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On the Optimality of the Greedy Policy for Battery
Limited Energy Harvesting Communications

Ye Wang, Ali Zibaeenejad, Yaohui Jing, and Jun Chen , Senior Member, IEEE

Abstract— Consider a battery limited energy harvesting com-
munication system with online power control. Assuming indepen-
dent and identically distributed (i.i.d.) energy arrivals and the
harvest-store-use architecture, it is shown that the greedy policy
achieves the maximum throughput if and only if the battery
capacity is below a certain positive threshold that admits a
precise characterization. Simple lower and upper bounds on this
threshold are established. The asymptotic relationship between
the threshold and the mean of the energy arrival process is
analyzed for several examples.

Index Terms— Bellman equation, energy harvesting, greedy
policy, power control, throughput.

I. INTRODUCTION

DESIGNING power control policies is a central problem in
energy harvesting communications [2]. The body of liter-

ature on this problem is already quite rich (see, e.g., [3]–[22])
and continues to grow with the introduction of new mathemati-
cal techniques and the impetus from other emerging fields (see,
e.g., some of the recent additions [23], [24]). Though the exact
problem formulation varies depending on the system model
and the performance metric, the essential challenge remains
the same, which is, roughly speaking, to deal with random
energy availability. In this paper we consider online power
control for a battery limited energy harvesting communication
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system with the goal of maximizing the long-term average
throughput. The aforementioned challenge is arguably most
pronounced in this setting. Indeed, it is known that the impact
of random energy arrivals can be smoothed out if the system
is equipped with a battery of unlimited capacity [9], [21],
and offline power control can achieve the same effect to a
certain extent. The standard approach to the problem under
consideration is based on the theory of Markov decision
processes [25]. Although in principle the maximum throughput
and the associated optimal online power control policy can be
found by solving the relevant Bellman equation, it is often very
difficult to accomplish this task analytically. Indeed, even for a
simple pair of energy arrival process and power control policy,
their interplay can lead to exceedingly complex dynamic
behaviors. As such, there is no shortage of technical challenges
in characterizing the performance of a specific policy, let alone
finding the optimal one. To the best of our knowledge, no exact
chacterization of the throughput-maximizing power control
policy is known except for Bernoulli energy arrivals [18],
[19], and typically one can only resort to policies that are
asymptotically optimal [12] or approximately optimal [19],
[20]. In this work, we shall show that it is possible to make
definite progress by tackling the problem from a different
angle. Specifically, instead of directly solving the Bellman
equation to get the optimal power control policy, we use it to
verify whether a given power control policy is optimal. This
strategy effectively turns a hard optimization problem into a
simple decision problem for which more conclusive results
can be obtained (see [26], [27] for similar strategies applied in
other information-theoretic contexts). In particular, it enables
us to derive a threshold on the battery capacity below which
the simple strategy that depletes the battery in every time slot,
known as the greedy policy, is optimal. We further show that
this threshold is tight, and consequently establish a sufficient
and necessary condition for the optimality of the greedy policy.
As a byproduct, we also obtain an exact characterization of
the maximum throughput in the low-battery-capacity regime.

A significant portion of this paper is devoted to the tech-
nical aspect of the proposed strategy, namely, verifying the
optimality of a given policy based on the Bellman equation.
However, the importance of the preparational step, which is
to identify a potential candidate, should not be overlooked.
In particular, it is instructive to understand the rationale behind
our special attention to the greedy policy as detailed below.
Firstly, by examining the numerical plots of the optimal policy
in the low-battery-capacity regime, one can get clear evidences
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indicating that the greedy policy is exactly optimal1. Secondly,
the greedy policy has the desirable and, in some sense, rare
property that its induced throughput admits a simple expres-
sion under any i.i.d. energy arrivals, which greatly facilitates
the optimality verification process. Last but not least, our work
is also partly motivated by the observation that the optimal
policy for Bernoulli energy arrivals [18], [19] degenerates to
the greedy policy when the battery capacity is low enough.

The rest of the paper is organized as follows. We state the
main results in Section II and present the proofs in Section III.
Section IV contains the asymptotic analysis for several illustra-
tive examples. We conclude the paper in Section V. Through-
out this paper, little-o notation f(x) = ox↓0(ψ(x)) (f(x) =
ox↑∞(ψ(x))) means limx↓0

f(x)
ψ(x) = 0 (limx↑∞

f(x)
ψ(x) = 0), and

the base of the logarithm function is e.

II. MAIN RESULTS

Consider a discrete-time energy harvesting communication
system equipped with a battery of capacity c. Let Xt denote
the amount of energy harvested at time t, t = 1, 2, · · · , where
{Xt}∞t=1 are assumed to be i.i.d. copies of a non-negative
random variable X . The following quantities will be used
frequently in our analysis:

ρ(x) � P(X < x),

x � max{x ≥ 0 : ρ(x) = 0},
x � inf{x ≥ 0 : ρ(x) = 1},
μ � E[X ].

An online power control policy is a sequence of mappings
{ft}∞t=1 specifying the level of energy consumptionGt in time
slot t based on Xt � (X1, · · · , Xt) for all t:

Gt = ft(Xt), t = 1, 2, · · · .
Let Bt denote the amount of energy stored in the battery at
the beginning of time slot t. We have2

Bt = min{Bt−1 −Gt−1 +Xt, c}, t = 1, 2, · · · ,
where B0 � 0 and G0 � 0. An online power control policy
is said to be admissible if

Gt ≤ Bt, t = 1, 2, · · · .
The throughput induced by policy {ft}∞t=1 is defined as

γ(c) � lim inf
n↑∞

1
n

E

�
n�
t=1

r(ft(Xt))

�
,

1Unfortunately, such numerical evidences are not widely known. A possible
explanation is as follows. Although solving the Bellman equation via value
iteration yields numerical data on both the optimal policy and the maximum
throughput, often only the latter is presented, as done almost exclusively in
the existing literature. However, the maximum throughput by itself does not
give much clue regarding the optimality of the greedy policy unless it is
compared against the throughput induced by the greedy policy. On the other
hand, without the right hypothesis in mind, one hardly has any motivation
to perform this comparison. In contrast, it is widely known that the greedy
policy is asymptotically optimal in the low-battery-capacity regime. But these
two notions of optimality (exact vs. asymptotic) are of completely different
nature and should not be confused.

2Here we adopt the popular harvest-store-use architecture, which should be
contrasted with the harvest-use-store architecture in [15].

where r : [0,∞) → [0,∞) is a reward function that specifies
the instantaneous rate achievable with the given level of energy
consumption. The maximum throughput is defined as

γ∗(c) � sup γ(c),

where the supremum is taken over all admissible online power
control policies.

In this paper, we assume that r is a non-decreasing concave
function with continuous first-order derivative r� [Assumption
1]. Special attention is paid to the case

r(x) =
1
2

log(1 + x), x ≥ 0, (1)

which is relevant to the scenario where the underlying com-
munication system is capacity-achieving for additive Gaussian
noise channels.

An online power control policy {ft}∞t=1 is said to be
stationary if the resulting {Gt}∞t=1 and {Bt}∞t=1 satisfy Gt =
f(Bt), t = 1, 2, · · · , for some time-invariant function f .
The following Bellman equation [19, Prop. 1] provides an
implicit characterization of the maximum throughput and the
associated optimal power control policy.

