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ABSTRACT Despite their remarkable expressibility, convolution neural networks (CNNs) still fall short
of delivering satisfactory results on single image dehazing, especially in terms of faithful recovery of fine
texture details. In this paper, we argue that the inadequacy of conventional CNN-based dehazingmethods can
be attributed to the fact that the domain of hazy images is too far away from that of clear images, rendering
it difficult to train a CNN for learning direct domain shift through an end-to-end manner and recovering
texture details simultaneously. To address this issue, we propose to add explicit constraints inside a deep
CNN model to guide the restoration process. In contrast to direct learning, the proposed mechanism shifts
and narrows the candidate region for the estimation output via multiple confident neighborhoods. Therefore,
it is capable of consolidating the expressibility of different architectures, resulting in a more accurate indirect
domain shift (IDS) from the hazy images to that of clear images. We also propose two different training
schemes, including hard IDS and soft IDS, which further reveal the effectiveness of the proposed method.
Our extensive experimental results indicate that the dehazing method based on this mechanism dramatically
outperforms the state-of-the-arts.

INDEX TERMS Single image dehazing, domain shift, deep neural network.

I. INTRODUCTION
Deep convolutional neural networks (CNNs) have been
tremendously successful in many high-level computer vision
tasks, e.g. image recognition [1], [2] and object detection [3],
[4]. Although recent works have shown that it is also possible
to learn an end-to-end CNN model for low-level vision tasks,
e.g. image dehazing [5], [6], the resulting performance is
still not completely satisfactory. For high-level vision tasks,
it suffices to extract specific features and simply express
them as very low dimensional vectors [1], which results in a
relatively simple mapping. In contrast, low-level vision tasks
require both global understanding of image content and local
inference of texture details; as such, the associated mappings
are more complicated.

One possible explanation for performance discrepancies
on high-level and low-level vision tasks is as follows. For
high-level vision tasks such as image recognition, a slight per-
turbation of the output tends to be inconsequential since the
perturbed output is likely to get converted to the same one-hot
vector and consequently the classification label remains unaf-
fected. However, for low-level vision tasks such as image
dehazing, any perturbation can potentially manifest in the
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final result, jeopardizing the image quality. From this point
of view, despite the fact that a deep CNN can in principle
approximate any function, it is still difficult to train an accu-
rate mapping that lifts the input to the target domain in one
shot, since the loss function is typically very close to zero
in the neighborhood of the target image [7]. We argue that
a different mechanism for domain shift is needed for image
dehazing, which requires both memory and understanding of
image contents.

To this end, we provide explicit guidance during model
optimization to lead the domain shift path across several
identified confident neighborhoods, resulting in the proposed
framework shown in Figure 1. More specifically, instead
of only imposing the loss function on the model output,
we introduce multi-scale estimation, multi-branch diversity,
and adversarial loss inside the model, thereby pulling the
interim outputs to specific regions then merging them in
the target domain; this yields an indirect but more accurate
mapping. The contributions of this paper include:
• By introducing loss functions inside a CNN model,
we propose the framework of indirect domain shift (IDS)
for image dehazing, which aggregates powerful express-
ibility of different architectures, i.e., multi-scale, multi-
branch, and generator for lifting degraded images to the
target domain indirectly.
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• Weprovide theoretic justifications for IDS and show that
it provides valuable guidance for network construction.

- - A multi-scale module takes the advantage of
coarse-fine network to maintain global-local con-
sistency.

- - A multi-branch architecture is adopted to enable
precise inference of local details by providing
diverse confident neighborhoods.

- - A FusionNet further improves the perceptual qual-
ity by informed ‘imagination’, rather than blindly
pursuing a higher PSNR, as the multi-scale multi-
branch structure has shifted degraded images close
enough to the corresponding ground truth in terms
of objective image quality metrics.

• It is demonstrated that IDS leads to remarkable perfor-
mance improvements compared with the state-of-the-art
algorithms.

