationary point
of Algorithm 1. The stationary points of the algorithm
correspond to the critical points (i.e., local maxima, local
minima, and saddle points) of Rs(Q) over the polytope Q(B).
Since the local minima and the saddle points are not stable
stationary points of Algorithm 1, the algorithm converges to
a local maximum of Rs(Q) achievable from a starting point
Q⟨0⟩ ∈ Q(B).

The complexity of one iteration of Algorithm 1
is O

(
n · 2ν+1 + (2ν)3

)
, where n · 2ν+1 stems from

estimating ŤB
ij (Q, y̌

n
1 ), ŤE

ij(Q, ž
n
1 ), and the Perron-Frobenius

eigenvalue ρ̌ through Monte-Carlo simulations [37], where
n is the number of trellis sections used for the Monte-Carlo
simulation, and where (2ν)3 stems from solving the system
of linear equations in (14). (Potentially, the sparsity of the
system of linear equations in (14) can be used to reduce the
latter complexity estimate.)

IV. PRACTICAL IMPLICATIONS AND SIMULATION RESULTS

In this section, we approximate an NB-IoT uplink channel
in a challenging environment by an ISI channel. Then,
we describe practically relevant wiretapping scenarios and
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Algorithm 1 Secure Rate Optimization

1 r ← 0;
2 while convergence occurs do
3 Q̃← Q⟨r⟩;
4 Generate a sequence x̌n

1 based on Q̃;
5 Simulate Bob’s (Eve’s) channel with input x̌n

1 to
obtain y̌n

1 (žn
1 ) at the output;

6 for (i, j) ∈ B do
7 Calculate ŤB

ij (Q̃, y̌
n
1 ) and ŤE

ij(Q̃, ž
n
1 ) according

to (3) and (4);

Ǎij ← p̃ij · exp

(
ŤB

ij (Q̃, y̌
n
1 )− ŤE

ij(Q̃, ž
n
1 )

κκ′

)
;

8 end
9 Ř

⟨r⟩
s ←

∑
(i,j)∈B Q̃ij ·

(
ŤB

ij (Q̃, y̌
n
1 )− ŤE

ij(Q̃, ž
n
1 )
)+

;
10 Find the Perron–Frobenius eigenvalue ρ̌ and the

corresponding right eigenvector γ̌ of
(
Ǎij

)
i,j∈S ;

11 for (i, j) ∈ B do

12 ˇ̂p∗ij ←
Ǎij

ρ̌
· γ̌j

γ̌i
;

13 end
14 Calculate { ˇ̂

Q∗ij}(i,j)∈B from { ˇ̂p∗ij}(i,j)∈B (as we

derived {Qij}(i,j)∈B from {pij}(i,j)∈B);

15 if κ ≥ (Q̃ij − ˇ̂
Q∗ij)/Q̃ij , for all (i, j) ∈ B then

16 Calculate Q̌∗ by solving the following system of
linear equations in terms of

{
Q̌∗ij
}

(i,j)∈B

Q̌∗ij − ˇ̂p∗ij
∑

j′∈
−→
Si

Q̌∗ij′ − 1−κ
κ ·

(
µ̃i

ˇ̂p∗ij − Q̃ij

)
= 0,

(i, j) ∈ B,∑
r∈
←−
Si
Q̌∗ri −

∑
j∈
−→
Si
Q̌∗ij = 0,
i ∈ S,∑

(i,j)∈B Q̌
∗
ij = 1;

(14)17

18 else if κ < (Q̃ij− ˇ̂
Q∗ij)

Q̃ij
, for any (i, j) ∈ B then

19 Suitably change κ and go to Step 6;
20 end
21 r ← r + 1;
22 Q⟨r⟩ ← Q̌∗;
23 end

study the maximum achievable secure rates by applying
Algorithm 1 to the resulting ISI-WTCs.

A. NB-IoT Uplink Channel

Let X(tc), Y (tc), and N(tc) be continuous-time random
signals corresponding to, respectively, the channel’s input, the
channel’s output, and additive noise.11 The general model for

11The variable tc ∈ R will be used to denote continuous time, in order to
distinguish it from the discrete time variable t ∈ Z that is used elsewhere.

Fig. 4. Power-delay profile of the multipath channel.

the multipath channel, consisting of a direct path and mc ∈ Z
tapped-delay paths, is described by

Y (tc) ≜
mc∑
ℓ=0

|gc,ℓ|eiθℓ ·X(tc − τℓ) +N(tc),

where i denotes the imaginary unit and where the real
parameters |gc,ℓ|, θℓ, and τℓ are the gain, the phase rotation,
and the delay introduced by the ℓ-th path, respectively.12 Fig. 4
illustrates a typical power-delay profile of a multipath channel
that was measured in an urban area with moderate to high tree
density [41, Fig. 2.51].