Proposition 1 (Bellman Equation): If there exist a
non-negative scalar γ and a bounded function h : [0, c] →
[0,∞) that satisfy

γ + h(b) = sup
g∈[0,b]

{r(g) + E[h(min{b− g +X, c})]} (2)

for all b ∈ [0, c], then γ∗(c) = γ; moreover, every stationary
policy f such that f(b) attains the supremum in (2) for all
b ∈ [0, c] is throughput-optimal.

The greedy policy is a simple stationary policy of the form

Gt = Bt, t = 1, 2, · · · . (3)

The throughput induced by the greedy policy can serve as a
lower bound on γ∗(c):

γ∗(c) ≥ γ(c) � E[r(min{X, c})].
On the other hand, the concavity of the reward function implies
the following upper bound on γ∗(c) [19, Prop. 2]:

γ∗(c) ≤ γ(c) � r(E[min{X, c}]).
We shall assume3 r�(x) > r�(x) [Assumption 2] since other-
wise γ(c) = γ(c) for all c ≥ 0. It is clear that

lim
c↓0

γ(c)
γ(c)

= 1.

In other words, the greedy policy is asymptotically optimal
when c ↓ 0. To gain a better understanding, we plot4

γ∗(c), γ(c), and γ(c) associated with the reward function
defined in (1) for various distributions5 of X . It can be
seen from the examples in Fig. 1 that, somewhat surpris-
ingly, γ(c) coincides with γ∗(c) when c is below a certain

3We let r�(∞) � limx↑∞ r�(x), which is well-defined since r� is a
non-increasing function.

4Here γ∗(c) is obtained by numerically solving the Bellman equation (i.e.,
(2)).

5The definition of these distributions can be found in Section IV.
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Fig. 1. Illustrations of γ∗(c), γ(c), and γ(c) for several different distributions.

positive threshold c∗ (as a consequence, the greedy policy
is in fact exactly optimal in that regime). This turns out
to be a general phenomenon, as shown by the following
result, which also provides an analytical characterization
of c∗.

Theorem 1 (Threshold c∗): Under Assumptions 1 and 2,
the greedy policy is optimal, i.e., γ∗(c) = γ(c), if and only if

c ≤ c∗, where

c∗ � max{c ≥ 0 : r�(c) ≥ ρ(c)E[r�(X)|X < c]}.
In particular, for the reward function defined in (1),

c∗ = max
�
c ≥ 0 :

1
1 + c

≥ ρ(c)E
�

1
1 +X

����X < c

�	
. (4)
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Remark 1: It is easy to see that r�(c) is a non-increasing
continuous function of c, and ρ(c)E[r�(X)|X < c] is a
non-decreasing left-continuous function of c; moreover,

r�(x) > P(X = x)r�(x) = lim
c↓x

ρ(c)E[r�(X)|X < c],

r�(x) < E[r�(X)] = lim
c↓x

ρ(c)E[r�(X)|X < c], x <∞,

r�(x) < E[r�(X)] = lim
c↑x

ρ(c)E[r�(X)|X < c], x = ∞.

These facts imply that c∗ is well-defined and more generally

{c ≥ 0 : r�(c) ≥ ρ(c)E[r�(X)|X < c]} = [0, c∗]

with x < c∗ ≤ x (the second inequality is strict if x = ∞).
Remark 2: To gain a deeper understanding of (4), it is

instructive to consider the following two cases separately (see
also Fig. 2).

1) Let X be a discrete random variable with probability
mass function pX . For simplicity, we assume the support of
pX is a countable set {ξ1, ξ2, · · · } with 0 ≤ ξ1 < ξ2 < · · · .
In this case, c∗ is the unique positive number satisfying one
of the following two conditions.

i) c∗ ∈ (ξj , ξj+1) for some j and

1
1 + c∗

=
j�
i=1

1
1 + ξi

pX(ξi).

ii) c∗ = ξj+1 for some j and

j�
i=1

1
1 + ξi

pX(ξi) ≤ 1
1 + c∗

≤
j+1�
i=1

1
1 + ξi

pX(ξi).

2) Let X be a continuous random variable with probability
density function fX . In this case, c∗ is the unique positive
number satisfying

1
1 + c∗

=

 c∗

0

1
1 + x

fX(x)dx. (5)

Remark 3: The proof of the “if” part can be slightly mod-
ified to show that as long as r� is continuous and positive (or
constantly zero) over [0, ν] for some ν > 0, the greedy policy
is optimal when c is sufficiently close to 0. Characterizing
the sufficient and necessary condition for the optimality of
the greedy policy under relaxed assumptions on the reward
function is left for future work.

Remark 4: Intuitively, it makes sense to save energy only
when the expected future return exceeds the current loss; with
a small battery, one has no impetus to keep some energy
for later because there is a good chance that the next energy
arrival by itself will get the battery fully charged, rendering
the saved energy wasted. This is exactly the reason why the
greedy policy is optimal in the low-battery-capacity regime.
On the other hand, it also suggests that the optimality of
the greedy policy is specific to online power control. Indeed,
for offline power control or, more generally, power control
with the knowledge of future energy arrivals in a look-ahead
window [28], [29], one can effectively avoid the situation that
the saved energy gets wasted due to battery overflow and
consequently the greedy policy is in general strictly suboptimal
(even in the low-battery-capacity regime).

Proof: See Section III-A. Note that for the reward func-
tion defined in (1),

r�(x) =
1

2(1 + x)
, x ≥ 0,

from which (4) follows immediately.
Next we establish bounds on c∗ that are in general easier

to evaluate than c∗ itself. For c > x, let r�[x,c] (r�[x,c]) denote
the upper concave envelope (the lower convex envelope) of r�

over [x, c].
Proposition 2 (Lower Bound on c∗):

c∗ ≥ c � sup{c ∈ (x, x) : r�(c) ≥ ρ(c)r� [x,c](ξ)}, (6)

where

ξ � max
�
μ− (1 − ρ(c))x

ρ(c)
, x

	
.

In particular, for the reward function defined in (1),

c = sup{c ∈ (x, x) : c ≤ ζ(c)}, (7)

where

ζ(c) �
(1 − ρ(c))(1 + x) + ρ(c)ξ

ρ(c)
.

Remark 5: It is clear that

r�(x) > P(X = x)r�(x) = lim
c↓x

ρ(c)r� [x,c](ξ),

r�(x) < r�(x) = lim
c↑x

ρ(c)r� [x,c](ξ), x = ∞.

Therefore, we must have x < c ≤ x (the second inequality is
strict if x = ∞).

Proof: See Section III-B. Note that for the reward func-
tion defined in (1),

r�[x,c](x) =
1 + x+ c− x

2(1 + x)(1 + c)
, x ∈ [x, c],

from which (7) follows immediately.
Proposition 3 (Upper Bound on c∗):

c∗ ≤ c � sup{c ∈ (x, x) : r�(c) ≥ ρ(c)r� [x,c](ξ)}, (8)

where

ξ � min
�
μ− (1 − ρ(c))c

ρ(c)
, c

	
.

In particular, for the reward function defined in (1),

c = sup
�
c ∈ (x, x) : c ≤ ζ(c)

�
, (9)

where

ζ(c) � 1 − ρ(c) + ξ

ρ(c)
.

Remark 6: It is clear that

r�(μ) > P(X ≤ μ)r�(μ) = lim
c↓μ

ρ(c)r�[x,c](ξ).