II. RELATED WORKS
Image dehazing, which aims to recover a haze-free image
from its hazy version, is a highly ill-posed restoration prob-
lem. The haze effect is often approximated using the atmo-
spheric scattering model [8] given as follows:

I(x) = J(x)t(x)+ A(1− t(x)), (1)

where I(x), J(x), and A are the observed hazy image, clear
scene radiance, and global atmospheric light, respectively.
The scene transmission t(x) describes the portion of light that
is not scattered and reaches the camera. It can be expressed as
t(x) = e−βd(x), where β is the medium extinction coefficient
and d(x) is the depth map of pixel x.
Based on this atmospheric scattering model [8], many

strategies have been proposed by taking advantage of various
prior knowledge. For example, the dark channel prior [9]
assumes that in non-sky patches, at least one color chan-
nel has very low intensity. The color attenuation prior [10]
assumes that the image saturation decreases sharply at hazy
patches, so that the difference between brightness and sat-
uration can be utilized to estimate the haze concentration.
To address the weakness of DCP for the sky region, [11]
proposes to separately deal with the non-sky region and the
sky region using dark channel prior and luminance stretching.
In [12], the authors come up with a new color channel method
to remove atmospheric scattering for single image dehazing.
The overall algorithm consists of atmospheric light calcula-
tion, transmission map estimation, radiance estimation and
post enhancement. Furthermore, based on the assumption that
a linear relationship exits in the minimum channel between
hazy and haze-free images, a fast linear-transformation-based
dehazing algorithm is introduced in [13].

Recently, data-driven approaches to image dehazing have
received increasing attention. [14] and [15] propose to use
CNN for medium transmission estimation, which is further
leveraged to recover the haze-free image. In [14], a multi-
scale deep neural network is proposed to learn a mapping

between hazy images and their corresponding transmission
maps. A densely connected pyramid network is proposed
in [16] to jointly estimate the transmission map, atmospheric
light, and dehazed images, while an effective iteration algo-
rithm is developed in [17] to learn the haze-relevant pri-
ors. [18] further embeds the atmospheric model into the
designing of CNN and proposes a feature dehazing unit to
ensure end-to-end trainable. However, it is known that the
atmospheric scattering model (ASM) is not valid in certain
scenarios [19], which limits the applicability of the afore-
mentioned dehazing methods. Unlike those ASM-dependent
methods, [20] integrates multiple models to perform haze
removal with attention, and [21] uses a GridNet-based
network [22] to directly predict dehazed images via an
ASM-agnostic approach. To further improve the performance
inASM-agnostic setting, [23] propose anmulti-scale boosted
dehazing network (MSBDN) with boosting strategy and
back-projection technique. [24] firstly introduces knowledge
distillation in solving dehazing problem. It allows dehazing
model learn to dehaze from both ground truths and teacher
outputs.

Many methods that have been developed for other image
restoration tasks, e.g. deblurring, denoising, are also highly
relevant. To remove blurring caused by the dynamic scenes,
amulti-scale convolutional neural network is proposed in [25]
to restore sharp images in an end-to-end manner. In [26],
the weighted nuclear norm minimization (WNNM) prob-
lem is studied and applied to image denoising by exploit-
ing non-local self-similarity. This work is later extended
to handle arbitrary degradation, including blur and missing
pixels [27]. To tackle the long-term dependency problem,
theMemNet [28] is proposed by introducing amemory block,
consisting of a recursive unit and a gate unit, to explicitly
mine persistent memory through an adaptive learning pro-
cess. To make the deep networks implementable on limited
resources, a new activation unit is proposed [29], which
enables the net to capture much more complex features, thus
requiring a significantly smaller number of layers in order
to reach the same performance. A super-resolution genera-
tive adversarial network (SRGAN) is developed in [30] to
recover high-frequency details and produce more natural-
looking images.

III. FORMULATION FOR INDIRECT DOMAIN SHIFT
In this section, we provide a theoretical formulation of the
image dehazing problem and propose an indirect domain shift
method as an effective approach to obtaining an approxima-
tion solution.