The uplink channel of the NB-IoT occupies a single physical
resource block (PRB) from the LTE configuration, and so the
bandwidth of the transmitted signal is restricted to WPRB =
180 kHz [9, Sec. 5.2.3]. As can be seen from Fig. 4, the
delay spread of the wireless channel exceeds the duration of
a single channel use (W−1

PRB = 5.56µs).13 This issue along
with the multipath propagation gives rise to ISI. As shown
in Table I, the ISI tap coefficients are captured by sampling
at times W−1

PRB
2 + ℓ ·W−1

PRB for ℓ ∈ {0, 1, 2}. By ignoring the
third tap, due to its relative amplitude being 10dB below the
first tap, the sampled output of a filter matched to the shaping
pulse at the receiver gives rise to an ISI channel described by(
g(D) ≜ 0.792 + 0.610D,σ2

)
.

Before introducing the wiretapping scenario, we consider
a point-to-point (P2P) setup where the only channel input
constraint is an average-energy constraint. This simplification
allows us to use the well-known “water-pouring” formulas for
analyzing the capacities of Bob’s and Eve’s P2P channels
in the examined ISI-WTC. Let us consider the average-
energy constraint per input symbol Es (in Joules), the symbol
duration T (in seconds), a perfect lowpass filter of bandwidth
W ≜ 1

2T with the sampling at Nyquist frequency 1/T
at the receiver, and the power spectral density N(f) (in
Watts per Hertz) of the additive Gaussian noise before the
lowpass filter. The unconstrained (besides some average-
energy constraint) capacity of an ISI channel, described by(
g(D) =

∑m
t=0 gtD

t, N(f)
)
, is given by the “water-pouring”

12We assume that the local oscillators at the transmitter and the receiver
terminals are synchronized, so the phase reference θ0 is known. Then, for
θ0 = 0 and τ0 = 0, the phase rotation in the ℓ-th path (w.r.t. the direct path)
is given by θℓ = −2πfcarrτℓ, where fcarr is the carrier frequency.

13The statistical channel models in COST 207 are valid for applications
having an average bandwidth of about 200 kHz [41, Sec. 2.5.4.2].
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Fig. 5. Results for Example 1, where gB(D) = 0.792+0.610D, gE(D) = 0.446+0.633D+0.633D2, SNRE
dB = −6.0 dB. (a) Unconstrained capacities

of Bob’s and Eve’s P2P channels in nats/sec with normalized average-energy constraint Es = 1 J. (b) Gain-to-noise power spectrum ratios of Bob’s and
Eve’s P2P channels in dB/Hz. (c) The power spectrum of a sequence generated by the optimized input Markov source.

formula (see, e.g., [42])

C(g,W ) =
1
2
·
∞∫
−∞

log+

(
α

N(f)/|G(f)|2

)
df,

where

G(f) =


∑m

ℓ=0 gℓe
−i2ℓπfT√∑m

ℓ=0 |gℓ|2
(if |f | ≤W )

0 (otherwise)
,

and where α > 0 is chosen such that

Es =

∞∫
−∞

(
α− N(f)
|G(f)|2

)+
df.

B. Wiretapping Scenarios and Achievable Secure Rates

We examine Algorithm 1 for optimizing the parameters
of an input Markov source with the alphabet X =
{+
√
Es,−

√
Es} and the memory order ν = 2 at the input

of two different ISI-WTCs.14 We consider a setup where
Bob’s channel and Eve’s channel have normalized transfer
polynomials15 gB(D) and gE(D), and additive white Gaussian
noises of variances σ2

B and σ2
E, respectively. Accordingly,

the signal-to-noise ratios (SNRs) of Bob’s channel and Eve’s
channel are defined as, respectively, SNRB ≜ Es/σ

2
B and

SNRE ≜ Es/σ
2
E.16

14The BPSK modulation is proposed for the narrowband physical uplink
shared channel (NPUSCH), both for data (NPUSCH Format 1) and control
(NPUSCH Format 2) channels [9, Tab. 10.1.3.2-1].

15A normalized transfer polynomial g(D) ≜
∑m

t=0 gtDt ∈ C[D] has to
satisfy

∑m
t=0 |gt|2 = 1. (See, e.g., [42].)

16If desired, these SNR values can be re-expressed in terms of
Es/N0 values, where N0/2 is the two-sided power spectral density of the
AWGN process: Es/N0 = 1

2
· (Es/σ2).