Therefore, we must have μ < c ≤ x. This implies that
“c ∈ (x, x)” in (8) and (9) can be replaced by “c ∈ (μ, x)”.
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Fig. 2. Characterization of c∗ for the case where X has a discrete distribution and the case where X has a continuous distribution.

In particular, through some algebraic manipulations, we can
write (9) equivalently as

c = sup
�
c ∈ (μ, x) : c ≤ μ+ ρ(c) − ρ2(c)

1 − ρ(c) + ρ2(c)

	
.

Note that c = x may hold even if x = ∞. As shown in
Appendix A, c = ∞ if x = ∞ and r�(μ − �) = r�(x) for
some � > 0; on the other hand, if x = ∞ and r�(μ) > r�(x),
then c <∞.

Proof: See Section III-C. Note that for the reward func-
tion defined in (1),

r�[x,c](x) =
1

2(1 + x)
, x ∈ [x, c],

from which (9) follows immediately.
We further establish semi-universal bounds on c∗ that

depend only on x, x, and μ.
Proposition 4 (Semi-Universal Lower Bound on c∗):

c∗ ≥ c � sup{c ∈ (x, x) : r�(c) ≥ χ(c)}, (10)

where

χ(c) �

⎧⎪⎪⎨
⎪⎪⎩

sup
ρ(c)∈(0,x−μ

x−c )
ρ(c)r�[x,c](ξ), c ∈ (x, μ],

sup
ρ(c)∈( c−μ

c−x ,1)
ρ(c)r�[x,c](ξ), c ∈ (μ, x).

In particular, for the reward function defined in (1),

c =

�
(1+x)(x−x)

x−μ − 1, μ ≤ x− x− 1,
μ, μ > x− x− 1.

(11)

Remark 7: We let c � x if {c ∈ (x, x) : r�(c) ≥ χ(c)} = ∅.
Proof: See Section III-D.

Proposition 5 (Semi-Universal Upper Bound on c∗):

c∗ ≤ c � sup{c ∈ (x, x) : r�(c) ≥ χ(c)}, (12)

where

χ(c) �

⎧⎪⎨
⎪⎩

inf
ρ(c)∈(0, x−μ

x−c )
ρ(c)r� [x,c](ξ), c ∈ (x, μ],

inf
ρ(c)∈( c−μ

c−x ,1)
ρ(c)r� [x,c](ξ), c ∈ (μ, x).

In particular, for the reward function defined in (1),

c =

�
min{c1, x}, μ ≤ 3

2x+ 1
2 ,

min{c2, x}, μ > 3
2x+ 1

2 ,
(13)

where

c1 � μ+ x+
�

(μ+ x)2 − 4(x2 + x− μ)
2

,

c2 � 4
3
μ+

1
3
.

Proof: See Section III-E.
Consider the reward function defined in (1) and assume that

X is a Bernoulli random variable with P(X = x) = 1−p and
P(X = x) = p, where p ∈ (0, 1). For this special example,
a simple calculation shows that

c∗ = c =

�
x+p
1−p ,

x+p
1−p ≤ x,

x, x+p
1−p > x,

c =

�
(1−p)(x+p)+px

1−p+p2 , x+p
1−p ≤ x,

x, x+p
1−p > x,

c =

�
x+p
1−p ,

(2−p)x+1
1−p ≤ x,

(1 − p)x+ px, (2−p)x+1
1−p > x,

c =

�
min{c1, x}, (1+2p)x+1

2p ≥ x,

min{c2, x}, (1+2p)x+1
2p < x,

where

c1 =
(2 − p)x+ px

2

+

�
((2 − p)x+ px)2 − 4(x2 + p(x− x))

2
,

c2 =
4
3
((1 − p)x+ px) +

1
3
.
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Fig. 3. Plots of c∗, c, c, c, and c against p with x = 0 and x = 5.

Moreover, it can be verified that c = c∗ if x+p
1−p ≥ x, c = c∗

if (2−p)x+1
1−p ≤ x, and c = c∗ if x ≤ min{ (1+2p)x+1

2p , c1}
or (3−4p)x−1

4(1−p) ≤ x ≤ 2px−1
1+2p . Therefore, the bounds in

Propositions 2, 3, 4, and 5 are tight for non-trivial cases. Plots
of c∗, c, c, c, and c against p with x = 0 and x = 5 can be
found in Fig. 3.

It is also interesting to compare the greedy policy with
the well-known fixed fraction policy [19]. Both polices are
linear functions of the current batter energy level, one with
slope 1 and the other with slope p � E[min{X,c}]

c . It is
known the fixed fraction policy is universally near optimal
in the sense that its induced throughput is at least 1

2−p of the
maximum throughput for the reward function defined in (1)
(see the proofs of [19, Prop. 4 and Thm. 2]). Interestingly, this
worst-case multiplicative gap is attained when X is a Bernoulli
random variable with x = 0 as c ↓ 0 (see the proof of [30,
Thm. 7]). Note that 1

2−p approaches 1
2 as p ↓ 0. So in the low-

battery-capacity regime, the throughput induced by the greedy
policy can be almost twice as large as that induced by the fixed
fraction policy.

III. PROOFS

A. Proof of Theorem 1

The proof is divided into two parts. We first use the Bellman
equation (i.e., (2)) to verify that the greedy policy is optimal
when c ≤ c∗. Then we show that a slightly modified version
of the greedy policy achieves strictly higher throughput when
c > c∗.

The main difficulty in solving the Bellman equation is that
the function h associated with the optimal power control policy
is in general unknown. However, since we only aim to check
the optimality of the greedy policy, it is easy to construct a
candidate function h. Specifically, in view of Proposition 1,
the greedy policy is optimal if

sup
g∈[0,b]

{r(g) + E[h(min{b− g +X, c})]}

= r(b) + E[h(min{X, c})]
= γ(c) + h(b)

for all b ∈ [0, c], and the second equality naturally suggests
that h(x) = r(x) for x ∈ [0, c]. Therefore, it suffices to check
whether the supremum of φ(g) � r(g) + E[r(min{b − g +
X, c})] over [0, b] is attained at g = b for all b ∈ [0, c].
We show in Appendix B that for g ∈ (0, b],

lim
�↓0

1
�
(φ(g) − φ(g − �))

= r�(g) − ρ(c− b+ g)E[r�(b − g +X)|X < c− b+ g],
(14)

and for g ∈ [0, b),

lim
�↓0

1
�
(φ(g + �) − φ(g))

= r�(g) − ρ(c− b+ g)E[r�(b− g +X)|X < c− b + g]
− P(X = c− b+ g)r�(c). (15)

Therefore, φ is semi-differentiable and consequently is con-
tinuous over [0, b]. Note that for c ∈ [0, c∗], b ∈ [0, c], and
g ∈ [0, b],

r�(g) − ρ(c− b+ g)E[r�(b− g +X)|X < c− b+ g]
≥ r�(c) − ρ(c)E[r�(X)|X < c]
≥ 0.

So φ is a non-decreasing function6 over [0, b] for all b ∈ [0, c]
when c ≤ c∗. This proves the “if” part of Theorem 1.

