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Abstract—Current approaches for human pose estimation in
videos can be categorized into per-frame and warping-based
methods. Both approaches have their pros and cons. For example,
per-frame methods are generally more accurate, but they are
often slow. Warping-based approaches are more efficient, but the
performance is usually not good. To bridge the gap, in this paper, we
propose a novel fast framework for human pose estimation to meet
the real-time inference with controllable accuracy degradation
in compressed video domain. Our approach takes advantage of
the motion representation (called “motion vector”) that is readily
available in a compressed video. Pose joints in a frame are obtained
by directly warping the pose joints from the previous frame using
the motion vectors. We also propose modules to correct possible
errors introduced by the pose warping when needed. Extensive
experimental results demonstrate the effectiveness of our proposed
framework for accelerating the speed of top-down human pose
estimation in videos.

Index Terms—Human pose estimation, compressed video, deep
neural network.

I. INTRODUCTION

HUMAN pose estimation in videos is a cornerstone for
many computer vision applications, such as smart video

surveillance, human-computer interaction, virtual reality etc. It
aims to seek for locations of human body joints (e.g. head, elbow
and etc.) in video sequences. Current real-time solutions to this
problem can be categorized into per-frame methods [7], [10],
[11], [13], [19], [22], [24], [30], [32]–[35], [40], [46]–[48], [50],
[53], [56] and warping-based methods [5], [14], [38], [43].

Due to their simplicity, per-frame methods are widely de-
ployed in real-world applications. In general, the per-frame
methods can be categorized into top-down methods [32], [46],
[53], and bottom-up methods [7], [13]. While bottom-up meth-
ods localize human joints for all persons in a frame, top-down
methods decompose the multi-person human pose estimation
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into a simpler task of single-person pose estimation by first de-
tecting each person in a frame, then applying a single-person
pose estimation on each detected person. Although the two dif-
ferent pipelines have their distinctive properties, both of them
are usually designed to meet the real-time demand from the per-
spective of searching compact neural network models or reduc-
ing the input image size. However, per-frame methods do not
consider the temporal continuity between frames. As a result,
they involve a lot of redundant computations.

To exploit temporal continuity in videos, warping-based
methods aim to discover temporal relations (e.g. optical
flow [38], [43], pose flow [55], etc.) and quickly propagate hu-
man pose from one frame to another. However, computing op-
tical flow is often time-consuming, so warping-based methods
are rarely used in real-world applications.

In this paper, we introduce an alternative way of exploiting the
temporal continuity in videos for human pose estimation. The
core idea of our approach is to take advantage of the motion infor-
mation that is already available in compressed videos when they
are being encoded by standard video codecs. Compressed video
streams only retain very few frames as RGB images, but contain
massive motion information (i.e. motion vector and residual er-
ror) for frame reconstruction. These motion vectors and residual
error are readily available in compressed videos and do not re-
quire any computation to obtain. Recent years have witnessed
many successes in handling computer vision tasks in the com-
pressed video domain. Some early work focuses on classification
tasks such as action recognition [52], video classification [8], [9].
These tasks usually do not require precise motion cues at the
pixel level, so motion vectors in compressed videos can be eas-
ily applied. There are also works on semantic segmentation [16],
[29] in compressed videos. Although semantic segmentation is
a pixel labeling task, the performance of semantic segmenta-
tion is largely influenced by the prediction in the interior of
object instances rather than instance boundaries. As a result,
this task does not require very much motion information either.
In comparison, human pose estimation in compressed videos is
much more challenging, since this task requires accurate joint
predictions.

To this end, we propose a novel framework for human pose
estimation in the compressed video domain. The framework con-
sists of four components, i.e. human pose estimator, fast pose
warping module (FPW), pose recall module (PR) and transition
re-initialization module (TR). To be specific, the human pose
estimator is a top-down pose estimation network working on
RGB images. For the purpose of reducing temporal redundancy,
a fast pose warping module is designed to use motion vectors
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for rapid pose propagation across consecutive frames. However,
since motion vectors are noisy and not always associated with
the motion on the body parts, we design a pose recall module
to adaptively find “hard-to-warp” human instances and perform
human pose estimation instead of warping by jointly considering
the motion intensity and confidence on body joints. Moreover,
video transitions can result in significant motion cues which are
irrelevant to body motion. To address this issue, the transition
re-initialization module is introduced to terminate the warping
process at video transitions and switch to RGB-based pose esti-
mation.

