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Error Probability of Distributed Arithmetic Coding

Yong Fang , Nan Yang, and Jun Chen , Senior Member, IEEE

Abstract— Distributed Arithmetic Coding (DAC) is an interest-
ing realization of Slepian-Wolf coding that performs nonlinear
coset-like partition for equiprobable binary sources. Just as in
other coding problems, it is a very important issue to theoretically
predict the decoding error probability of DAC. This letter
proposes a plausible solution to this difficult issue. Our analyses
are based on the concept of coexisting interval introduced in our
previous work. Specifically, we use it to deduce the probability
that two given codewords coexist in the same coset. Experimental
results confirm the correctness of our theoretical analyses.

Index Terms— Distributed arithmetic coding, Slepian-Wolf
coding, coexisting interval, frame error rate.

I. INTRODUCTION

D ISTRIBUTED Arithmetic Coding (DAC) [1] is an inter-
esting realization of Slepian-Wolf coding [2]. Although

there are a lot of researches surrounding DAC, most of them
focus on the applications or extensions of DAC, and there are
very few theoretical analyses.

It is well-known that for equiprobable binary sources, DAC
can be classified into coset codes. For any coset code, there are
three important theoretical problems of increasing difficulty:
(a) decoder design; (b) Hamming distance distribution; and
(c) decoding error probability. The situations for DAC are
even more challenging, because the non-linearity of DAC
brings another theoretical problem: coset cardinality distribu-
tion. In our previous work on DAC, we addressed the issues
of coset cardinality distribution [3], decoder design [4], and
Hamming distance distribution [5]. Now in this letter, we try
to handle the most difficult problem—theoretical prediction
of decoding error probability. The tool for our analyses is
coexisting interval [6] (originally named as risky interval in
[5]), which was defined in our previous work to derive the
Hamming distance distribution for DAC [5], [6]. On the basis
of coexisting interval, this letter proposes an enumerative algo-
rithm to predict the decoding error probability of DAC, whose
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correctness is confirmed by experiments. However, we should
point out that the proposed algorithm in its current form is
not suitable for the large-code-length regime due to its high
complexity. Nevertheless, it suggests a principled approach to
theoretically predicting the decoding error probability for DAC
and paves the way for further development.

The rest of this letter is arranged as below. Sect. II briefly
reviews the background knowledge of DAC and coexisting
interval. Sect. III shows how to calculate the decoding error
probability of DAC if all but the last symbol of each block are
known at the decoder. Sect. IV first shows how to calculate
the decoding error probability of DAC if all but the last two
symbols of each block are known at the decoder, and then
generalizes the enumerative algorithm to the case that there are
an arbitrary number of erroneous symbols. Sect. V gives some
experimental results to verify the analyses. Finally, Sect. VI
concludes this letter.

II. REVIEW OF COEXISTING INTERVAL

For equiprobable binary sources, the symbol-to-interval
mapping rule of a rate-R distributed arithmetic codec is

x → [x(1 − q), q + x(1 − q)), (1)

where x ∈ B � {0, 1} and q = 2−R. The rate-R distributed
arithmetic encoder maps every length-n binary block xn �
(x1, . . . , xn) ∈ B

n onto a real number over [0, 2nR − 1] [5]
(for simplicity, we assume nR ∈ Z in this letter):

s(xn) � (1 − q)q−(n+1)
n�

i=1

xiq
i. (2)

Let [i : j) � {i, i + 1, . . . , j − 1} be a set of integers. The
rate-R DAC bitstream of xn is

m(xn) � �s(xn)� ∈ [0 : 2nR) ⊂ Z, (3)

where �·� denotes the ceiling function. The (n, R) distributed
arithmetic code is to a great extent like a channel code that
partitions source space B

n into 2nR cosets. Let us denote the
m-th DAC coset as Cm � {xn : �s(xn)� = m}. Since the
coset C0 includes only one codeword 0n [5], we will ignore
the case m = 0 in the following. Let jd � (j1, . . . , jd) and
bd � (b1, . . . , bd). We define the following set:

Jn,d � {jd : 1 ≤ j1 < j2 < · · · < jd ≤ n}. (4)

For jd ∈ Jn,d and bd ∈ B
d, we define [5]

τ(jd, bd) � (1 − q)q−(n+1)
d�

d′=1

(−1)bd′ qjd′

= −τ(jd, bd ⊕ 1d). (5)
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For interval I = (a, b], we define (a, b]+ τ � (a+ τ, b+ τ ].