To prove the “only if” part of Theorem 1, we shall construct
an online power control policy that outperforms the greedy
policy when c > c∗. To this end, we modify the greedy policy,
which is defined in (3), as follows: for t = 1, 2, · · · ,

G2t−1 =

�
B2t−1 − �, X2t−1 ≥ min{x, c} − �,

B2t−1, otherwise,

G2t = B2t,

where � ∈ (0, 1
2 min{x, c}]. As compared to the greedy policy,

the modified policy incurs a rate loss E[r(min{X2t−1, c})]−
E[r(G2t−1)] in time slot 2t − 1, but gains E[r(G2t)] −
E[r(min{X2t, c})] in time slot 2t. It can be verified that

E[r(min{X2t−1, c})] − E[r(G2t−1)]
= P(X2t−1 ≥ min{x, c} − �)E[r(min{X2t−1, c})

− r(min{X2t−1, c} − �)|X2t−1 ≥ min{x, c} − �]
= P(min{x, c} − � ≤ X2t−1 < c)E[r(X2t−1)

− r(X2t−1 − �)|min{x, c} − � ≤ X2t−1 < c]
+ P(X2t−1 ≥ c)E[r(c) − r(c− �)|X2t−1 ≥ c]

≤ P(min{x, c} − � ≤ X2t−1 < c)E[r�(min{x, c} − 2�)
× �|min{x, c} − � ≤ X2t−1 < c]

+ P(X2t−1 ≥ c)E[r�(min{x, c} − 2�)�|X2t−1 ≥ c]
= P(X ≥ min{x, c} − �)r�(min{x, c} − 2�)�,

6Here we have invoked the fact that a continuous function f with
non-negative left derivative must be non-decreasing. This fact can be proved
as follows. Assume there exist α < β such that f(α) > f(β). Let
κ � f(α)−f(β)

2(β−α)
and τ � max{x ∈ [α, β] : f(x�) − f(β) > κ(β −

x�) for all x� ∈ [α, x)}. It follows by the continuity of f that τ ∈ (α, β]
and f(τ) − f(β) = κ(β − τ). Since the left derivative of f is non-negative
at τ , there exists τ � ∈ [α, τ) such that f(τ �)−f(τ) ≤ κ(τ −τ �). Therefore,
we have f(τ �)− f(β) = f(τ �)− f(τ) + f(τ)− f(β) ≤ κ(β − τ �), which
is contradictory to the definition of τ .
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and

E[r(G2t)] − E[r(min{X2t, c})]
= P(X2t−1 ≥ min{x, c} − �)E[r(min{X2t + �, c})

− r(min{X2t, c})]
= P(X2t−1 ≥ min{x, c} − �)(P(X2t < c− �)

× E[r(X2t + �) − r(X2t)|X2t < c− �]
+ P(c− � ≤ X2t < c)E[r(c) − r(X2t)

|c− � ≤ X2t < c])
≥ P(X2t−1 ≥ min{x, c} − �)P(X2t < c− �)

× E[r(X2t + �) − r(X2t)|X2t < c− �]
≥ P(X2t−1 ≥ min{x, c} − �)P(X2t < c− �)

× E[r�(X2t + �)�|X2t < c− �]
= P(X ≥ min{x, c} − �)ρ(c− �)

× E[r�(X + �)|X < c− �]�.

Clearly, we have

P(X ≥ min{x, c} − �) > 0, � > 0.

Moreover,

lim
�↓0

r�(min{x, c} − 2�) = r�(min{x, c}),

and it follows by the monotone convergence theorem that

lim
�↓0

ρ(c− �)E[r�(X + �)|X < c− �]

= ρ(c)E[r�(X)|X < c].

If c ≤ x,

r�(min{x, c}) = r�(c)
< ρ(c)E[r�(X)|X < c], (16)

where (16) is due to the assumption that c > c∗. If c > x,

r�(min{x, c}) = r�(x)
< E[r�(X)] (17)

= ρ(c)E[r�(X)|X < c],

where (17) is due to the assumption that r�(x) > r�(x).
Therefore, when � is sufficiently close to 0,

E[r(min{X2t−1, c})] − E[r(G2t−1)]
< E[r(G2t)] − E[r(min{X2t, c})]

and the overall throughput is improved. This proves the “only
if” part of Theorem 1.

B. Proof of Proposition 2

For c ∈ (x, x),

E[r�(X)|X < c] ≤ E[r�[x,c](X)|X < c]

≤ r�[x,c](E[X |X < c]), (18)

where (18) is due to Jensen’s inequality. Note that

μ = ρ(c)E[X |X < c] + (1 − ρ(c))E[X |X ≥ c]
≤ ρ(c)E[X |X < c] + (1 − ρ(c))x,

which implies

E[X |X < c] ≥ μ− (1 − ρ(c))x
ρ(c)

.

Moreover, we have E[X |X < c] ≥ x. Since r�[x,c](x) is a
non-increasing7 function of x over [x, c], it follows that

r�[x,c](E[X |X < c]) ≤ r� [x,c](ξ). (19)

Combining (18) and (19) gives

E[r�(X)|X < c] ≤ r�[x,c](ξ).

Therefore,�
c ∈ (x, x) : r�(c) ≥ ρ(c)r�[x,c](ξ)

�
⊆ {c ∈ (x, x) : r�(c) ≥ ρ(c)E[r�(X)|X < c]} ,

which, together with the fact (see Remark 1) that

sup {c ∈ (x, x) : r�(c) ≥ ρ(c)E[r�(X)|X < c]} = c∗,

proves (6).

C. Proof of Proposition 3

For c ∈ (x, x),

E[r�(X)|X < c] ≥ E[r� [x,c](X)|X < c]

≥ r�[x,c](E[X |X < c]), (20)

where (20) is due to Jensen’s inequality. Note that

μ = ρ(c)E[X |X < c] + (1 − ρ(c))E[X |X ≥ c]
≥ ρ(c)E[X |X < c] + (1 − ρ(c))c,

which implies

E[X |X < c] ≤ μ− (1 − ρ(c))c
ρ(c)

.

Moreover, we have E[X |X < c] ≤ c. Since r�[x,c](x) is a
non-increasing8 function of x over [x, c], it follows that

r�[x,c](E[X |X < c]) ≥ r� [x,c](ξ). (21)

Combining (20) and (21) gives

E[r�(X)|X < c] ≥ r�[x,c](ξ).

Therefore,�
c ∈ (x, x) : r�(c) ≥ ρ(c)r�[x,c](ξ)

�
⊇ {c ∈ (x, x) : r�(c) ≥ ρ(c)E[r�(X)|X < c]} ,

which, together with the fact (see Remark 1) that

sup {c ∈ (x, x) : r�(c) ≥ ρ(c)E[r�(X)|X < c]} = c∗,

proves (8).

7This is because r�[x,c] is the upper concave envelope of a non-increasing
function r� over [x, c].

8This is because r�[x,c] is the lower convex envelope of a non-increasing
function r� over [x, c].
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D. Proof of Proposition 4

For c ∈ (x, x), we have ρ(c) ∈ (0, 1) and

ρ(c)x+ (1 − ρ(c))c < μ < ρ(c)c+ (1 − ρ(c))x,

which can be written equivalently as

c− μ

c− x
< ρ(c) <

x− μ

x− c
.