The main contributions of this work can be summarized as
follows. First, this paper represents the first work on real-time
human pose estimation in the compressed domain. Second, we
propose a human pose estimation framework in the compressed
domain using three well-designed modules. Finally, we demon-
strate through extensive experimental results that our framework
can speed up existing per-frame and warping-based methods by
2-5 times on the Posetrack dataset, while achieving comparable
performance in accuracy.

II. RELATED WORKS

In this section, we briefly review several lines of research
related to our work.

Per-frame Human Pose Estimation: Traditional human pose
estimation methods [2], [3], [23], [39] usually adopt the picto-
rial structures model with hand-crafted features. These methods
often fail when some body parts are occluded. In recent years,
with the emerging of deep convolutional neural networks, most
of the image-based human pose estimation [7], [10], [11], [13],
[19], [22], [24], [25], [30], [32]–[35], [40], [46]–[48], [50], [53],
[56], [58] learn to predict human poses on large-scale datasets
with intensive human joints annotations. Instead of mapping im-
ages directly to human joint coordinates, most of these methods,
except for [48], choose to predict heatmaps for easier regression
and optimization.

In the era of deep learning, image-based methods can be cat-
egorized as top-down methods and bottom-up methods. Top-
down methods [11], [19], [32], [35], [46], [53] usually rely on a
human detector that helps localizes human instances in an im-
age. Then the methods decompose the multi-person human pose
estimation task into single person pose estimation problems. On
the contrary, bottom-up methods [7], [13], [22] first detect all
the body joints in an image, and then assign the detected joints
to each person.

These works mainly focus on exploring novel models to
achieve state-of-the-art human pose estimation accuracy, but
their processing speed is often slow.

Fast Human Pose Estimation: Although the efficient estima-
tion of the human pose is quite important, very few works aim
for this goal. Rafi et al. [41] introduce a compact neural net-
work that can be trained efficiently on a mid-range GPU. Bulat
et al. [6] binarize heavy CNN architectures for model compres-
sion and specifically designed a parallel and multi-scale archi-
tecture for the binary case. Zhang et al. [56] successfully employ
a well-trained large network to help boost the performance of

a small network with knowledge distillation [20]. However, the
above-listed methods only focus on designing a small network
that is cost-effective for deploying in practice. In this paper, we
alternatively investigate the possibility of accelerating inference
speed in the video compressed domain.

Video Based Human Pose Estimation: Temporal dependency
among video frames is the most crucial factor that distinguishes
an image task from a video task. Exploiting the temporal cor-
relation wisely can significantly improve the performance in
a video task. However, due to the scarcity of large-scale video-
based benchmarks, video-based human pose estimation has only
drawn very little attention in recent years. Some methods [38],
[43] use dense optical flow as temporal representations to capture
relationships across the multiple frames. In contrast, Doering et
al. [14] compute task-specific motion representation only on hu-
man joints to reduce redundancy of dense optical flow. Bertasius
et al. [5] introduce a novel CNN architecture for pose estimation
in sparsely labeled videos. This method uses a neural network to
directly learn offsets of consecutive frames. Although most of
these video-based methods show great improvements on estima-
tion accuracy, they still ignore the problem of how to efficiently
estimating human pose in videos.