Definition of Coexisting Interval: For m ∈ [1 : 2nR),

Im(jd, bd) � {(m − 1, m]− τ(jd, bd)} ∩ (m − 1, m]. (6)

Physical Meaning of Coexisting Interval: Consider two
binary blocks xn ∈ B

n and x̃n ∈ B
n. Let zn = xn ⊕ x̃n.

Let [n] � {1, . . . , n}. Assume zjd � (zj1 , . . . , zjd
) = 1d and

z[n]\jd = 0n−d. From (2) and (5), it is easy to know

s(x̃n) = s(xn) + τ(jd, xjd). (7)

The following properties of Im(jd, bd) are obvious:
• Im(jd, bd) and Im(jd, bd ⊕ 1d) are almost symmetric

around (m − 0.5) (except at the ends of intervals).
• If |τ(jd, bd)| ≥ 1, Im(jd, bd) = Im(jd, bd ⊕ 1d) = ∅;

If 0 ≤ τ(jd, bd) < 1, Im(jd, bd) = (m−1, m−τ(jd, bd)];
If −1 < τ(jd, bd) ≤ 0, Im(jd, bd) = (m − 1 −
τ(jd, bd), m].

• Let |I| be the length of continuous interval I. Then
|Im(jd, bd)| = |Im(jd, bd ⊕ 1d)| = �(jd, bd), where

�(jd, bd) � max(0, 1 − |τ(jd, bd)|) ∈ [0, 1]. (8)

If s(xn) ∈ Im(jd, xjd), then

�s(x̃n)� = �s(xn) + τ(jd, xjd)� = �s(xn)� = m, (9)

i.e., xn and x̃n coexist in the same coset Cm. Otherwise,
if s(xn) ∈ (m − 1, m] \ Im(jd, xjd), then xn ∈ Cm but
x̃n /∈ Cm, i.e., they do not coexist in the same coset.

Definition of Coexisting Interval Set:

I(jd, bd) �
�Im(jd, bd) : m ∈ [1 : 2nR)

�
. (10)

According to (5), the definition of τ(jd, bd), and (6), the def-
inition of Im(jd, bd), the following theorem holds obviously.

Theorem 1: Let Xn and X̃n be two binary blocks. Let
Zn = Xn ⊕ X̃n, where Z[n]\jd = 0n−d and Zjd = 1d.
Given Xjd = bd, the necessary and sufficient condition for
�s(Xn)� = �s(X̃n)�, i.e., Xn and X̃n coexist in the same
coset, is s(Xn) ∈ I(jd, bd). We denote this equivalence as

{�s(Xn)� = �s(X̃n)�} ↔ {s(Xn) ∈ I(jd, Xjd)}. (11)

If �s(Xn)� = m, s(Xn) will be uniformly distributed over
(m− 1, m] as n → ∞ [5], so we have the following theorem.

Theorem 2: Given Xjd = bd, as code length n approaches
infinity, the probability of s(Xn) falling into I(jd, bd) is equal
to �(jd, bd). Define the event E � {s(Xn) ∈ I(jd, bd)}. Then

lim
n→∞ Pr{E|Xjd = bd} = lim

n→∞�(jd, bd). (12)

III. ANALYSIS ON THE LAST SYMBOL

Equipped with the concept of coexisting interval, we can
make use of it to compute the decoding error probability of
DAC. Due to the difficult nature of this problem, we will start
with some simple cases. It was found in [5] that the residual
errors of DAC after decoding usually happen at the end of each
block, so we will begin with the simplest case: All but the last
symbol of each block are known at the decoder. Note that
in [4], the simplest case has been analyzed without utilizing

coexisting interval. Now in this section, we will show how to
handle the simplest case with the help of coexisting interval.

Let Xn be the source and Y n be the side information avail-
able only at the decoder. Assume that the correlation between
Xn and Y n is modeled as a binary symmetric channel (BSC)
with crossover probability �. Let Zn = Xn ⊕ Y n. Then the
event Xi �= Yi is equivalent to the event Zi = 1. On receiving
DAC bitstream M = �s(Xn)�, the ideal distributed arithmetic
decoder will search through the coset CM to find the codeword
closest (in Hamming distance) to Y n, which is denoted by
X̂n, and takes it as the estimate of Xn. The frame-error-rate
(FER) after decoding is Pr{e}, where e denotes the event
{X̂n �= Xn|Y n}. If Xn−1 is known at the decoder, then
X̂n−1 ≡ Xn−1. The conditional FER given Xn−1 is

Pr{e|Xn−1} = Pr{X̂n �= Xn|Yn} < Pr{e}. (13)

Let us define X̃n � (Xn ⊕ (0n−1, 1)), which is called
shadow codeword of Xn. Note that:

• If �s(Xn)� �= �s(X̃n)�, decoding will always succeed,
regardless of side information Y n;

• If �s(Xn)� = �s(X̃n)�, decoding correctness purely
depends on Yn.