Therefore, we have

{c ∈ (x, x) : r�(c) ≥ χ(c)}
⊆ {c ∈ (x, x) : r�(c) ≥ ρ(c)r� [x,c](ξ)}

and consequently c ≤ c. Invoking Proposition 2 proves (10).
Now we proceed to prove (11). It suffices to consider the

case x <∞ since otherwise c = x and (11) is obviously true.
Clearly, r�(c) ≥ χ(c) if and only if

c ≤

⎧⎪⎨
⎪⎩

inf
ρ(c)∈(0, x−μ

x−c )
ζ(c), c ∈ (x, μ],

inf
ρ(c)∈( c−μ

c−x ,1)
ζ(c), c ∈ (μ, x),

where

ζ(c) =

⎧⎨
⎩

1+x
ρ(c) − 1, ρ(c) ∈

�
0, x−μx−x

�
,

μ−x+x+1
ρ(c) + x− x− 1, ρ(c) ∈

�
x−μ
x−x , 1

�
.

For c ∈ (x, μ],

inf
ρ(c)∈(0, x−μ

x−c )
ζ(c)

= min

�
inf

ρ(c)∈(0, x−μ
x−x ]

1 + x

ρ(c)
− 1,

inf
ρ(c)∈(x−μ

x−x ,
x−μ
x−c )

μ− x+ x+ 1
ρ(c)

+ x− x− 1

�

= inf
ρ(c)∈(x−μ

x−x ,
x−μ
x−c )

μ− x+ x+ 1
ρ(c)

+ x− x− 1 (22)

=

�
(1+x)(x−x)

x−μ − 1, μ ≤ x− x− 1,
(μ−x+x+1)(x−c)

x−μ + x− x− 1, μ > x− x− 1,
(23)

where (22) is due to the fact that

inf
ρ(c)∈(0, x−μ

x−x ]

1 + x

ρ(c)
− 1

=
μ− x+ x+ 1

ρ(c)
+ x− x− 1

����
ρ(c)= x−μ

x−x

. (24)

For c ∈ (μ, x),

inf
ρ(c)∈( c−μ

c−x ,1)
ζ(c)

= min

�
inf

ρ(c)∈( c−μ
c−x ,

x−μ
x−x ]

1 + x

ρ(c)
− 1,

inf
ρ(c)∈(x−μ

x−x ,1)

μ− x+ x+ 1
ρ(c)

+ x− x− 1

�

= inf
ρ(c)∈(x−μ

x−x ,1)

μ− x+ x+ 1
ρ(c)

+ x− x− 1 (25)

=

�
(1+x)(x−x)

x−μ − 1, μ ≤ x− x− 1,
μ, μ > x− x− 1,

(26)

where (25) is due to (24). One can readily prove (11)
given (23) and (26).

E. Proof of Proposition 5

We shall only prove (13) since the proof of (12) is similar
to that of (10). Clearly, r�(c) ≥ χ(c) if and only if

c ≤

⎧⎪⎪⎨
⎪⎪⎩

sup
ρ(c)∈(0,x−μ

x−c )
ζ(c), c ∈ (x, μ],

sup
ρ(c)∈( c−μ

c−x ,1)
ζ(c), c ∈ (μ, x),

(27)

where

ζ(c) =

�
1+c
ρ − 1, c ∈ (x, μ],
μ+(1−ρ(c))(ρ(c)−c)

ρ2(c) , c ∈ (μ, x).

For c ∈ (x, μ],

sup
ρ(c)∈(0, x−μ

x−c )
ζ(c) = ∞

and consequently (27) trivially holds. For c ∈ (μ, x), we have

sup
ρ(c)∈( c−μ

c−x ,1)
ζ(c)

=

⎧⎪⎨
⎪⎩

(c−x)(1+x)
c−μ − 1, c ≤ 2x+ 1,

(1+c)2

4(c−μ) − 1, c ∈ (2x+ 1, 2μ+ 1],

μ, c > 2μ+ 1,

which is a non-increasing function of c. For c > μ,

c =
(c− x)(1 + x)

c− μ
− 1

has a unique solution c = c1, and

c =
(1 + c)2

4(c− μ)
− 1

has a unique solution c = c2. Note that

(c− x)(1 + x)
c− μ

≤ (1 + c)2

4(c− μ)
, c ∈ (μ, 2μ+ 1].

Therefore, c2 ≤ 2x+1 (i.e., μ ≤ 3
2x+ 1

2 ) implies c1 ≤ 2x+1.
Now one can readily complete the proof of (13).
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IV. ASYMPTOTIC RELATIONSHIP BETWEEN c∗ AND μ

We shall focus on the reward function defined in (1) and
provide a detailed analysis of c∗ for a few examples, with a
particular interest in understanding how c∗ scales with μ as
μ ↓ 0 or μ ↑ ∞. In the sequel we write c∗ ∼0 ψ(μ) (c∗ ∼∞
ψ(μ)) to indicate that limμ↓0 c∗

ψ(μ) = 1 (limμ↑∞ c∗
ψ(μ) = 1).

A. Discrete Distribution

1) Geometric Distribution:

pX(k) = (1 − p)kp, k = 0, 1, · · · ,
where p ∈ (0, 1).

Note that μ = 1−p
p . Clearly,

c∗ = μ, μ ∈ (0, 1],

which implies c∗ ∼0 μ.
For any a > 0,

lim
μ↑∞

�
1 +

aμ

logμ

� � aμ
log μ 	�
k=0

(1 − p)kp
1 + k

= lim
μ↑∞

�
1 +

aμ

logμ

� � aμ
log μ 	�
k=0

�
μ

1+μ

�k
(1 + μ)(1 + k)

= lim
μ↑∞

�
1 +

aμ

logμ

� � aμ
log μ 	�
k=0

1
(1 + μ)(1 + k)

(28)

= lim
μ↑∞

�
1 +

aμ

logμ

�
1

1 + μ
log

�
1 +

�
aμ

logμ

��

= lim
μ↑∞

a

logμ
log

�
aμ

logμ

�
= a,

where (28) is due to the fact that

1 ≥
�

μ

1 + μ

�k
≥

�
μ

1 + μ

� aμ
log μ

,

k = 0, 1, · · · ,
�
aμ

log μ

�
,

and

lim
μ↑∞

�
μ

1 + μ

� aμ
log μ

= 1.

Therefore, we must have c∗ ∼∞ μ
log μ .

2) Poisson Distribution:

pX(k) =
e−λλk

k!
, k = 0, 1, · · · ,

where λ > 0.
Note that μ = E[(X − μ)2] = λ. Clearly,

c∗ = eμ − 1, μ ∈ (0, log 2],

which implies c∗ ∼0 μ.

It is shown in Appendix C that for any a > 0,

lim
μ↑∞

(1 + aμ)
�μ+μ

2
3 	�

k=
μ−μ 2
3 �

e−λλk

(1 + k)(k!)
= a, (29)

lim
μ↑∞

(1 + aμ)
∞�

k=�μ+μ
2
3 	+1

e−λλk

(1 + k)(k!)
= 0, (30)

lim
μ↑∞

(1 + aμ)

μ−μ 2

3 �−1�
k=0

e−λλk

(1 + k)(k!)
= 0. (31)

Therefore, we have

lim
μ↑∞

(1 + aμ)
�aμ	�
k=0

e−λλk

(1 + k)(k!)
=

�
0, a < 1,
a, a > 1,

which implies c∗ ∼∞ μ.
We plot c∗ against μ in Fig. 4 for the geometric distribution

and the Poisson distribution, which confirms our asymptotic
analysis.

B. Continuous Distribution

1) Uniform Distribution:

fX(x) =

�
1
ω , x ∈ [0, ω],
0, x /∈ [0, ω],

where ω > 0.
We can write (5) equivalently as

1 + c∗

ω
log(1 + c∗) = 1.