Video Analysis in Compressed Domain: Video analysis in the
compressed domain is also understudied. There are few works
that try to leverage the compressed domain knowledge to as-
sist specific video analysis tasks. The current methods in com-
pressed domain can be categorized as traditional methods and
deep learning base methods. For traditional methods, Chen et
al. [12] propose to use global motion estimation and Markov
random field for extraction moving regions in compressed do-
main. Some works [28], [37] introduce fast scene change detec-
tion algorithm using the feature from compressed videos. The
two methods mainly focus on how to precisely detect wipe tran-
sition. Despite the effectiveness of traditional method, they usu-
ally adopt compressed knowledge for transition and motion de-
tection rather than high-level video analysis. To further exploit
the valuable information in compressed domain, some recent
work proposes to use deep learning techniques for video anal-
ysis in the compressed video domain. There is some work [8],
[9] on 3D convolutional neural networks for video classifica-
tion utilizing compressed domain knowledge. Wu et al. [52] ac-
celerate action recognition directly on compressed videos. The
success of extracting high-level representations from the com-
pressed domain implies the potential of compressed domain in-
formation in other computational vision tasks. Recently, Li et
al. [29] adopt convolutional LSTM to propagate semantic maps
to consecutive frames by motion vector and residual. Feng et
al. [16] propose a novel real-time framework for semantic seg-
mentation using compressed domain knowledge. Due to the na-
ture of semantic segmentation, where most of the pixels are
inside of objects, the noise in motion vectors can be largely
tolerated. On the contrary, accurately propagating the human
joints with noisy motion vectors is a more challenging task.
In this paper, we are inspired by Feng et al. [16] to propose a
method for fast human pose estimation in the compressed do-
main. To our best knowledge, this paper is the first to address this
problem.
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Video Analysis Beyond RGB Frames: Our work is loosely
related to other video analysis tasks that use the information
beyond RGB frames in a video. For example, there has been
lots of work (e.g. [26], [42], [57]) on using depth information
in RGBD videos for object recognition, pose estimation, etc.
However, these works can only work on video data collected by
RGBD cameras, since the depth information is not available in
regular videos. In contrast, our work is more widely applicable
since the motion vector information is readily available in any
compressed video.

III. BACKGROUND: COMPRESSED VIDEO

Due to the enormous data volume, digital videos are typically
encoded into video streams for efficient storage and transmis-
sion. Commonly used modern video codecs include MPEG-4
Part 2 [27], H.264/AVC [51], HEVC [44], VP9 [31], etc. A video
stream compressed by these video codecs has a very different
structure from a sequence of stand-alone images as often seen in
an uncompressed video. In this section, we take the MPEG-4 Part
2 (Simple Profile) codec [27] as an example to analyze the type
of data that are available in a video stream. Nevertheless, most
popular video codecs share a similar predictive coding strategy
and generate compressed streams with a similar structure. So our
analysis on this particular codec generalizes to other codecs.

The basic unit in a compressed video is called a group of pic-
tures (GOP). The encoding and decoding processes of one GOP
are independent of any other GOPs. A compressed video is com-
posed of a sequence of such GOPs. In the default mode of the
MPEG-4 Part 2 codec, a GOP consists of 12 frames, with the first
being an I-frame (intra-coded frame) and the rest being P-frames
(predictive frames). Video codecs treat the two types of frames
differently. The I-frame is encoded as a regular image, so decod-
ing it does not depend on any other frames in the GOP. However,
the encoding of each P frame depends on the data from its pre-
vious frame, which finally relies on the data of the first I-frame
of the GOP. Specifically, for each 16× 16 block in a P-frame
It at time t, the codec first tries to find a best-matched block in
the previous frame It−1 by a block-matching method [4]. It then
represents the correspondence between the two blocks by a vec-
tor pointing from the reference block to the target. Such a vector
is known as the motion vector (MV) in the context of video
compression. After the block matching, the residual between
the target and reference blocks is also computed and encoded
into the video stream. As such, the P-frame It is compactly rep-
resented by an MV map Mt and a residual map Rt, and can be
reconstructed by reusing the data of the previous frame It−1.

It(x, y) = It−1
[
(x, y)−Mt(x, y)

]
+Rt(x, y), (1)

where (x, y) indicates any pixel position in the frame. Fig. 1
illustrates the representation and the reconstruction process of P-
frames in a GOP. Some other codecs may generate another type
of frame, i.e. B-frame (bi-directional frame), which is encoded
in a similar manner to P-frames except that the motion vectors
are estimated from both previous and future frames.

Fig. 1. Illustration of decoding a compressed video. Each I frame is encoded
as a regular image. Each P frame is stored as a motion vector and residual that
represent the correlation between the current P frame and the previous frame.