TABLE I
ISI CHANNEL MODEL CORRESPONDING TO THE POWER-DELAY PROFILE

OF FIG. 4, WITH W−1
PRB = 5.56 µs AND fcarr = 900 MHZ

Example 1: In the first scenario, Bob’s channel is assumed
to be the ISI channel derived from Table I, i.e.,

gB(D) = 0.792 + 0.610D.

Also, Eve’s channel is assumed to be another ISI channel with
the same delay profile as in Table I, but with different tap
coefficients. Since it is challenging for Eve to intercept the
transmitted signals from the line-of-sight transmission [17],
the relative amplitude of Eve’s direct path is assumed to be
(at least) 2.5 dB below Bob’s direct path. However, the other
tap coefficients are then assumed to be such that Eve’s channel
has the highest unconstrained capacity among all ISI channels
satisfying the delay profile of Table I, i.e.,

(gE
t )2t=0 = arg max

g̃E: |g̃E
0 |≤|gB

0 |−2.5dB
C(g̃E,W ).

Solving this problem for gB
0 = 0.792 leads to

gE(D) = 0.446 + 0.633D + 0.633D2.

The resulting unconstrained capacities of Bob’s and Eve’s
P2P channels are depicted in Fig. 5(a).17 It can be seen
from Fig. 5(a) that Eve’s channel has a higher unconstrained
capacity than Bob’s channel for large enough bandwidth.

17Since the NB-IoT protocol promises to provide reliable connections
with low power consumption, we consider low-SNR regimes both for Bob’s
channel and Eve’s channel [43].
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Fig. 6. Results for Example 2, where gB(D) = 0.446+0.633D+0.633D2, gE(D) = 0.792+0.610D, SNRE
dB = −6.0 dB. (a) Unconstrained capacities

of Bob’s and Eve’s P2P channels in nats/sec with normalized average-energy constraint Es = 1 J. (b) Gain-to-noise power spectrum ratios of Bob’s and
Eve’s P2P channels in dB/Hz. (c) The power spectrum of a sequence generated by the optimized input Markov source.

Fig. 7. Example 1: Secure rates achieved by various input processes in
nats/channel use.

In this sense, Bob’s channel is “worse” than Eve’s channel.
However, luckily for Bob, there are frequencies where Bob’s
channel has a better gain-to-noise power spectrum ratio than
Eve’s channel, as can be seen from Fig. 5(b). These spectral
discrepancies can be exploited by a suitably tuned input source
toward obtaining positive secure rates. Fig. 5(c) shows the
power spectrum of a sequence with the length of 106 generated
by the optimized Markov source, where the optimization was
done with the help of Algorithm 1. It can be seen from
Fig. 5(c) that the optimized Markov source concentrates the
available power of the generated input sequence in frequency
ranges where Bob’s channel has a higher gain-to-noise power
spectrum ratio than Eve’s channel.

Fig. 8. Example 2: Secure rates achieved by various input processes in
nats/channel use.

Fig. 7 shows the obtained secure rates: on the one hand
for an unoptimized Markov source, producing independent
and uniformly distributed (i.u.d.) symbols, and, on the other
hand, for an optimized Markov source. In this plot, the best
obtained secure rate is plotted after running Algorithm 1 for
100 different initializations.18 □

In Example 2, we consider the same scenario as in
Example 1, but where Bob’s channel is swapped with Eve’s
channel. For comparison, note that in a memoryless wiretap
channel setup, if the first scenario is such that positive secure

18The parameters κ and κ′ in Algorithm 1 took values in the ranges 0.9 ≤
κ ≤ 1.0 and 4 ≤ κ′ ≤ 6, respectively. The initializations were generated
with the help of Weyl’s |S|-dimensional equi-distributed sequences [44].
(Simulation files are available online [45].)
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rates are possible, then in the second scenario, i.e., after
swapping Bob’s channel with Eve’s channel, the secure rate
is zero [46].

Example 2: In the second scenario, the roles of the receiver
terminals in Example 1 are swapped, i.e.,

gB(D) = 0.446 + 0.633D + 0.633D2,

gE(D) = 0.792 + 0.610D.