By Theorem 1, the equivalent event of �s(Xn)� = �s(X̃n)�
is s(Xn) ∈ I(n, Xn):

{�s(Xn)� = �s(X̃n)�} ↔ {s(Xn) ∈ I(n, Xn)}. (14)

Now it is obvious that

Pr{X̂n �= Xn|Yn} = Pr{�s(Xn)� = �s(X̃n)�} ·
Pr{Xn �= Yn}, (15)

where Pr{Xn �= Yn} = � and

Pr{�s(Xn)� = �s(X̃n)�}
=

�
b∈B

Pr{Xn = b} · Pr{s(Xn) ∈ I(n, b)|Xn = b}. (16)

By Theorem 2, we can obtain

lim
n→∞Pr{�s(Xn)� = �s(X̃n)�} = lim

n→∞ (�(n, 0) + �(n, 1)) /2

= 1 − (1 − q)q−1. (17)

Finally, we obtain the lower bound [4]

lim
n→∞Pr{X̂n �= Xn|Yn} = (2 − 2R)�. (18)

IV. ANALYSIS ON THE LAST TWO SYMBOLS

After understanding the simplest case, now we consider a
slightly more complex case: All but the last two symbols of
each block are known at the decoder. It will be seen that the
analysis in the second simplest case is much more difficult
than that in the simplest case, and the extension from case
one to case two is not straightforward. Let Pr{e|Xn−2} be
the conditional FER given Xn−2 at the decoder, then

Pr{e|Xn−2} = Pr{X̂n
n−1 �= Xn

n−1|Y n
n−1}, (19)
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where Xn
n−1 = (Xn−1, Xn). Define (22 − 1) = 3 shadow

codewords of Xn:⎧⎪⎨
⎪⎩

X̃n
01 = (Xn ⊕ (0n−2, 0, 1))

X̃n
10 = (Xn ⊕ (0n−2, 1, 0))

X̃n
11 = (Xn ⊕ (0n−2, 1, 1)).

(20)

Let E01 � {�s(X̃n
01)� = �s(Xn)�} and Ē01 � {�s(X̃n

01)� �=
�s(Xn)�}. E10, Ē10, E11, and Ē11 are similarly defined. Then⎧⎪⎨

⎪⎩
E01 ↔ {s(Xn) ∈ I(n, Xn)}
E10 ↔ {s(Xn) ∈ I(n − 1, Xn−1)}
E11 ↔ {s(Xn) ∈ I((n − 1, n), Xn

n−1)}.
(21)

A. Enumeration of Event Combinations

There are 222−1 = 23 = 8 event combinations in total.
1) Ē01 ∩ Ē10 ∩ Ē11: The decoding succeeds always.
2) E01 ∩ Ē10 ∩ Ē11: If Yn �= Xn, the decoding fails, so the

failure probability is �.
3) Ē01 ∩ E10 ∩ Ē11: As case 2, the failure probability is �.
4) Ē01 ∩ Ē10 ∩ E11: If Zn

n−1 = 12, the decoding
fails; if Zn

n−1 = (1, 0) or (0, 1), dH(Y n, X̃n
11) =

dH(Y n, Xn) = 1, where dH(·, ·) denotes the Hamming
distance function, so the failure probability is 0.5. The
overall failure probability is

Pr{Zn
n−1 = 12}
+ (1/2)

	
Pr{Zn

n−1 = (1, 0)} + Pr{Zn
n−1 = (0, 1)}


= �2 + (1/2)(�(1 − �) + (1 − �)�) = �. (22)

5) E01 ∩ Ē10 ∩ E11: If Yn �= Xn, the decoding will fail;
if Zn

n−1 = (1, 0), we have dH(Y n, X̃n
01) = 2 and

dH(Y n, X̃n
11) = dH(Y n, Xn) = 1, so the failure

probability is 0.5. The overall failure probability is

Pr{Yn �= Xn} + (1/2)Pr{Zn
n−1 = (1, 0)}

= � + �(1 − �)/2 = �(3 − �)/2. (23)

6) Ē01 ∩ E10 ∩ E11: This case is a mirror image of case
5 by swapping the roles of (Xn−1, Yn−1) and (Xn, Yn),
so the failure probability is also �(3 − �)/2.