Denote the prior distribution of clear images of size m× n
by pX , which is defined on a low dimensional manifoldM in
R3×m×n. The image degradation mechanism can be modeled
as a conditional distribution pX |Y , i.e., given the clear image
x, a distorted image y is generated according to pY |X . Note
that pX and pY |X induce the joint distribution pX ,Y as well as
the conditional distribution pX |Y ; in general, both pX and pY |X
need to be learned from the training data. Image dehazing can
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FIGURE 1. One example of the proposed IDS network. (a) and (b) are the multi-scale estimation with MSE and SSIM loss, respectively.
(d) is the FusionNet with adversarial and content loss. (c) shows the legend.

be formulated as a maximum a posterior estimation problem:

x̂map = arg max
x̂∈M

pX |Y (x̂|y). (2)

In practice, one often considers the following alternative
formulation:

x̂` = min
x̂∈R3×m×n

E
[
`(X , x̂)|Y = y

]
= min

x̂∈R3×m×n

∫
M

pX |Y (x|y)`(x, x̂)dx, (3)

where ` is a loss function. In general it is expected that both
x̂map and x̂` are close to the ground truth. However, there is
no guarantee that x̂` belongs toM.
We shall describe an IDS method, which leverages

multi-scale estimation and multi-branch diversity to obtain
an approximate solution of (3), then lifts it into M using
the adversarial loss to produce a candidate solution of (2).
A network that realizes the IDS method is shown in Figure 1.

A. MULTI-SCALE ESTIMATION
Note that (3) requires the knowledge of pX |Y , which needs
to be estimated from the training data, hence we solve the
following approximated version of (3), i.e.,

x̂ ′` = min
x̂∈R3×m×n

∫
M

p′X |Y (x|y)`(x, x̂)dx, (4)

where p′X |Y is an approximation of pX |Y learned from the
training data. To ensure that x̂ ′` ≈ x̂` (and consequently close
to the ground truth), we need p′X |Y (x|y) ≈ pX |Y (x|y) for
x ∈ M (at least for x in a neighborhood of y that contains
the ground truth). However, since the difference between the
ground truth and the distorted version y is not negligible, this

neighborhood could be quite large, rendering a good approx-
imation of pX |Y (·|y) in this neighborhood difficult to obtain.
Indeed, the number of parameters need to specify pX |Y (·|y) in
this neighborhood might be comparable or even larger than
the available training data, hence a direct approximation can
be highly unreliable, especially considering the fact that the
approximation is in general done in a suboptimal way. For this
reason, it is sensible to first approximate pX̃ |Y (with x̃ being a
low-resolution version of the ground truth), which itself is an
approximation of pX |Y and can be specified by a significantly
smaller number of parameters (as compared to pX |Y ). In this
way, we can get a good approximation of pX̃ |Y , denoted by
p′
X̃ |Y

, and solve the following optimization problem instead:

x̃ ˜̀ = min
x̂∈R3×m×n

∫
M

p′
X̃ |Y

(x|y) ˜̀(x, x̂)dx. (5)

Since p′
X̃ |Y

(x|y) is a good approximation of pX̃ |Y (x|y), it is
expected that x̃` is close to x̃ and consequently not very far
away from the ground truth. Now with x̃` at hand, we can
further convert (3) to the following problem:

x̂` = min
x̂∈R3×m×n

∫
N (x̃`)

pX |X̃`,Y (x|x̃`, y)`(x, x̂)dx, (6)

where N (x̃`) is a neighborhood of x̃` that is large enough to
cover the ground truth. It suffices to have a good approxi-
mation pX |X̃`,Y (·|x̃`, y) over N (x̃`). The above procedure is
repeated until the required neighborhood is small enough.
We assume that the smaller the neighborhood becomes,

the fewer number of parameters are needed to specify the
distribution defined over this neighborhood and consequently
the approximation becomes easier. Multi-scale estimation is
introduced tomimic conventional coarse-to-fine optimization

VOLUME 9, 2021 122961



H. Liu, J. Chen: IDS for Single Image Dehazing

methods and has been widely applied in many computer
vision tasks [14], [25], [31], [32].

B. MULTI-BRANCH DIVERSITY
The idea underlying multi-branch diversity is similar. Sup-
pose we adopt two branches with different loss functions,
denoted by `1 and `2, respectively, then (6) becomes

x̂` = min
x̂∈R3×m×n

∫
N (x̃`1 )∩N (x̃`2 )

× pX |X̃`1 ,X̃`2 ,Y
(x|x̃`1 , x̃`,2, y)`(x, x̂)dx. (7)

It should be clear that multi-branch diversity further nar-
rows the region over which the distribution needs to be esti-
mated. In our experiments, we choose `1 and `2 to be mean
square error (MSE) and structural similarity index (SSIM)
loss, respectively. The reason we choose MSE and SSIM
as loss functions is that MSE focuses on the pixel-level
difference while SSIM pays more attention to the perceptual
quality. See Figure 1 (a) and (b) for the architecture of two
multi-scale estimation branches of the proposed IDS network.