Note that μ = ω
2 . For any a > 0,

lim
μ↓0

1 + aμ

ω
log (1 + aμ)

= lim
μ↓0

1 + aμ

2μ
log (1 + aμ)

=
a

2
.

Therefore, we must have c∗ ∼0 2μ.
For any a > 0,

lim
μ↑∞

1 + aμ
logμ

ω
log

�
1 +

aμ

logμ

�

= lim
μ↑∞

1 + aμ
logμ

2μ
log

�
1 +

aμ

logμ

�

= lim
μ↑∞

a

2 logμ
log

�
aμ

logμ

�

=
a

2
.

Therefore, we must have c∗ ∼∞ 2μ
logμ .
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Fig. 4. The relationship between c∗ and μ for some discrete distributions.

2) Exponential Distribution:

fX(x) =

�
ηe−ηx, x ≥ 0,
0, x < 0,

where η > 0.
We can write (5) equivalently as

(1 + c∗)

 c∗

0

ηe−ηx

1 + x
dx = 1.

Note that μ = 1
η . For any a > 0,

(1 − aμ logμ)

 −aμ logμ

0

ηe−ηx

1 + x
dx

= (1 − aμ logμ)

 −aμ log μ

0

e−
x
μ

μ(1 + x)
dx

= (1 − aμ logμ)

 −aμ log μ

0

e−
x
μ

μ

× (1 − x+ ox↓0(x))dx, (32)

where ox↓0(x) = x2

1+x ≤ x2. It can be verified that
 −aμ log μ

0

e−
x
μ

μ
dx = 1 − μa, (33)

and 
 −aμ logμ

0

xe−
x
μ

μ
dx = aμa+1 logμ− μa+1 + μ. (34)

Substituting (33) and (34) into (32) gives

(1 − aμ logμ)

 −aμ logμ

0

ηe−ηx

1 + x
dx

= 1 − aμ logμ− μa + oμ↓0(μ logμ).

When μ is sufficiently close to 0,

1 − aμ logμ− μa + oμ↓0(μ log μ)

�
< 1, a < 1,
> 1, a > 1.

Therefore, we must have c∗ ∼0 −μ logμ.

For any a > 0,

lim
μ↑∞

�
1 +

aμ

logμ

� 
 aμ
log μ

0

ηe−ηx

1 + x
dx

= lim
μ↑∞

�
1 +

aμ

logμ

� 
 aμ
log μ

0

e−
x
μ

μ(1 + x)
dx

= lim
μ↑∞

�
1 +

aμ

logμ

� 
 aμ
log μ

0

1
μ(1 + x)

dx (35)

= lim
μ↑∞

�
1 +

aμ

logμ

�
1
μ

log
�

1 +
aμ

logμ

�

= lim
μ↑∞

a

logμ
log

�
aμ

logμ

�
= a,

where (35) is due to the fact that

1 ≥ e−
x
μ ≥ e−

a
log μ , x ∈

�
0,

aμ

logμ

�
,

and

lim
μ↑∞

e−
a

log μ = 1.

Therefore, we must have c∗ ∼∞ μ
logμ .

3) Rayleigh Distribution:

fX(x) =

�
x
θ e

− x2
2θ , x ≥ 0,

0, x < 0,

where θ > 0.
We can write (5) equivalently as

(1 + c∗)

 c∗

0

xe−
x2
2θ

θ(1 + x)
dx = 1.
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Fig. 5. The relationship between c∗ and μ for some continuous distributions.

Note that μ =
�

πθ
2 . For any a > 0,

(1 + aμ
�
− logμ)


 aμ
√− logμ

0

xe−
x2
2θ

θ(1 + x)
dx

= (1 + aμ
�
− logμ)


 aμ
√− log μ

0

πxe
−πx2

4μ2

2μ2(1 + x)
dx

= (1 + aμ
�
− logμ)


 aμ
√− log μ

0

πe
−πx2

4μ2

2μ2

× (x− x2 + ox↓0(x2))dx, (36)

where ox↓0(x2) = x3

1+x ≤ x3. It can be verified that


 aμ
√− logμ

0

πxe
−πx2

4μ2

2μ2
dx = 1 − μ

πa2
4 , (37)

and


 aμ
√− logμ

0

πx2e
−πx2

4μ2

2μ2
dx

= −aμπa2
4 +1

�
− logμ+ μ


 a
√− logμ

0

e−
πy2

4 dy. (38)

Substituting (37) and (38) into (36) gives

(1 + aμ
�
− logμ)


 aμ
√− logμ

0

xe−
x2
2θ

θ(1 + x)
dx

= 1 + aμ
�
− logμ− μ

πa2
4 + oμ↓0(μ

�
− logμ).

When μ is sufficiently close to 0,

1 + aμ
�
− logμ− μ

πa2
4 + oμ↓0(μ

�
− logμ)�

< 1, a < 2√
π
,

> 1, a > 2√
π
.

Therefore, we must have c∗ ∼0
2√
π
μ
√− logμ.

For any a > 0,

lim
μ↑∞

(1 + aμ)

 aμ

0

xe−
x2
2θ

θ(1 + x)
dx

= lim
μ↑∞

(1 + aμ)

 aμ

0

πxe
−πx2

4μ2

2μ2(1 + x)
dx

= lim
μ↑∞

(1 + aμ)

 log μ

0

πxe
−πx2

4μ2

2μ2(1 + x)
dx

+ lim
μ↑∞

(1 + aμ)

 aμ

logμ

πxe
−πx2

4μ2

2μ2(1 + x)
dx. (39)

It can be verified that

0 ≤ lim
μ↑∞

(1 + aμ)

 logμ

0

πxe
−πx2

4μ2

2μ2(1 + x)
dx

≤ lim
μ↑∞

(1 + aμ)

 logμ

0

π

2μ2
dx

= lim
μ↑∞

π(1 + aμ) logμ
2μ2

= 0,

which implies

lim
μ↑∞

(1 + aμ)

 logμ

0

πxe
−πx2

4μ2

2μ2(1 + x)
dx = 0. (40)

Moreover,

lim
μ↑∞

(1 + aμ)

 aμ

log μ

πxe
−πx2

4μ2

2μ2(1 + x)
dx

= lim
μ↑∞

(1 + aμ)

 aμ

logμ

πe
−πx2

4μ2

2μ2
dx (41)

= lim
μ↑∞

(1 + aμ)

 a

log μ
μ

πe−
πy2

4

2μ
dy

=
πa

2


 a

0

e−
πy2

4 dy, (42)
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where (41) is due to the fact that

log μ
1 + logμ

≤ x

1 + x
≤ aμ

1 + aμ
, x ∈ [logμ, aμ],

and

lim
μ↑∞

logμ
1 + logμ

= lim
μ↑∞

aμ

1 + aμ
= 1.

Substituting (40) and (42) into (39) gives

lim
μ↑∞

(1 + aμ)

 aμ

0

xe−
x2
2θ

θ(1 + x)
dx =

πa

2


 a

0

e−
πy2

4 dy.

Therefore, we must have c∗ ∼∞ a∗μ, where a∗ ≈ 0.875 is
the unique positive number satisfying

πa∗

2


 a∗

0

e−
πy2
4 dy = 1.

We plot c∗ against μ in Fig. 5 for the uniform distribution,
the exponential distribution, and the Rayleigh distribution,
which confirms our asymptotic analysis.