IV. OUR APPROACH

Top-down pose estimation is often performed in a two-stage
manner. First, a human detector scans the whole image to crop
out each person instance in a bounding box. Then, pose esti-
mation is performed in each of the bounding boxes to localize
each joint of the person using a heatmap. This process is well
established for pose estimation on a still image but still has room
to improve when processing a video. As analyzed in Section III,
neighboring frames are highly correlated with each other, so it
is intuitively possible to reuse the estimation results from the
previous frame in the current frame. Let us consider an extreme
case where a person is doing yoga and keeping a posture for a
few seconds. The motion vectors in the video will indicate that
there is no motion between adjacent frames. We can then per-
form pose estimation only on the first frame and copy the results
to the remaining frames. Intuitively, this approach can save sev-
eral folds of inference time while achieving a similar level of
accuracy.

Our proposed approach is inspired by and a natural extension
of this intuition. By exploiting the inter-frame relationship read-
ily available in a compressed video stream, we design a system
that can accelerate any per-frame pose estimation method while
maintaining relatively high prediction accuracy. As shown in
Fig. 2, our proposed approach contains several components: a
human instance detector, a single-person pose estimator, a fast
pose warping module (FPW), a pose recall (PR) module and a
transition re-initialization module (TR). In particular, the first
two components form the baseline image-based pose estima-
tor that is used to initialize the human pose in I-frames. The
last three modules are designed for accelerating and correcting
pose estimation in P-frames. First, we design an FPW module
to propagate the joints of each person based on the results in
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Fig. 2. An overview of our proposed method for fast human pose estimation in compressed videos. I-frames are directly sent to a human detector to detect each
person. Then a human pose estimator is applied to each person instance to produce a corresponding human pose. For each P-frame, we first use the transition
re-initialization module (TR). If a scene transition is detected, these frames would be treated the same as an I-frame by reconstructing its RGB image. Otherwise,
each person instance in the P-frame is passed to the pose recall module (PR) to decide whether we need to re-initialize the pose estimation for this person. If a
person instance passes the TR and PR modules, we can directly obtain its pose in the current P-frame by warping the pose joints from the previous frame using our
fast pose warping (FPW) module.

the previous frame. By reusing the inference results from the
previous frame, both modules can significantly speed up the
pose estimation in P-frames. Although direct warping is fast, it
is possible for the warping error to accumulate over time, and
the tracking points gradually shift off the human body. In or-
der to control the error propagation, we further design a pose
recall module to correct the pose estimation results when the
motion is too complex to follow. Another challenge to the fast
warping approach is the occurrence of scene transition, which
breaks the relationship between consecutive frames. To address
this challenge, we design a transition re-initialization module to
detect such scene transition so that the pose estimation can be
re-initialized on the first frame of the new scene. Note that the
PR and TR modules depend only on the compressed domain
features and thus introduce minimal overhead into the whole
pipeline.

Fig. 2 presents the complete data flow of the proposed frame-
work when processing a compressed video. After decoding each
GOP, the leading I-frame is first sent to the human instance
detector and the pose estimator to obtain the location of body
joints. Then the results of P-frames are efficiently predicted by
the FWP module unless the PR and TR modules are triggered
to re-initialize the pose estimation results of several human in-
stances or the whole image.

The proposed framework exhibits three major advantages
over the traditional per-frame framework. First, the proposed
framework does not need to perform image-based pose esti-
mation on most P-frames, resulting in a significant speedup on
highly compressed videos. Second, all the additional modules
rely only on the features that are readily available in a com-
pressed video stream. So they introduce minimal overhead into

the pipeline. Third, this framework is compatible with a wide
range of image-based pose estimation methods and consistently
achieves 2 to 5× speedup while achieving comparable accuracy.

We will discuss the details of each component below.
Human Instance Detector & Human Pose Estimator: We start

by introducing the image-based pose estimation pipeline for the
I-frames. Since an I frame is represented as a standard RGB
image in a compressed video, we can choose any image-based
human instance detector, denoted by φd and a pose estimator,
denoted by φp, to initialize the human pose estimation in a GOP.
In this paper, we adopt the HRNet [46], which uses an adapted
Faster-RCNN for human detection and a specifically designed
CNN for subsequent pose estimation. However, we emphasize
that any pose estimation methods sharing a similar pipeline can
be easily plugged into our proposed framework. We also conduct
a study to illustrate the influence of different image-based pose
estimators in Section V-C. In addition to operating on I-frames,
φd andφp will also be used to re-initialize on a P-frame by recon-
structing its RGB image if the TR or PR modules are triggered
on this P-frame.