C. ADVERSARIAL LOSS
The role of the adversarial loss `ad is to lift x̂` intoM. Specif-
ically, consider a neural network subject to the weighted loss
` + λ`ad , which can be interpreted as solve the following
problem:

x̂`+λ`ad = arg max
x̂∈N (x̂`,λ)

pX (x̂), (8)

where N (x̂`, λ) is a neighborhood of x̂`. In general, this
optimization problem tends to give a reconstruction that falls
into M since pX is only positive on M. Note that the size
of N (x̂`, λ) depends on λ. Specifically, N (x̂`, λ) is large
when λ is large. In the extreme case of λ → ∞, we have
x̂`+λ`ad → argmaxx̂∈M pX (x̂); while when λ is very small,
N (x̂`, λ) may have no intersection with M, and in this case
(8) reduces to (3). In principle it is desirable to choose the
smallest λ such that N (x̂`, λ) intersects with M. It is also
worth noting that pX is in general unknown. So one has to
solve a modified version of (8) with pX replaced by p′X , which
is an approximation of pX learned from the training data.
The adversarial loss serves an important role of generating

texture details in image restoration. One of the reasons for its
success in our framework is that, by leveraging multi-scale
estimation and multi-branch diversity, one can already obtain
an good estimate x̂` which is in a narrow neighboring region
of M, and consequently the generator does not need much
‘‘imagination’’ to produce a natural-looking image. However,
we observe the similar phenomenon reported in [30] that
adversarial loss is helpful for faithful reproduction, even
though the final PSNR metric is slightly lower. Nevertheless,
we introduce the adversarial loss to obtain better perceptual
quality but not expect higher PSNR value. The relevant abla-
tion study can be found in Section V-C.

FIGURE 2. The isolated training of one iteration in hard IDS.

IV. IMPLEMENTATION
In this section, we provide a detailed implementation of the
indirect domain shift (IDS). We also propose two training
schemes, i.e., the hard IDS and soft IDS.

A. NETWORK ARCHITECTURE
The proposed IDS network is shown in Figure 1, which
consists of three basic components, i.e., the MSE branch,
the MS-SSIM branch, and the FusionNet. The MSE and
SSIM branches are built with multi-scale structure to succes-
sively map hazy images to their clear counterpart at different
resolution levels (as in (6)); moreover, they are supervised
by non-identical loss functions to ensure differentiated out-
puts. The FusionNet completes the domain shift process by
merging the outputs from the two branches together with the
input hazy image into a single clear image (as in (7)).We train
the FusionNet (see Figure 1 (d)) using a content loss defined
as the weighted sum of MSE loss and perceptual loss [33].
The weight is carefully selected by searching from 1.0, 10−1,
10−2, and 10−3. We find that our network achieves the best
performance when the weight is set to 10−2. An adversarial
loss (see (8)) is also imposed on the FusionNet to enhance the
perceptual quality of the final result.

To be specific, inside each diversity branch, there are three
sub-networks, each performing domain shift at a different
scale level. The input of the coarse-scale sub-network is
obtained from the original hazy image via bi-linear inter-
polation with a down-sampling factor of 4. Its output is
up-sampled with a factor of 2 via pixel shuffle [34], then
fed into the medium-scale sub-network, together with the
down-sampled hazy image representation by a factor of 2.
The input of the fine-scale sub-network is the concatenation
of the original hazy image representation and the up-sampled
output of medium-scale sub-network.

It is known that residual networks (ResNets) can facilitate
gradient flow while dense networks (DenseNets) help max-
imize the use of feature layers via concatenation and dense
connection. To capitalize on their respective strengths, [35]
proposes so-called residual dense networks (RDNs), which
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FIGURE 3. The performance of hard IDS with different parameters.

consist of contiguous memory blocks, local residual learning
blocks and global feature fusion blocks.