In this case, Bob’s channel has a higher unconstrained capacity
than Eve’s channel for large enough bandwidth (see Fig. 6).
In this sense, it is not unexpected that positive secure rates
are possible. Nevertheless, it is worthwhile to point out that
here positive secure rates are possible even though Bob’s
channel has larger memory than Eve’s channel, and for some
selections of SNRB

dB, higher noise power than Eve’s channel
(see Fig. 8). □

C. Discussion

In a memoryless wiretap channel setup, Eve’s channel
necessarily has to be noisier than Bob’s channel to achieve
a positive secrecy capacity [46]. This results in the capacity
of Eve’s channel being less than the capacity of Bob’s channel.
Interestingly enough, the optimized Markov sources achieved
positive secure rates over the ISI-WTCs, (i) even when the
unconstrained capacity of Bob’s channel is smaller than the
unconstrained capacity of Eve’s channel (as pointed out in
Example 1), (ii) even when Bob’s channel tolerates both
a higher noise power and a larger memory compared with
Eve’s channel (as pointed out in Example 2). These results
confirm the feasibility of optimizing input Markov sources
for shaping the available power of the generated sequences
toward benefiting from the spectral discrepancies of Bob’s and
Eve’s P2P channels—without consuming any extra power for
cooperative jamming or injecting artificial noise (as it was
done in [31] and [32]).

V. CONCLUSION

In this paper, we have derived a lower bound on the
achievable secure rates over ISI-WTCs. Then, we have
optimized a Markov source at the input of an ISI-WTC toward
(locally) maximizing the obtained secure rates. Because
directly maximizing the secure rate function is challenging,
we have iteratively approximated the secure rate function by
concave surrogate functions whose maximum can be found
efficiently. Our numerical results show that by implicitly using
the discrepancies between the frequency responses of Bob’s
channel and Eve’s channel, it is possible to achieve positive
secure rates also for setups where the unconstrained capacity
of Eve’s channel is larger than the unconstrained capacity of
Bob’s channel.

APPENDIX A
SECRECY CRITERION

This appendix gives a concise discussion about the
employed secrecy criterion. Let M be a random variable
corresponding to a uniformly chosen secret message from an

alphabet M. (Note that M implicitly depends on the block
length n.) Moreover, recall that the sequence observed by
Eve is denoted by Zn

1 (see Fig. 1). The statistical dependence
between M and Zn

1 is often measured in terms of the mutual
information between M and Zn

1 to ensure the information-
theoretic perfect secrecy. For instance, the so-called strong
secrecy criterion [47] requires I(M ;Zn

1 ) → 0 and the so-
called weak secrecy criterion [48] requires 1

nI(M ;Zn
1 )→ 0 as

n→∞. (See also the recent survey [4].)
On one hand, the weak secrecy criterion is easier to achieve,

but it might lead to coding schemes that are vulnerable for
practical purposes [49, Ch. 3.3]. On the other hand, the strong
secrecy criterion is much more desirable, but very difficult
to achieve with practical coding schemes [50]. Therefore,
in the following, we will use a secrecy criterion that is
stronger than the weak secrecy criterion, but more easily
achieved than the strong secrecy criterion [50, Proposition 1].
Namely, we use the secrecy criterion (2), based on the
variational distance dM×Zn(pM,Zn

1
, pMpZn

1
), which was

called S2(pM,Zn
1
, pMpZn

1
) in [50]. This secrecy measure can

be bounded as

dM×Zn(pM,Zn
1
, pMpZn

1
)

=
∫
zn
1∈Zn

∑
m∈M

pM (m) ·
∣∣∣pZn

1 |M (zn
1 |m)− pZn

1
(zn

1 )
∣∣∣dzn

1

=
∫
zn
1∈Zn

∑
m∈M

pM (m) ·
∣∣∣pZn

1 |M (zn
1 |m)

−
∑

m̃∈M
pZn

1 ,M (zn
1 , m̃)

∣∣∣ dzn
1

≤
∑

(m,m̃)∈M2

pM (m) · pM (m̃) ·
∫
zn
1∈Zn

∣∣∣pZn
1 |M (zn

1 |m)

− pZn
1 |M (zn

1 |m̃)
∣∣∣ dzn

1

=
∑

(m,m̃)∈M2

pM (m) · pM (m̃) · dZn(pZn
1 |M=m, pZn

1 |M=m̃),

(15)

where the inequality follows from the triangle inequality.
It follows from (15) that satisfying (2) makes m, m̃ ∈ M
statistically (almost) indistinguishable at Eve’s decoder.

For further context, note that the secrecy criterion in (2) is
weaker than the so-called distinguishing secrecy criterion in
cryptography [51], which requires

max
(m,m̃)∈M2

(
dZn(pZn

1 |M=m, pZn
1 |M=m̃)

)
→ 0,

as n→∞, and which is equivalent to the so-called semantic
secrecy criterion.19 As a consequence, satisfying (2) gives rise
to a loosened notion of the semantic security. This looseness
arises from the extra assumption that pM is fixed and known,
contrary to the cryptographically relevant secrecy criteria.20

19Semantic secrecy criterion requires that it is impossible for Eve to
estimate any function of M better than to guess it without considering
Zn

1 [51].
20Generally, from the information-theoretic perspective, we assume that a

universal source encoder is used to compress the data source before data
transmission, resulting in a sequence that is arbitrarily close to uniformly
distributed [52].
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APPENDIX B
PROOF OF PROPOSITION 1

We start by defining the notations that will be used in
this appendix. The mutual information density between the
respective realizations of random variables X and Y is defined
to be

i(x; y) ≜ log
(

pX,Y (x, y)
pX(x) · pY (y)

)
.