Fast Pose Warping: The FPW module is performed on each
human instance to localize the joints of this person. Specifically,
the module warps the human joints Jt−1

i of the i-th person in
frame It−1 with the motion vectorsMt at time t. It then generates
a new set of joints location Jt

i for the same person by solving
the following equations:

Jt
i(n)−Mt(Jt

i(n)) = Jt−1
i (n), n = 1, . . . , N (2)

where Jt
i(n) denotes the coordinates of the n-th joint of the i-th

person in frame It, and where N indicates the total number of
joints of this person.
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Fig. 3. a) and b) only adopt FPW to propagate pose from left to right. c) shows the results corrected by the PR module. Each column illustrates four consecutive
frames in the same GOP.

Since the approximation of block-matching algorithm is usu-
ally adopted for calculating motion vector, motion vector often
fails to associate the human parts of successive frames when
there is severe motion (see Fig. 3(b)), which reflects in big mag-
nitude on residual.

Pose Recall Module: To solve the problem of the loss of mo-
tion relation introduced by extensive and severe pose variance,
we design the pose recall module. Before the pose recall, we
firstly fast propagate the human bounding box with (2) by the
center coordinates of the box. Then, for a given P-frame, the goal
of this module is to decide whether the pose estimation results
obtained from the pose warping are likely to be unreliable. If
so, it will run the image-based pose estimator on a few specific
human instances.

We design this module by considering the residual in each hu-
man instance and the motion information on human body joints
to adaptively select the person with fast motion. Specifically, this
module is based on two measures called the motion intensity and
the residual intensity defined below.

The motion intensity is defined as the average motion on each
body joint. It is computed as follows. For the i-th person in
the current frame, we define the motion intensity (MI) of this
person as the average motion magnitude on the joints:

MIi =
1

2N

N∑

n=1

(|Mt
i(J

t
i(n), 0)|+ |Mt

i(J
t
i(n), 1)|) (3)

Noted that |.| is the absolute value operator and all the oper-
ations are element-wise. Here, 0 and 1 are the channels of the
motion vector.

The residual map measures the error after warping the pixels
in a P-frame using a motion vector. The absolute values in the
residual map can be regarded as the confidence map of motion

vectors. Larger values in the residual map tend to correspond to
areas where the motion vectors are not reliable. We define the
residual intensity as the average magnitude of the absolute value
of residual (RI) for each human instance i.

RIi =

∑
(x,y)∈(Hi,Wi)

|Ri(x, y)|
Hi ×Wi

(4)

where hi and wi denote the length and width of each human
bounding box.

Then we select each person in the frame where the motion
intensity or the residual intensity is above a certain threshold.
Then the selected person instance is sent to the image-based
pose estimator for re-initialization. Fig. 3 illustrates the benefit
of adopting a pose recall module.

Transition Re-initialization: Some videos used in our dataset
contain scene transitions due to camera switching. For the frame
at the camera transition, the human pose in the current frame
is often uncorrelated to the previous frame. As a result, the
motion vector map does not provide any information for valid
pose warping (see Fig. 4). This is especially problematic if the
transition is at the beginning of a GOP. In this case, the un-
matched human pose would be propagated to the remaining
frames in this GOP. To address this issue, we propose the tran-
sition re-initialization module to specifically handle the camera
transition.

Our key observation is that when the camera transition hap-
pens, the residual map of the corresponding frame tends to have
enormous values. This is due to the fact that the two frames at
the transition correspond to completely different scenes. Unlike
the pose recall module that operates on each person in a frame,
this module operates on the global information of the motion
vector map. Once the residual intensity on the entire image is
higher than a threshold THRtrans, we consider the frame to
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Fig. 4. Illustration of the motion vector and residual at transition. The residual
can better indicate camera transition.

be a transition. This frame is then sent to the pose estimator for
re-initialization. The residual intensity of transition RIT is de-
fined in a similar way as in (4), but the average is performed on
the whole residual map instead of a human bounding box, i.e.
(Hi,Wi,Ri) in (4) is replaced by (H,W,R) for the frame. We
show an example of the camera transition in Fig. 4.