In this work, we use RDNs as the fundamental building
components of the proposed IDS network. See Table 1 for
detailed specifications. Note that hard IDS and soft IDS
adopt the same network structure, but differ in terms of the
number of trainable parameters. Model depth will be detailed
in Section V-D.

B. TRAINING SCHEME
To handle the coexistence of multiple loss functions, we pro-
pose two back-propagation strategies characterized by differ-
ent effective ranges of the loss functions. Specifically, we can
separately update each module according to the associated
loss function or jointly update all modules according to a
global loss that aggregates the local ones. This results in the
two IDS training schemes, i.e., hard IDS and soft IDS.

1) HARD IDS
We first present the isolated training strategy for hard IDS
shown in Figure 2. Specifically, each module is supervised
independently by the associated loss functions and deliver
dehazed images to the next stage after updating their weights.
Note that in this case, the convergence of the entire network
does not depend on the convergence of all loss functions,
which means that the network performance may become
stable before all loss functions are small enough. This is
a consequence of direct mapping, since for each mapping
step it suffices to enter one of many (almost) equally good
confident neighborhoods, resulting in lower computational
load. One advantage of isolated updating is that the gradient
vanishing problem can be alleviated. Recall that this problem
is caused by the emergence of small gradients in the earlier
layers of very deep networks during back-propagation. As a
comparison, isolated training shortens the back-propagation
path, but maintains the depth of forward inference, at the
expense of heterogeneous convergence rates of different loss
functions. It is also worth noting that the isolated training
strategy closely follows our analytical formulation which
dictates how to shift from one domain to another. Therefore,

TABLE 1. The configuration of the shadow, medium, and deep Hard IDS
corresponding to Figure 3.

the success of hard IDS can be viewed as a good indication
of the correctness of our theoretical framework.

2) SOFT IDS
In contrast to hard IDS, here a global loss function obtained
by combining all local module losses is used to update net-
work parameters via end-to-end back-propagation. Although
the local losses are evaluated based on the images output
by the respective modules, only the feature map from the
penultimate convolutional layer of each module is delivered
to the next module. This enables soft IDS to accomplish the
desired task largely in the feature space. The fact that each
module no longer has to re-map the previous module’s output
images back to the feature space is helpful for reducing the
number of parameters and also making the indirect shifting
path ‘smoother’. Another advantage of soft IDS is that there
is no need to be concerned with the convergence of a specific
module as in hard IDS, which facilitates the training process.

In summary, the differences betweenHard and Soft IDS are
in two main aspects: (1) As in Figure 4, Hard IDS and Soft
IDS deliver images and features to the next stages, respec-
tively. (2) The Hard IDS adopts isolated training (optimiza-
tion over modules independently), while Soft IDS computes
the summation of all the local module losses and optimizes
the entire notwork in an iteration.

V. ABLATION STUDY
We conduct ablation studies to investigate the respective
contributions of multi-scale estimation, multi-branch diver-
sity, and adversarial loss using RESIDE-standard indoor
dataset [36] that will be introduced in detail in Section VI-A.
To eliminate the influence of other factors, all training config-
urations are kept the same as that presented in Section VI-B,
including the total number of trainable parameters for each
network. More detailed analysis is shown in supplementary.

A. MULTI-SCALE ESTIMATION
As mentioned in Section III-A, a direct mapping can be
highly unreliable, since the number of trainable parameters
might be comparable or even larger than the available training
data. To overcome this problem, a multi-scale network is
applied in the first stage of IDS. Another important property
of such coarse-to-fine estimation is the local-global consis-
tency: the coarse-scale network first estimates the holistic
structure of the image scene, and then a fine-scale network
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FIGURE 4. The difference between (a) Hard IDS and (b) Soft IDS.

TABLE 2. Ablation studies on the SSIM/PSNR performance. The best performance is shown in bold, while second best results are with underline.

FIGURE 5. Some output examples of Hard IDS without multi-scale estimation (w/o scale), without multi-branch diversity (w/o div), only with adversarial
loss (o/w adv), and without adversarial loss (w/o adv) in the ablation study, respectively.

performs refinement based on both local information and the
coarse global estimation. To further study the influence of
such coarse-to-fine structure, we test the performance of IDS
framework without multi-scale estimation (w/o scale).