Moreover, the conditional mutual information density between
the respective realizations of random variables X and Y given
Z = z is defined to be

i(x; y|z) ≜ log
(

pX,Y |Z(x, y|z)
pX|Z(x|z) · pY |Z(y|z)

)
.

Consequently, we have

I(X;Y ) =
∑
x,y

pX,Y (x, y) · i(x; y),

I(X;Y |Z) =
∑
x,y,z

pX,Y,Z(x, y, z) · i(x; y|z).

Following [53], the spectral sup/inf-mutual information rates
are defined to be

p-lim supn→∞
1
n i(X

n
1 ;Yn

1 )

≜ inf
{
α : limn→∞ Pr

(
1
n i(X

n
1 ;Yn

1 ) > α
)

= 0
}
,

p-lim infn→∞
1
n i(X

n
1 ;Yn

1 )

≜ sup
{
β : limn→∞ Pr

(
1
n i(X

n
1 ;Yn

1 ) < β
)

= 0
}
.

According to [54, Lemma 2], for an arbitrary wiretap
channel

(
X , {pYn

1 ,Zn
1 |Xn

1
(yn

1 , z
n
1 |xn

1 )}∞n=1, Y , Z
)

consisting
of an arbitrary input alphabet X , two arbitrary output alphabets
Y and Z corresponding to Bob’s and Eve’s observations,
respectively, and a sequence of transition probabilities
{pYn

1 ,Zn
1 |Xn

1
(yn

1 , z
n
1 |xn

1 )}∞n=1, all secure rates Rs satisfying

Rs< max
{Xn

1 }∞n=1

(
p-lim inf

n→∞

1
n
i(Xn

1 ;Yn
1 )− p-lim sup

n→∞

1
n
i(Xn

1 ;Zn
1 )
)+

are achievable under the reliability criterion (1) and the secrecy
criterion (2). We leverage [54, Lemma 2] for deducing a lower
bound on the achievable secure rates over ISI-WTCs.21

Consider an ISI-WTC as in Definition 1. For
all positive integers ℓ and ν ≥ max(mB,mE), let{
Xk(ℓ+2ν)+(ℓ+ν)

k(ℓ+2ν)−ν+1

}+∞
k=−∞ be a block i.i.d. process where

each block has length ℓ + 2ν. So, it suffices to specify the
distribution of a single block Xk(ℓ+2ν)+(ℓ+ν)

k(ℓ+2ν)−ν+1 . In order to
ensure that there is no interference across blocks, we set

Xk(ℓ+2ν)+(ℓ+1) ≜ 0, . . . , Xk(ℓ+2ν)+(ℓ+ν) ≜ 0,

while allowing Xk(ℓ+2ν)+ℓ
k(ℓ+2ν)−ν+1 to be arbitrarily distributed.

Obviously,{
Xk(ℓ+2ν)+(ℓ+ν)

k(ℓ+2ν)−ν+1 ,Yk(ℓ+2ν)+(ℓ+ν)
k(ℓ+2ν)−ν+1

}+∞
k=−∞

21Note that since ISI channels are indecomposable FSMCs [19] (i.e., the
effect of an initial state vanishes over time), the information rates are well-
defined even if the initial state is unknown.

is a joint block i.i.d. process. Similarly,{
Xk(ℓ+2ν)+(ℓ+ν)

k(ℓ+2ν)−ν+1 ,Zk(ℓ+2ν)+(ℓ+ν)
k(ℓ+2ν)−ν+1

}+∞
k=−∞

is also a joint block i.i.d. process. Let

{Xt, Yt}nt=1 =
{
Xk(ℓ+2ν)+(ℓ+ν)

k(ℓ+2ν)−ν+1 ,Yk(ℓ+2ν)+(ℓ+ν)
k(ℓ+2ν)−ν+1

}n′

k=1
,

where n′ denotes the number of i.i.d. blocks in {Xt}nt=1.
Then,

lim
n→∞

1
n
i(Xn

1 ;Yn
1 )

= n′ · lim
n→∞

1
n

1
n′

n′∑
k=1

i
(
Xk(ℓ+2ν)+(ℓ+ν)

k(ℓ+2ν)−ν+1 ;Yk(ℓ+2ν)+(ℓ+ν)
k(ℓ+2ν)−ν+1

)
=

1
ℓ+ 2ν

I(Xℓ+ν
−ν+1;Y

ℓ+ν
−ν+1), w.p. 1, (16)

where the second equality follows from the strong law of large
numbers and n = n′·(ℓ+2ν). With an analogous manipulation,
we have

lim
n→∞

1
n
i(Xn

1 ;Zn
1 ) =

1
ℓ+ 2ν

I(Xℓ+ν
−ν+1;Z

ℓ+ν
−ν+1), w.p. 1.