The overall algorithm of our framework is shown in Algo-
rithm 1. Note that our proposed three modules, i.e. FPW, PR,
TR, are not built with neural networks. So these modules do not
have additional model parameters.

V. EXPERIMENTS

In this section, we first describe the datasets and the imple-
mentation details. We then present ablation studies on various
aspects of the proposed framework and compare it with other
methods.

A. Dataset

PoseTrack [1] is a commonly used video-based benchmark
for multi-person pose estimation and tracking. The videos from

TABLE I
THE DETAILS OF THE DATASETS USED IN THIS PAPER

We Illustrate the Number of Video Clips of Train, Val and Test Split. In Addition, anno-
tations/clip Denotes the Number of Annotations Per Video Clip

this dataset contain various challenging scenarios. For example,
many videos include severe body motion, body pose variations,
video transitions, highly occluded human instances and crowded
scenes with dynamic human movements. These difficulties make
it hard to achieve high accuracy on this dataset. PoseTrack has
two different released datasets called PoseTrack17 and Pose-
Track 18. PoseTrack17 contains in total 514 video sequences,
in which 250, 50 and 214 clips are used as train, validation and
test data, respectively. PoseTrack18 is significantly larger than
PoseTrack17. The new release contains 593 train, 170 valida-
tion and 375 test clips, respectively. However, both of the two
datasets only annotate 30 frames around the center of training
clips. The annotations include head bounding boxes and 15 hu-
man key joins with indications on whether the joints are visible.
The details of the two datasets are shown in Table I.

In this paper, we conduct ablation studies and experiments
on both PoseTrack 17 and PoseTrack18 datasets using the of-
ficial train, validation and test split. The human pose estimator
is fine-tuned on the training set. We then evaluate our proposed
framework on validation and test sets. The evaluation metric
used in this work is the mean average precision (mAP) as in [1],
[40].
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Fig. 5. Qualitative results of the ablation studies on the PoseTrack18 validation set. We use red arrows to point out the estimation error, orange boxes to indicate
the camera transition and red boxes to illustrate the human instance being recalled by our PR module. From top to bottom, the decreased number of red arrows
indicates the effectiveness of our modules.

B. Implementation Details

We choose HRNet-W48 [46] as our pose estimator. It is pre-
trained on the COCO dataset and finetuned on the Posetrack18
training set. The finetuning process starts with an initial learning
rate of 10−4 for 10 epochs. We then reduce the learning rate by
a factor of 10 until the end of 20 epochs. For data augmentation,
we take random samples uniformly distributed over [−45◦, 45◦]
and [0.65, 1.35] for random rotation and random scale respec-
tively. Flipping and half body data augmentation [49] are also
used. We adopt the detector in [17] for human bounding box
detection. The three thresholds, THRtrans, THRmotion and
THRres, in Algorithm 1 are set to 3, 50, and 5 respectively.
We use MPEG-2 Part2 (Simple Profile) [27] as our codec to
compress the PoseTrack videos with the default GOP size 12.
We do not use any data augmentation during testing. Our pro-
posed method is implemented using Pytorch [36] and all the
evaluations are conducted on the same Nvidia P100 GPU.

C. Ablation Studies

In this section, we perform extensive ablation studies on
various aspects of the proposed framework. All the ablation
studies are conducted on the PoseTrack 18 validation set.

TABLE II
ABLATION STUDIES ON THE EFFECTS OF EACH INDIVIDUAL MODULE ON BOTH

ACCURACY AND SPEED

Effects of Individual Module: We perform ablation studies to
demonstrate the effectiveness of each module in our proposed
framework by removing one or more modules. The results are
shown in Table II, from which we can make several observa-
tions: 1) the fast pose warping module can efficiently accelerate
the human pose estimation with the off-the-shelf pose estima-
tor; 2) the pose recall module can effectively identify significant
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TABLE III
COMPARISON WITH POSE WARPING USING OPTICAL FLOW

We Experiment With Several Different Optical Flow Algorithms. Tflow Represents
the Time for Estimating Optical Flow, and Twarp Denotes the Time for Warping. Our
Method is More Efficient Since It Does Not Require Computing Optical Flow. At the
Same Time, the Performance of Our Method is Comparable to Those Using Optical
Flow for Pose Warping

motion in videos and re-initialize the pose estimation of an in-
dividual person; 3) the transition re-initialization module can
detect “hard-to-warp” frames and video transitions, which can
avoid error propagation along the time sequence; 4) the entire
framework with all these modules achieves the best overall bal-
ance between accuracy and speed.