Following the ablation principle, we remove the
coarse-scale network and make the fine-scale network deeper
to have the same number of parameters. One output example
is presented in Figure 5a indicating that hard IDS w/o scale is
able to recover the image reasonablywell, but with some local
inconsistency: the haze at the up-left corner is not removed
faithfully. This verifies the above analysis that multi-scale
network is able to capture both local and global features.
We present the performance on PSNR and SSIM for both hard
IDS and soft IDS in Table 2 (a) and (b), respectively. It can be
seen that IDS w/o scale performs worse than IDS (especially

in soft IDS), indicating that the local inconsistency has impact
on both the quantitative metrics and perceptual quality.

B. MULTI-BRANCH DIVERSITY
Using multi-scale estimation with MSE loss, one can real-
ize domain shift to a certain extent. However, some impor-
tant information may get lost along the way. To keep the
information diversity, we introduce one more multi-scale
branch and employ SSIM loss in this branch. This strategy
enables a more precise inference of local details by providing
distinctive confident neighborhoods identified by different
branches. To further illustrate its effectiveness of this strat-
egy, we test the performance of IDS without multi-branch
diversity (w/o div).
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Similarly, we remove the second branch and make the first
branch deeper. One of the examples is presented in Figure 5b,
in which the IDS w/o div sometimes delivers erroneous detail
inference, since the ‘‘dark area’’ between the light and the
wall clearly should not exist. This is further verified by the
overall validation shown in the Table 2, in which there is
a large performance gap between IDS and IDS w/o div,
indicating that it is well worth having two branches.

C. ADVERSARIAL LOSS
The adversarial loss (together with the content loss) is
employed at the last stage (i.e., the FusionNet) of the pro-
posed IDS framework and is served to obtain high visual qual-
ity. The FusionNet takes the estimates from the two branches,
in conjunction with the original hazy image, as the input
and generates the final output with perceptually satisfactory
high-frequency details via proper fusion. Since the estimates
produced by the two branches are already in the neighboring
domains of the target, the generator does not need to rely on
pure ‘‘imagination’’ to create texture details; instead, it could,
to a great extent, maintain the perceptual reality rather than
blindly pursue a higher PSNR [30].

To prove this, we show that IDS without adversarial loss
is able to produce a high PSNR but NOT able to obtain
better perceptual quality. Following the ablation principle,
we construct IDS IDS without adversarial loss (w/o adv)
by simply removing discriminator. As can be seen, IDS w/o
adv produces a slightly higher PSNR in Figure 5c (26.508),
but obviously lower perceptual quality than IDS (26.094),
as the wall is printed ‘‘darker’’ partially to minimize the MSE
distance. This demonstrates the generalization capability of
the generator and provides further justifications for the IDS
framework.

To further prove the necessity of adversarial loss, we com-
pare with GridDehaze [21]. GridDehaze [21] is a pure CNN
based dehazing method without adopting adversarial loss to
generate natural distributed outputs. From Figure 6, it shows
that the generated images from Soft IDS tend to be closer
to the ground truth with less inconsistent color gradients on
the road, sky, and wall. This verifies the phenomenon that
the adversarial loss is introduced to obtain better perceptual
quality but not blindly pursue higher PSNR value.

D. MODEL DEPTH
This section is devoted to investigating the impact of model
depth on the performance of our hard IDS method. By adjust-
ing the number of convolutional and dense residual blocks,
we construct shadow, medium, and deep models with 8 M,
10.5M, and 15M trainable parameters, respectively. Detailed
specifications is shown in Table 1. As expected, the deep
model achieves the best overall performance in terms of both
PSNR and SSIM. As illustrated in Figure 3, both PSNR and
SSIM values improve dramatically as the number of parame-
ters increases, which further verifies the effectiveness of the
IDS framework. It is worth mentioning that albeit with fewer

FIGURE 6. The output examples from SOTS outdoor testing set.

trainable parameters (around 4.3 M), soft IDS still manages
to outperform hard IDS as shown in Table 3.