V. CONCLUSION

We have studied the problem of online power control for
battery limited energy harvesting communications. The main
finding of this work is that the greedy policy achieves the
maximum throughput if and only if the battery capacity is
below a certain threshold. It is worth noting that this threshold
depends on the distribution of the energy arrival process
although the greedy policy itself does not. In fact, there does
not exist a positive threshold on the battery capacity below
which the greedy policy (or any other universal policy) is
throughput-optimal for all energy arrival processes. Never-
theless, as shown in [19], it is possible to define certain
weakened notion of universality and optimality, and construct
the associated online power control policy. Further progress
along this line of research can be found in [30].

The optimality condition for the greedy policy requires
that the battery capacity is no greater than the peak of the
energy arrival process, which might not be fulfilled in many
scenarios where the current energy harvesting technologies
are being considered. However, it becomes relevant in certain
emerging applications with massive deployment of microscale
batteries (e.g., biobatteries and nanobatteries) in energy-dense
environments (e.g., living body and radiation-rich outer space).
It may even have implications beyond energy harvesting com-
munications, say, explaining the energy consumption patterns
of certain biological cells.

It is also worth pointing out that the optimality of the greedy
policy in the low-battery-capacity regime is a manifestation of
the following more general phenomenon: under mild condi-
tions on the distribution of the energy arrival process, for any
battery capacity c > 0, the optimal policy f behaves exactly
like the greedy policy when the battery energy level is below
a certain threshold9 b ∈ (0, c], i.e., f(b) = b for all b ∈ [0, b].
A variant of the proof of Theorem 1 can be used to provide a

9Here the threshold b depends on the battery capacity and the distribution
of the energy arrival process. Theorem 1 basically deals with the special case
where b coincides with c.

rigorous explanation of this phenomenon. As such, our work
not only gives insight into the greedy policy, but also sheds
light on the optimal policy in general.

APPENDIX A
PROOF OF A STATEMENT IN REMARK 6

We assume x = ∞ throughout this proof.
First consider the case r�(μ − �) = r�(x) for some � > 0,

which implies

r�(x) = r�(x), x ≥ μ− �. (43)

Note that for c ≥ μ,

r�(c) = r�(x), (44)

ρ(c)r� [x,c](ξ) ≤ r�
�
μ− (1 − ρ(c))c

ρ(c)

�
. (45)

Moreover, in view of (43) and the fact that

lim
c↑x

μ− (1 − ρ(c))c
ρ(c)

= μ,

we have

r�
�
μ− (1 − ρ(c))c

ρ(c)

�
= r�(x) (46)

for all sufficiently large c. Combining (44), (45), and (46)
proves c = ∞.

Next consider the case r�(μ) > r�(x). There must exist
� > 0 such that r�(μ + �) > r�(x). For c > x and x ∈
[x,min{μ, c}], it is easy to establish the following uniform
lower bound:

r�[x,c](x)

≥ min
�

�

μ+ �− x
r�(μ) +

μ− x

μ+ �− x
r�(x), r�(μ+ �)

	
.

Clearly, we have ξ ∈ [x,min{μ, c}] for c > x. Now it can be
readily verified that

lim
c↑x

ρ(c)r� [x,c](ξ)

≥ min
�

�

μ+ �− x
r�(μ) +

μ− x

μ+ �− x
r�(x), r�(μ+ �)

	
> r�(x),

which implies x <∞.
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APPENDIX B
PROOF OF (14) AND (15)

We shall first prove (14). Note that

φ(g) − φ(g − �)
= r(g) − r(g − �)

+ ρ(c− b+ g)E[r(b − g +X)|X < c− b+ g]
− ρ(c− b+ g − �)E[r(b − g + �+X)

|X < c− b+ g − �]
− P(c− b+ g − � ≤ X < c− b+ g)r(c)

= r(g) − r(g − �)
+ ρ(c− b+ g)E[r(b − g +X)|X < c− b+ g]
− ρ(c− b+ g)E[r(b − g + �+X)|X < c− b+ g]
+ ρ(c− b+ g)E[r(b − g + �+X)|X < c− b+ g]
− ρ(c− b+ g − �)E[r(b − g + �+X)

|X < c− b+ g − �]
− P(c− b+ g − � ≤ X < c− b+ g)r(c)

= r(g) − r(g − �)
+ ρ(c− b+ g)E[r(b − g +X) − r(b − g + �+X)

|X < c− b+ g]
+ P(c− b+ g − � ≤ X < c− b+ g)
× E[r(b − g + �+X) − r(c)

|c− b+ g − � ≤ X < c− b+ g].

Therefore,

lim
�↓0

1
�
(φ(g) − φ(g − �))

= lim
�↓0

1
�
(r(g) − r(g − �))

+ lim
�↓0

1
�
ρ(c− b+ g)E[r(b − g +X)

− r(b − g + �+X)|X < c− b+ g]

+ lim
�↓0

1
�
P(c− b+ g − � ≤ X < c− b+ g)

× E[r(b − g + �+X) − r(c)
|c− b+ g − � ≤ X < c− b+ g]. (47)

Clearly, we have

lim
�↓0

1
�
(r(g) − r(g − �)) = r�(g). (48)

Moreover,

lim
�↓0

1
�
ρ(c− b+ g)E[r(b − g +X)

− r(b − g + �+X)|X < c− b+ g]

= − lim
�↓0

1
�
ρ(c− b+ g)

× E

�
 �

0

r�(b − g + v +X)dv
����X < c− b+ g

�

= − lim
�↓0

1
�


 �

0

ρ(c− b+ g)

× E[r�(b− g + v +X)|X < c− b+ g]dv (49)

= −ρ(c− b + g)E[r�(b− g +X)|X < c− b+ g], (50)

where (49) follows by Fubini’s theorem, and (50) is due to
the fact that

lim
�↓0

ρ(c− b+ g)E[r�(b− g + �+X)|X < c− b+ g]

= ρ(c− b+ g)E[r�(b − g +X)|X < c− b+ g]

as a consequence of the monotone convergence theorem. It can
also be verified that

0 ≤ lim inf
�↓0

1
�
P(c− b+ g − � ≤ X < c− b+ g)

× E[r(b − g + �+X) − r(c)
|c− b+ g − � ≤ X < c− b+ g]

≤ lim sup
�↓0

1
�
P(c− b+ g − � ≤ X < c− b+ g)

× E[r(b − g + �+X) − r(c)
|c− b+ g − � ≤ X < c− b+ g]

≤ lim sup
�↓0

1
�
P(c− b+ g − � ≤ X < c− b+ g)

× E[r�(c)(b − g + �+X − c)
|c− b+ g − � ≤ X < c− b+ g]

≤ lim sup
�↓0

P(c− b+ g − � ≤ X < c− b+ g)r�(c)

= 0,

which implies

lim
�↓0

1
�
P(c− b+ g − � ≤ X < c− b+ g)

× E[r(b − g + �+X) − r(c)
|c− b+ g − � ≤ X < c− b+ g]

= 0. (51)

Substituting (48), (50), and (51) into (47) proves (14).
Now we proceed to prove (15). Note that

φ(g + �) − φ(g)
= r(g + �) − r(g)

+ ρ(c− b+ g + �)E[r(b − g − �+X)
|X < c− b+ g + �]

− ρ(c− b+ g)E[r(b − g +X)|X < c− b+ g]
− P(c− b+ g ≤ X < c− b+ g + �)r(c)