Fig. 5 shows some qualitative examples of different meth-
ods. There is no surprise that the method with only the fast
pose warping has the best efficiency. However, if we only use
FPW, the accuracy degrades dramatically. Fig. 5(b) illustrates
that the error is accumulated from the beginning of the GOP to
the end. Especially on camera transition, the FPW module still
propagates the unreliable pose to the next frame, resulting in in-
accurate estimation. In general, human motion is exceptionally
complicated. Directly warping poses with a motion vector could
significantly jeopardize the performance. The method with pose
recall and FPW solves the above problem to some extent. During
inference, the person with a significant pose variance is rebooted
and FPW terminates the error to be propagated to the next frame.
From Fig. 5(c), we can observe that the PR module can avoid in-
accurate pose warping before camera transition. However, after
camera transition, the PR module cannot employ human pose
estimation with inaccurate bounding boxes. Thus we can see
the pose of the person with a white t-shirt is missing. We then
show the performance of using both FPW module and TR mod-
ule. It can be seen from Fig. 5(d) that transition re-initialization
can greatly help boost the performance of FPW. Our method
(Fig. 5(e)) using all modules gives the best qualitative results.

Warping by Optical Flow:We conduct a comparison with pose
warping using optical flow instead of motion vectors. This will
show the effectiveness of our proposed framework in terms of
accelerating the inference speed. We have experimented with
using PWCNet [45] and FlowNet2 [21] for optical flow esti-
mation, respectively. Table III shows the performance of our
method using FPW and optical flow-based methods. Surpris-
ingly, we observe similar accuracy between using the motion
vector and using optical flow. This phenomenon indicates that
accurate motion modeling provided by optical flow does not pro-
vide additional benefit for propagating human pose across video
frames compared with motion vectors that are already available
in compressed videos. Another observation from Table III is

TABLE IV
THE INFERENCE SPEED AND ESTIMATION ACCURACY WITH DIFFERENT GOP

SIZES. THE FRAME SIZE IS SET TO 384*288

that our fast feature warping is about 3-8 times faster than opti-
cal flow estimation. The gain on inference speed is mainly from
the fact that we take the existing motion representations from
the compressed video domain instead of relying on expensive
optical flow estimation.

Effect of GOP Size: Table IV illustrates the performance of
our method under different values of the GOP size. In order to
demonstrate the significance of our method in balancing between
inference speed and estimation accuracy, we show experimental
results of the baseline method that only uses fast pose warping
(FPW). When the GOP size is set to 1, the task of video pose
estimation is degraded to per-frame pose estimation. In this case,
the accuracy and inference speed of the two methods are the
same. With the increase of the GOP size, we can generally see a
decreasing trend in accuracy and an increasing trend in inference
speed. However, benefiting from our PR and TR module, our
method is less sensitive to the GOP size. The accuracy of our
method only decreases from 79.2 to 77.2 with nearly 4 times
speed-up. In contrast, only adopting the FPW module for fast
warping causes the performance to drop significantly from 79.2
to 54.1. This ablation study further proves the robustness of our
method.

Influences of Crop Size: The input image size also influences
the inference speed. Intuitively, the inference speed can be accel-
erated as the input image becomes smaller. We conduct experi-
ments to show the influence on our proposed method in terms of
crop size for each human instance. We choose to crop human in-
stances with two commonly used bounding box sizes (384× 288
and 256× 192). The performance of our method with two sizes
is shown in Table VI. The inference speed increases when the
input size of a human instance is decreased from 384× 288 to
256× 192. The gain on inference speed is mainly due to the
fact that the human pose estimation model can run faster on a
smaller input image. However, our overall framework can work
with any input size. For example, our fast pose warping mod-
ule only takes the joint coordinates from the previous frame and
warps poses regardless of the size of each person.
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TABLE V
QUANTITATIVE COMPARISON ON THE POSETRACK BENCHMARK