7) E01 ∩E10 ∩ Ē11: The decoding succeeds only if Xn
n−1 =

Y n
n−1, so the failure probability is

1 − Pr{Zn
n−1 = 02} = 1 − (1 − �)2 = �(2 − �). (24)

8) E01 ∩E10 ∩E11: The decoding succeeds only if Xn
n−1 =

Y n
n−1, so the failure probability is also �(2 − �).

The failure probabilities in case 7 and case 8 are the same,
so we merge them to obtain

(E01 ∩ E10 ∩ E11) ∪ (E01 ∩ E10 ∩ Ē11) = E01 ∩ E10. (25)

Finally, we will obtain

Pr{e|Xn−2}
= �(2 − �) · Pr{E01 ∩ E10}

+ � · 	Pr{E01 ∩ Ē10 ∩ Ē11} + Pr{Ē01 ∩ E10 ∩ Ē11}
+ Pr{Ē01 ∩ Ē10 ∩ E11}



+�(3−�)/2·	Pr{E01 ∩ Ē10∩E11}

+ Pr{Ē01 ∩ E10 ∩ E11}


. (26)

The problem now is how to determine the probabilities of
E01, E10, and E11. To achieve this goal, we should consider
different b2. Let Pr{e|Xn−2, Xn

n−1 = b2} be the FER given
Xn−2 known at the decoder and Xn

n−1 = b2. Then

Pr{e|Xn−2} =
1
4

�
b2∈B2

Pr{e|Xn−2, Xn
n−1 = b2}. (27)

B. Enumeration of Last Two Symbols

1) Case Xn
n−1 = 02: According to the definition of

τ(jd, bd), we have⎧⎪⎨
⎪⎩

τ(n, 0) = (1 − q)q−1 > 0
τ(n − 1, 0) = (1 − q)q−2 > 0
τ((n − 1, n), 02) = τ(n, 0) + τ(n − 1, 0) > 0.

(28)

If q ∈ (0.5, 1), then τ(n, 0) ∈ (0, 1), τ(n − 1, 0) ∈ (0, 2),
and τ((n, n − 1), 02) ∈ (0, 3). Thus,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Im(n, 0) = ((m − 1), (m − τ(n, 0))] �= ∅
Im(n − 1, 0) = ((m − 1), (m − min(1, τ(n − 1, 0)))]
Im((n, n − 1), 02) =

((m − 1), (m − min(1, τ((n, n − 1), 02)))].
(29)

It is easy to get

0 < τ(n, 0) < τ(n − 1, 0) < τ((n, n − 1), 02). (30)

Hence,

I((n, n − 1), 02) ⊂ I(n − 1, 0) ⊂ I(n, 0). (31)

It can be seen that I(n, 0) is always non-empty, but I(n−
1, 0) and I((n, n−1), 02) may or may not be empty, depending
on the value of q. By solving τ(n − 1, 0) = 1, we get
2q = (

√
5 − 1); by solving τ((n, n − 1), 02) = 1, we get

2q =
√

2. Hence we divide the interval 2q ∈ (1, 2) into three
sub-intervals.

• 1 < 2q ≤ (
√

5 − 1): It is easy to get 1 ≤ τ(n − 1, 0) <
τ((n, n−1), 02), so I(n−1, 0) = I((n, n−1), 02) = ∅.
An example is shown in Fig. 1(a) and Fig. 1(b).

• (
√

5 − 1) < 2q ≤ √
2: It is easy to get τ(n − 1, 0) <

1 ≤ τ((n, n− 1), 02), so I(n− 1, 0) �= ∅ and I((n, n−
1), 02) = ∅. An example of this case is illustrated by
Fig. 1(c) and Fig. 1(d).

•
√

2 < 2q < 2: It is easy to get τ(n − 1, 0) <
τ((n, n − 1), 02) < 1. Hence, I(n − 1, 0) �= ∅ and
I((n, n − 1), 02) �= ∅.

According to Theorem 1, given Xn
n−1 = 02, we have

• E01 ∩ Ē10 ∩ Ē11 = E01 ∩ Ē10 = E01 \ E10.
• E01 ∩ E10 = E10.
• Ē01 ∩ E10 ∩ Ē11 = Ē01 ∩ Ē10 ∩ E11 = ∅.
• E01 ∩ Ē10 ∩ E11 = Ē01 ∩ E10 ∩ E11 = ∅.