= r(g + �) − r(g)
+ ρ(c− b+ g + �)E[r(b − g − �+X)

|X < c− b+ g + �]
− ρ(c− b+ g)E[r(b − g − �+X)|X < c− b+ g]
+ ρ(c− b+ g)E[r(b − g − �+X)|X < c− b+ g]
− ρ(c− b+ g)E[r(b − g +X)|X < c− b+ g]
− P(c− b+ g ≤ X < c− b+ g + �)r(c)

= r(g + �) − r(g)
+ ρ(c− b+ g)E[r(b − g − �+X) − r(b − g +X)

|X < c− b+ g]
+ P(c− b+ g ≤ X < c− b+ g + �)
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× E[r(b − g − �+X) − r(c)
|c− b+ g ≤ X < c− b+ g + �]

= r(g + �) − r(g)
+ ρ(c− b+ g)E[r(b − g − �+X) − r(b − g +X)

|X < c− b+ g]
+ P(c− b+ g < X < c− b+ g + �)
× E[r(b − g − �+X) − r(c)

|c− b+ g < X < c− b+ g + �]
+ P(X = c− b+ g)(r(c − �) − r(c)).

Therefore,

lim
�↓0

1
�
(φ(g + �) − φ(g))

= lim
�↓0

1
�
(r(g + �) − r(g))

+ lim
�↓0

1
�
ρ(c− b+ g)E[r(b − g − �+X)

− r(b − g +X)|X < c− b+ g]

+ lim
�↓0

1
�
P(c− b+ g < X < c− b+ g + �)

× E[r(b − g − �+X) − r(c)
|c− b + g < X < c− b+ g + �]

+ lim
�↓0

1
�
P(X = c− b+ g)(r(c − �) − r(c)). (52)

Similarly to (48), (50), and (51), we have

lim
�↓0

1
�
(r(g + �) − r(g)) = r�(g), (53)

lim
�↓0

1
�
ρ(c− b+ g)E[r(b − g − �+X)

− r(b − g +X)|X < c− b+ g]
= −ρ(c− b+ g)E[r�(b − g +X)|X < c− b+ g], (54)

lim
�↓0

1
�
P(c− b+ g < X < c− b+ g + �)

× E[r(b − g − �+X) − r(c)
|c− b + g < X < c− b+ g + �]

= 0. (55)

Moreover,

lim
�↓0

1
�
P(X = c− b+ g)(r(c− �) − r(c))

= −P(X = c− b + g)r�(c). (56)

Substituting (53), (54), (55), and (56) into (52) proves (15).

APPENDIX C
PROOF OF (29), (30), AND (31)

We have

P(�μ− μ
2
3 � ≤ X ≤ �μ+ μ

2
3 �)

≥ P(|X − μ| < μ
2
3 )

= 1 − P(|X − μ| ≥ μ
2
3 )

≥ 1 − E[(X − μ)2]
μ

4
3

(57)

= 1 − μ− 1
3 ,

where (57) is due to Chebyshev’s inequality. Therefore,

lim
μ↑∞

P(�μ− μ
2
3 � ≤ X ≤ �μ+ μ

2
3 �) = 1.

Now we are in a position to prove (29). It can be verified
that

lim
μ↑∞

(1 + aμ)
�μ+μ

2
3 	�

k=
μ−μ 2
3 �

e−λλk

(1 + k)(k!)

= lim
μ↑∞

a

�μ+μ
2
3 	�

k=
μ−μ 2
3 �

e−λλk

k!
(58)

= lim
μ↑∞

aP(�μ− μ
2
3 � ≤ X ≤ �μ+ μ

2
3 �)

= a,

where (58) is due to the fact that

1 + aμ

1 + �μ+ μ
2
3 � ≤ 1 + aμ

1 + k
≤ 1 + aμ

1 + �μ− μ
2
3 � ,

k = �μ− μ
2
3 �, · · · , �μ+ μ

2
3 �,

and

lim
μ↑∞

1 + aμ

1 + �μ+ μ
2
3 � = lim

μ↑∞
1 + aμ

1 + �μ− μ
2
3 � = a.

This proves (29).
Next we proceed to prove (30). It can be verified that

lim
μ↑∞

(1 + aμ)
∞�

k=�μ+μ
2
3 	+1

e−λλk

(1 + k)(k!)

≤ lim
μ↑∞

a

∞�
k=�μ+μ

2
3 	+1

e−λλk

k!
(59)

= lim
μ↑∞

aP(X ≥ �μ+ μ
2
3 � + 1)

≤ lim
μ↑∞

a(1 − P(�μ− μ
2
3 � ≤ X ≤ �μ+ μ

2
3 �))

= 0,

where is (59) due to the fact that

1 + aμ

1 + k
≤ 1 + aμ

�μ+ μ
2
3 � + 2

, k ≥ �μ+ μ
2
3 � + 1,

and

lim
μ↑∞

1 + aμ

�μ+ μ
2
3 � + 2

= a.

This proves (30).
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Finally, we shall prove (31). Note that

lim
μ↑∞

(1 + aμ)

μ−μ 2

3 �−1�
k=0

e−λλk

(1 + k)(k!)

= lim
μ↑∞

(1 + aμ)

μ−μ 2

3 �−1�
k=0

e−μμk

(1 + k)(k!)

≤ lim
μ↑∞

(1 + aμ)
�μ−μ 2

3 	−1�
k=0

e−μμk

k!

≤ lim
μ↑∞

(1 + aμ)�μ− μ
2
3 �e

−μμ�μ−μ 2
3 	

�μ− μ
2
3 �! , (60)

where (60) is due to the fact that

μk

k!
≤ μ�μ−μ 2

3 	

�μ− μ
2
3 �! , k = 0, 1, · · · , �μ− μ

2
3 � − 1.

Let δ � μ−�μ−μ 2
3 	

μ . We have

lim
μ↑∞

(1 + aμ)�μ− μ
2
3 �e

−μμ�μ−μ 2
3 	

�μ− μ
2
3 �!

= lim
μ↑∞

(1 + aμ)μ(1 − δ)
e−μμμ(1−δ)

(μ(1 − δ))!

= lim
μ↑∞

(1 + aμ)μ(1 − δ)
e−μδ(1 − δ)−μ(1−δ)− 1

2√
2πμ

, (61)

where (61) follows by Stirling’s approximation (μ(1−δ))! ∼∞�
2πμ(1 − δ)e−μ(1−δ)(μ(1 − δ))μ(1−δ). Since

log((1 − δ)μ(1−δ)+ 1
2 )

= (μ(1 − δ) +
1
2
) log(1 − δ)

= (μ(1 − δ) +
1
2
)(−δ − δ2

2
+ oδ↓0(δ2))

= −μδ +
μδ2

2
+ oμ↑∞(μ

1
3 ),

it follows that

(1 − δ)−μ(1−δ)− 1
2 = eμδ−

μδ2

2 +oμ↑∞(μ
1
3 ). (62)

Substituting (62) into (61) and taking the limit gives

lim
μ↑∞

(1 + aμ)�μ− μ
2
3 �e

−μμ�μ−μ 2
3 	

�μ− μ
2
3 �!

= lim
μ↑∞

(1 + aμ)μ(1 − δ)
e−

μδ2
2 +oμ↑∞(μ

1
3 )

√
2πμ

= 0,

which, together with (60), proves (31).
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