(17)

Note

I(Xℓ+ν
−ν+1;Y

ℓ+ν
−ν+1) ≥ I(Xℓ

−ν+1;Y
ℓ
1)

= I(X0
−ν+1;Y

ℓ
1) + I(Xℓ

1;Y
ℓ
1|X0

−ν+1)

≥ I(Xℓ
1;Y

ℓ
1|X0

−ν+1).

Moreover,

I(Xℓ+ν
−ν+1;Z

ℓ+ν
−ν+1)

= I(Xℓ
−ν+1;Z

ℓ+ν
−ν+1)

= I(Xℓ
−ν+1;Z

ℓ
1) + I(Xℓ

−ν+1;Z
0
−ν+1|Zℓ

1)

+ I(Xℓ
−ν+1;Z

ℓ+ν
ℓ+1 |Z

ℓ
−ν+1)

= I(Xℓ
1;Z

ℓ
1|X0

−ν+1) + I(X0
−ν+1;Z

ℓ
1)

+ I(Xℓ
−ν+1;Z

0
−ν+1|Zℓ

1) + I(Xℓ
−ν+1;Z

ℓ+ν
ℓ+1 |Z

ℓ
−ν+1)

= I(Xℓ
1;Z

ℓ
1|X0

−ν+1) + I(X0
−ν+1;Z

ℓ
1)

+ I(X0
−ν+1;Z

0
−ν+1|Zℓ

1) + I(Xℓ
ℓ−ν+1;Z

ℓ+ν
ℓ+1 |Z

ℓ
−ν+1)

≤ I(Xℓ
1;Z

ℓ
1|X0

−ν+1) + 3ν log |X |.

Combining [54, Lemma 2] with (16), (17), and the above lower
and upper bounds implies that all secure rates Rs satisfying

Rs <
1

ℓ+ 2ν

(
I(Xℓ

1;Y
ℓ
1|X0

−ν+1)− I(Xℓ
1;Z

ℓ
1|X0

−ν+1)

− 3ν · log |X |
)+

(18)

are achievable under the reliability criterion (1) and the secrecy
criterion (2).

Let ν be the memory order of an FSMC associated with the
considered ISI-WTC and let Q ∈ Q(B) be the parameter of
the input Markov source. Define

Rs(Q) ≜ lim
n→∞

1
n

(
I(Sn

1 ;Yn
1 |S0)− I(Sn

1 ;Zn
1 |S0)

)+

.
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It is easy to verify

I(Xn
1 ;Yn

1 |X0
−ν+1) = I(Sn

1 ;Yn
1 |S0),

I(Xn
1 ;Zn

1 |X0
−ν+1) = I(Sn

1 ;Zn
1 |S0).

By letting n → ∞ and invoking (18), all secure rates Rs

satisfying Rs < Rs(Q) are achievable. Finally, reformulating
the expression of Rs(Q) as follows proves the promised result.

Rs(Q) = lim
n→∞

1
n

n∑
t=1

(
I(St;Yn

1 |St−1
0 )− I(St;Zn

1 |St−1
0 )

)
= lim

n→∞

1
n

n∑
t=1

(
I(St;Yn

1 |St−1)− I(St;Zn
1 |St−1)

)
= lim

n→∞

1
n

n∑
t=1

(
H(St|Zn

1 , St−1)−H(St|Yn
1 , St−1)

)
=

∑
(i,j)∈B

Qij ·
(
TB

ij (Q)− TE
ij(Q)

)
,

where the (·)+ operator has been omitted for clarity of the
presentation and where the last equality is based on expressing
H(St|Yn

1 , St−1) as (19), shown at the top of the next page,
with an analogous expression for H(St|Zn

1 , St−1), along with
using (3) and (4).