The Performance of the Comparisions are Collected Either From PoseTrack Leaderboard or Paper. We Additionally Report the FPS of Methods That are Open-Sourced

TABLE VI
THE INFERENCE SPEED AND ESTIMATION ACCURACY WITH DIFFERENT SIZE

OF INPUT IMAGES

We Also Show Our Framework When Using Different Human Pose Estimators (HRNet,
SimpleBaseline and 8-Stage Hourglass) for the Pose Estimation Module. Our Framework
Can Always Significantly Accelerate Inference Speed Without Too Much Accuracy Drop

Effects of Image-based Pose Estimator: Our overall frame-
work does not depend on the particular choice of the image-
based pose estimator. In this experiment, we show the perfor-
mance of our framework adopting three different state-of-the-art

pose estimation models, i.e. simple baseline [53], HRNet [46]
and 8-stage Hourglass [32]. The performance of using the three
baselines is shown in Table VI. We can observe that these
three pose estimation methods can be significantly accelerated
once used within our framework. It is worth mentioning that
we achieve 5 times speedup on 8-stage Hourglass. The empiri-
cal analysis further illustrates the advantage of our method for
speeding up human pose estimation.

Overall Inference Speed: In this section, we investigate the
overall inference speed of per-frame-based methods and our
proposed one. We consider the timekeeping after the video is
decompressed. Specifically, we add the inference time of the
human detector in the pose estimation process. The comparison
of overall inference speed is shown in Fig. 7. It can be noticed that
our framework can be 3-5 times faster than the per-frame-based
methods. One reason is that per-frame-based methods require
human bounding box detection for every frame, while our frame-
work only needs such detection on I-frames. In other words, with
PR module, our method allows human detection on a subset of
frames (e.g. I-frame) and quickly propagates bounding boxes
from the current frame to other frames in a GOP. The results
also provide a shred of solid evidence that our method is more
efficient when deployed in practice.

D. Main Results

Table V shows the quantitative comparison of our approach
with several state-of-the-art human pose estimation methods in
terms of accuracy and speed. The comparison is conducted on
both PoseTrack17 and PoseTrack18 datasets. We can generally
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Fig. 6. Qualitative results on the PoseTrack18 validation set. The first column corresponds to I-frames, while other columns correspond to P-frames in a GOP.

Fig. 7. Illustration of overall running time on the PoseTrack18 validation
dataset. The overall running time consists of bounding box proposal time and
human pose estimation time.

observe a trade-off between inference speed and accuracy in Ta-
ble V. For example, although PoseWarper is the top-performing
method for all three datasets, the inference speed is the slow-
est. PoseFlow and AlphaPose can run over ten frames per sec-
ond. However, the accuracy of the two methods is 10 mAP
less than the top performed methods. Somewhat surprisingly,
our method is the only one that can estimate human pose in
real-time over 19 FPS, while achieving accuracy comparable
to the top-performing method. It is worth mentioning that our
performance is better than the original HRNet. We show some
qualitative examples of our method in Fig. 6.

E. Limitation and Future Works

Due to the fact that our proposed approach is introduced to
accelerate the current per-frame human pose estimation method,
we notice that our proposed method might inherit the limitation
of per-frame-based methods. Fig. 8 shows some failure cases of
our method. It can be observed that our method fails to predict
accurate human pose when the human joint is occluded or the
image is blurry. The two problems are also the main challenges
in per-frame-based human pose estimation [59]. It is preferable
to address the problems in the future.

Fig. 8. Failure cases are pointed by red arrows. The pose of elbow and head
are unable to be detected because of occlusion and image blurry.

VI. CONCLUSION

In this paper, we have introduced the task of human pose esti-
mation in the compressed video domain. The goal is to take ad-
vantage of the motion representation (i.e. motion vectors) that is
already encoded in a video stream to accelerate the pose estima-
tion. The proposed framework uses motion vectors to propagate
the estimated pose joints from the I-frame to other P-frames.
We also introduce additional modules to re-initialize the pose
estimation when the pose propagation is unreliable due to large
motions or scene transition. Overall, our proposed framework
achieves a nice balance between accuracy and inference speed.
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