Finally, we get

Pr{e|Xn−2, Xn
n−1 = 02}

= � · Pr{E01 \ E10} + �(2 − �) · Pr{E10}. (32)
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Fig. 1. Examples of τ(jd, bd) and Im(jd, bd). (a) and (b): b2 = 02 and 2q =
√

5 − 1. (c) and (d): b2 = 02 and 2q =
√

2. (e) and (f): b2 = (0, 1) and
2q =

√
5 − 1. (g) and (h): b2 = (0, 1) and 2q =

√
2.

According to Theorem 1, we have�
{E01 \ E10} ↔ {s(Xn) ∈ {I(n, 0) \ I(n − 1, 0)}}
E10 ↔ {s(Xn) ∈ I(n − 1, 0)}. (33)

According to Theorem 2, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
n→∞ Pr{E10} = lim

n→∞ �(n − 1, 0)

= 1 − lim
n→∞min(1, τ(n − 1, 0))

lim
n→∞ Pr{E01 \ E10} = lim

n→∞(�(n, 0) − �(n − 1, 0))

= lim
n→∞(min(1, τ(n − 1, 0)) − τ(n, 0)).

(34)

2) Case Xn
n−1 = (0, 1): Similarly, we can obtain�

τ(n, 1) = −τ(n, 0) = −(1 − q)q−1 < 0
τ((n − 1, n), (0, 1)) = τ(n − 1, 0) − τ(n, 0) > 0,

(35)

where τ(n − 1, 0) and τ(n, 0) are given by (28). For q ∈
(0.5, 1), 0 < τ((n − 1, n), (0, 1)) < τ(n, 0) < 1, so⎧⎪⎨

⎪⎩
Im(n, 1) = ((m − 1 + τ(n, 0)), m] �= ∅
Im((n − 1, n), (0, 1)) =

((m − 1), (m − τ((n − 1, n), (0, 1)))] �= ∅.
(36)

Since τ((n−1, n), (0, 1)) < τ(n, 0) < τ(n−1, 0), we have

I(n − 1, 0) ⊂ I((n − 1, n), (0, 1)). (37)

Therefore, some event combinations can be simplified as

• E01 ∩ Ē10 ∩ Ē11 = E01 ∩ Ē11.
• Ē01 ∩ E10 ∩ E11 = Ē01 ∩ E10.
• Ē01 ∩ E10 ∩ Ē11 = ∅.

Depending on the value of q, event combinations can be further
simplified as below

• 1 < 2q ≤ (
√

5 − 1): Clearly, 1 ≤ τ(n − 1, 0),
so I(n − 1, 0) = I(n, 1) ∩ I((n − 1, n), (0, 1)) = ∅.
Equivalently, E10 = E01 ∩ E11 = ∅. If 2q =

√
5 − 1,

the interval (0, 2nR − 1] is fully covered by I(n, 1) and
I((n − 1, n), (0, 1)), so Ē01 ∩ Ē11 = ∅. An example is
shown in Fig. 1(e) and Fig. 1(f).

• (
√

5 − 1) < 2q < 2: Clearly, τ(n − 1, 0) < 1, so I(n −
1, 0) �= ∅. In addition, I(n, 1)∩I((n− 1, n), (0, 1)) �= ∅
and Ē01 ∩ Ē11 = ∅. Further, it is easy to obtain

– (
√

5 − 1) < 2q ≤ √
2: I(n, 1) ∩ I(n − 1, 0) =

∅. Equivalently, E01 ∩ E10 = ∅. When 2q =
√

2,
the interval (0, 2nR − 1] is fully covered by I(n, 1)
and I(n − 1, 0), so Ē01 ∩ Ē10 = ∅. An example of
this case is shown in Fig. 1(g) and Fig. 1(h).

–
√

2 < 2q < 2: I(n, 1) ∩ I(n − 1, 0) �= ∅ and hence
Ē01 ∩ Ē10 = ∅.

Then Pr{e|Xn−2, Xn
n−1 = (0, 1)} can be calculated by the

same procedure as described for the case Xn
n−1 = 02. For

conciseness, we omit the details.
3) Case Xn

n−1 = (1, b): Due to the symmetry of τ(jd, bd ⊕
1d) = −τ(jd, bd), the analysis of case Xn

n−1 = (1, b) is
exactly the same as that of Xn

n−1 = (0, b), so only 22−1 = 2
cases b2 = 02 and b2 = (0, 1) need to be considered.