APPENDIX C
PROOF OF LEMMA 3

Besides the assumptions on the parameterizations Q(θ)
made in Remark 1, we will also assume that for all (i, j) ∈ B,
the functions Qij(θ) and µi(θ) are affine functions in terms
of θ, which implies Qθθ

ij (θ) = 0 and µθθ
i (θ) = 0, where the

superscript θθ denotes the second-order derivative w.r.t. θ.
Denoting the second-order derivative of ψ̄Q̃(θ) by ψ̄θθ

Q̃
(θ),

we observe that the claim in the lemma statement is equivalent
to ψ̄θθ

Q̃
(θ) ≥ 0 for all possible parameterizations of Q(θ) that

satisfy the above-mentioned conditions.
Let Q̂ij ≜ (1−κ)·Q̃ij +κ·Qij and µ̂i ≜ (1−κ)·µ̃i+κ·Qij

for all (i, j) ∈ B. Some straightforward calculations show that

ψ̄θθ
Q̃

(θ) = κ2κ′ ·

 ∑
(i,j)∈B

(Qθ
ij)

2

Q̂ij

−
∑
i∈S

(µθ
i )

2

µ̂i


= κ2κ′ ·

∑
i∈S

∑
j∈
−→
Si

(Qθ
ij)

2

Q̂ij

− (µθ
i )

2

µ̂i

 .

Noting that for any i ∈ S it holds that

∑
j∈
−→
Si

(Qθ
ij)

2

Q̂ij

= µ̂i ·
∑
j∈
−→
Si

Q̂ij

µ̂i
·

(
Qθ

ij

Q̂ij

)2

≥ µ̂i ·

∑
j∈
−→
Si

Q̂ij

µ̂i
·
Qθ

ij

Q̂ij

2

=
1
µ̂i
·

∑
j∈
−→
Si

Qθ
ij

2

=
(µθ

i )
2

µ̂i
,

where the inequality follows from Jensen’s inequality, we can
conclude that, indeed, ψ̄θθ

Q̃
(θ) ≥ 0.

APPENDIX D
PROOF OF PROPOSITION 2

Maximizing ψQ̃(Q) over Q ∈ Q(B) means to optimize a
differentiable, concave function over a polytope. We therefore
set up the Lagrangian

L ≜
∑

(i,j)∈B

Qij ·
(
T̃B

ij − T̃E
ij

)
− ψ̄Q̃(Q)

+ λ ·

 ∑
(i,j)∈B

Qij − 1

+
∑

(i,j)∈B

λjQij −
∑

(i,j)∈B

λiQij .

Note that at this stage we omit Lagrangian multipliers w.r.t.
the constraints Qij ≥ 0, (i, j) ∈ B. We will make sure at
a later stage that these constraints are satisfied thanks to the
choice of κ in (13).

Recall that we assume that the surrogate function takes
on its maximal value at Q = Q∗. Therefore, setting the
gradient of L equal to the zero vector at Q = Q∗,
we obtain

0 =
∂L

∂Qij

∣∣∣∣
Q=Q∗

= T̃B
ij−T̃E

ij −
∂ψ̄Q̃(Q)
∂Qij

∣∣∣∣∣
Q=Q∗

+ λ∗ + λ∗j − λ∗i ,

(i, j) ∈ B,

0 =
∂L

∂λ

∣∣∣∣
Q=Q∗

=
∑

(i,j)∈B

Q∗ij − 1,

0 =
∂L

∂λi

∣∣∣∣
Q=Q∗

=
∑
r∈
←−
Si

Q∗ri −
∑
j∈
−→
Si

Q∗ij , i ∈ S, (20)

where

∂ψ̄Q̃(Q)
∂Qij

∣∣∣∣∣
Q=Q∗

= κ′ ·
(
κ· log

(
1 + κ·(δQ)ij

)
− κ· log

(
1 + κ·(δµ)i

))∣∣∣
Q=Q∗

= κ · κ′ · log

(
(1− κ) · Q̃ij + κ ·Q∗ij
(1− κ) · µ̃i + κ · µ∗i

· µ̃i

Q̃ij

)

= κ · κ′ · log

(
Q̂∗ij
µ̂∗i
· µ̃i

Q̃ij

)
= κ · κ′ · log(p̂∗ij)− κ · κ′ · log(p̃ij). (21)

Here the third and the fourth equality use {Q̂∗ij}(i,j)∈B, which
is defined by

Q̂∗ij ≜ (1− κ) · Q̃ij + κ ·Q∗ij , (i, j) ∈ B, (22)

along with {µ̂∗i }i∈S and {p̂∗ij}(i,j)∈B, which are derived
from {Q̂∗ij}(i,j)∈B in the usual manner. Note that µ̂∗i ≜∑

j′∈
−→
Si
Q̂∗ij′ = (1− κ) · µ̃i + κ · µ∗i , for all i ∈ S, and

p̂∗ij =
Q̂∗ij
µ̂∗i

=
(1− κ) · Q̃ij + κ ·Q∗ij
(1− κ) · µ̃i + κ · µ∗i

=
(1− κ) · Q̃ij + κ ·Q∗ij

(1− κ) · µ̃i + κ ·
∑

j′∈
−→
Si
Q∗ij′

, (i, j) ∈ B. (23)

Note also that solving (22) for Q∗ij results in

Q∗ij =
1
κ
· (Q̂∗ij − Q̃ij + κ · Q̃ij), (i, j) ∈ B,
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H(St|Yn
1 , St−1) = −

∑
(i,j)∈B

∫
yn

1 ∈Yn

pSt,St−1,Yn
1
(j, i,yn

1 ) · log
(
pSt|St−1,Yn

1
(j|i,yn

1 )
)
dyn

1

= −
∑

(i,j)∈B

∫
yn

1 ∈Yn

pSt,St−1,Yn
1
(j, i,yn

1 ) ·
(

log
(
pSt,St−1,Yn

1
(j, i,yn

1 )
pYn

1
(yn

1 )

)
− log

(
pSt−1,Yn

1
(i,yn

1 )
pYn

1
(yn

1 )

))
dyn

1

= −
∑

(i,j)∈B

µipij ·
∫
yn

1 ∈Yn

(
pYn

1 |St−1,St
(yn

1 |i, j) · log
(
pSt−1,St|Yn

1
(i, j|yn

1 )
)

− pYn
1 |St−1(y

n
1 |i) · log

(
pSt−1|Yn

1
(i|yn

1 )
))

dyn
1

= −
∑

(i,j)∈B

µipij ·
∫
yn

1 ∈Yn

(
pSt−1,St|Yn

1
(i, j|yn

1 )
µipij

· pYn
1
(yn

1 ) · log
(
pSt−1,St|Yn

1
(i, j|yn

1 )
)

−
pSt−1|Yn

1
(i|yn

1 )
µi

· pYn
1
(yn

1 ) · log
(
pSt−1|Yn

1
(i|yn

1 )
))

dyn
1

= −
∑

(i,j)∈B

µipij ·

(∫
yn

1 ∈Yn

pYn
1
(yn

1 ) · log

(
pSt−1,St|Yn

1
(i, j|yn

1 )pSt−1,St|Yn
1

(i,j|yn
1 )/µipij

pSt−1|Yn
1
(i|yn

1 )pSt−1|Yn
1

(i|yn
1 )/µi

))
dyn

1 . (19)

which shows that Q∗ij ≥ 0, (i, j) ∈ B, for κ satisfying (13).
(Recall that when setting up the Lagrangian, we omitted the
Lagrange multipliers for the constraints Qij ≥ 0, (i, j) ∈ B;
therefore we have to verify that the solution satisfies these
constraints, which it does indeed.)

Combining (20) and (21), and solving for p̂∗ij results in

p̂∗ij = p̃ij · exp

(
T̃B

ij − T̃E
ij + λ∗ + λ∗j − λ∗i

κκ′

)
, (i, j) ∈ B.

Using (11) and defining ρ ≜ exp
(
− λ∗

κκ′

)
and γ =(

γi ≜ exp
( λ∗i

κκ′

))
i∈S , we rewrite this equation as

p̂∗ij =
Aij

ρ
· γj

γi
, (i, j) ∈ B.

Because
∑

j∈
−→
Si
p̂∗ij = 1 for all i ∈ S, summing both sides of

this equation over j ∈
−→
S i results in

1 =
∑
j∈
−→
Si

Aij

ρ
· γj

γi
, i ∈ S,

or, equivalently,

ρ · γi =
∑
j∈
−→
Si

Aij · γj , i ∈ S.

This system of linear equations can be written as

A · γ = ρ · γ.

Clearly, this equation can only be satisfied if γ is an
eigenvector of A with corresponding eigenvalue ρ. A slightly
lengthy calculation (which is somewhat similar to the
calculation in [22, Eq. (51)]) shows that

ψQ̃(Q∗) = log(ρ). (24)

Clearly, in order to maximize the right-hand side of (24)
over all eigenvalues of A, the eigenvalue ρ has to be
the Perron–Frobenius eigenvalue and γ the corresponding
eigenvector.

The proof is concluded by noting that (23) can be rewritten
as the system of linear equations

Q∗ij − p̂∗ij ·
∑

j′∈
−→
Si

Q∗ij′ =
1− κ
κ
·
(
µ̃ip̂
∗
ij − Q̃ij

)
, (i, j) ∈ B,

which can be used to determine {Q∗ij}(i,j)∈B, because all other
quantities appearing in these equations are either known or
have already been calculated.
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