Analysis on the General Case: After understanding the
above analyses, we can extend the method to the general case.
Given Xn−t known at the decoder, there are 2t − 1 shadow
codewords and we can enumerate 22t−1 event combinations.
For each event combination, we enumerate 2t−1 symbol com-
binations. Finally, we make use of Theorem 1 and Theorem 2
to calculate the FER. Obviously, the order of complexity is
O(22t−1 ·2t−1) = O(22t+t−2). As t increases, the complexity
will go up sharply. It is left to our future work to reduce the
computational complexity.
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Fig. 2. Theoretical and empirical results of decoding error probability of DAC, where e denotes the event {X̂n �= Xn|Y n}.

V. EXPERIMENTAL RESULTS

We consider two rates R = 0.5 and R = 0.25. When R =
0.5, according to (18), we have Pr{e|Xn−1} = (2 −√

2)� ≈
0.5858�. Then we consider Pr{e|Xn−2}. For Xn

n−1 = 02,⎧⎪⎨
⎪⎩

τ(n, 0) =
√

2 − 1 ≈ 0.4142
τ(n − 1, 0) = 2 −√

2 ≈ 0.5858
τ((n − 1, n), 02) = 1

(38)

and ⎧⎪⎨
⎪⎩
Im(n, 0) ≈ (m − 1, m − 0.4142]
Im(n − 1, 0) ≈ (m − 1, m − 0.5858]
Im((n − 1, n), 02) = ∅.

(39)

Thus we can get

Pr{e|Xn−2, Xn
n−1 = 02} ≈ 0.1716� + 0.4142�(2− �). (40)

For Xn
n−1 = (0, 1), we have�
τ(n, 1) = 1 −√

2 ≈ −0.4142
τ((n − 1, n), (0, 1)) = 3 − 2

√
2 ≈ 0.1716

(41)

and �
Im(n, 1) ≈ (m − 0.5858, m]
Im((n − 1, n), (0, 1)) ≈ (m − 1, m − 0.1716].

(42)

Hence, Im(n, 1)∩Im(n−1, 0) = ∅ and Im(n, 1)∪Im(n−
1, 0) = (m − 1, m]. We define

R(a, b) �
�
(m − a, m − b] : m ∈ [1 : 2nR)

�
. (43)

Then the event combinations can be further simplified as:
• E01 ∩ Ē11 ↔ {s(Xn) ∈ R(0.1716, 0)};
• E01 ∩ Ē10 ∩ E11 ↔ {s(Xn) ∈ R(0.5858, 0.1716)};
• Ē01 ∩ E10 = E10 ↔ {s(Xn) ∈ R(1, 0.5858)};
• Ē01 ∩ E10 ∩ Ē11 = Ē01 ∩ Ē10 ∩ E11 = E01 ∩ E10 = ∅.

Therefore,

Pr{e|Xn−2, Xn
n−1 = (0, 1)} ≈ 0.1716� + 0.4142�(3− �).

(44)

Finally, when R = 0.5, we have

Pr{e|Xn−2}
≈ 1

2
(0.1716� + 0.4142�(2− �) + 0.1716�+0.4142�(3− �))

= 1.2071�− 0.4142�2. (45)

Similarly, following the above analysis, when R = 0.25,
we have Pr{e|Xn−1} = (2 − 20.25)� ≈ 0.8108� and

Pr{e|Xn−2} ≈ 1
2

	
1.5858�− 0.775�2 + 1.775� − 0.775�2



= 1.6804�− 0.775�2. (46)

To verify the correctness of the above analyses, we compare
theoretical results with empirical ones in Fig. 2. Experimental
settings are shown in figure titles. It can be seen that the
theoretical results closely match the empirical ones, providing
supporting evidences for the correctness of our analyses [7].
It can be found from Fig. 2 that Pr{e} and Pr{e|Xn−t}
almost stay the same for different code lengths, i.e., Pr{e}
and Pr{e|Xn−t} do not depend on code length. In addition,
by comparing Fig. 2(a) and Fig. 2(b), it can be found that
at the same �, the FER will be higher if the rate R is
reduced.

VI. CONCLUSION

Error probability analysis of coset codes is a challenging
problem. This letter makes an attempt on this problem for
DAC. We propose an enumerative method based on coexist-
ing intervals, which is validated by the experimental results.
However, a brute-force implementation of this method is
not feasible for large code length due to the quick growth
in complexity. Finding a more efficient implementation is a
worthwhile endeavor for future research.
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