VI. EXPERIMENTS
In this section, we further compare the proposed IDS
network with several state-of-the-art dehazing algorithms,
including dark channel prior (DCP) [9], DehazeNet [15],
AOD-Net [37], gated fusion network (GFN) [38],
GridDehazeNet (GridDehaze) [21], PFD [18] and
MSBDN [23]. For a fair comparison, all these algorithms are
evaluated on both synthetic and realistic datasets in terms of
visual effect and quantitative accuracy. We adopt the peak
signal to noise ratio (PSNR) [39] and the structural similarity
index (SSIM) [40] for evaluation.

A. BENCHMARK DATASET
For training and testing purposes, we use the RESIDE-
standard dataset [36], which is a benchmark for single image
dehazing. The indoor training set (ITS) of RESIDE-standard
contains 13990 synthetic hazy indoor images (together with
haze-free counterparts). These synthetic images are gener-
ated using NYU2 [41] and Middlebury stereo [42] with
the medium extinction coefficient β chosen uniformly from
(0.6, 1.8) and the global atmospheric light A chosen uni-
formly from (0.7, 1.0). The outdoor training set (OTS) of
RESIDE-standard contains 296695 hazy images generated
from 8477 clear counterparts with β chosen uniformly from
(0.04, 0.2) and A chosen uniformly from (0.8, 1.0). The test-
ing set (SOTS) of RESIDE-standard contains 500 synthetic
hazy indoor/outdoor images (together with haze-free coun-
terparts). We also perform comparisons using the real-world
hazy image dataset in [43] to show the perceptual difference.
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TABLE 3. The SSIM/PSNR performance of different methods on SOTS-indoor, and SOTS-outdoor. Our proposed methods and improved network with
RCAN outperform the others.

FIGURE 7. The output examples from SOTS indoor testing set of the SOTA methods.

B. TRAINING DETAILS
Our algorithm is implemented using the PyTorch library [44]
and all tests are conducted on the same GPU of Nvidia Titan
Xp. We train the network with the following configuration:
the Adam optimizer [45] is applied with β1 = 0.9 and
β2 = 0.999, where a mini-batch size of 10, a patch size
of 180 × 180, an initial learning rate of 10−4 are adopted.
For hard IDS, the learning rate decays with a multiplicative
factor of 0.5 every 120 epochs for a total of 700 epochs,
while soft IDS is trained for 100 epochs with the learning rate
reduced by half on the 60th, the 80th, and the 90th epochs.
Besides, horizontal/vertical random flipping is applied for
data augmentation. It is worth mentioning that after random
flipping of both input and target images, the training data are
still paired. Therefore, such an augmentation strategy is not

harmful to supervised training but help expand the size of
training data.

C. RCAN AS SUBSTITUTE
The proposed IDS framework is generic in nature and
admits many different concrete implementations. In this
work, we have focused on a particular implementation with
RDNs as fundamental building blocks. However, this is by
no means the best possible one. Indeed, the performance
of our IDS network can be further improved by adopting
more powerful substitutes of RDNs. To demonstrate this,
we replace RDNs in soft IDS by residual channel attention
networks (RCANs) [46] with the same number of trainable
parameters. We further illustrate the effectiveness of adopting
RCANs as substitute in the following experimental results.
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FIGURE 8. The output examples from real-world images in Fattal et.al. [43] to compare with SOTA DNN based methods.

D. EVALUATION ON BENCHMARK DATASET
We train our network from scratch on RESIDE-standard ITS,
OTS and validate it on the separated testing dataset SOTS.
The quantitative results and the qualitative results are shown
in Table 3 and Figure 7, respectively. Here hard IDS corre-
sponds to the deep model in Table 1, while soft IDS is as
described in Section V-D. It can be seen from Table 3 that
soft IDS outperforms the other methods under comparison in
terms of PSNR and SSIM. In particular, the PSNR achieved
by soft IDS reaches 34.74 on SOTS indoor dataset. Moreover,
with the boost from RCANs substitute, RCAN IDS outper-
forms the others by a large margin.

As for visual quality, prior-based methods [9] overestimate
the haze thickness, which results in color distortion (e.g. the
color of the wall turns purple in the fifth row in Figure 7).
Although some learning-based baseline methods [15], [37]
avoid the color distortion problem, they tend to deliver unsat-
isfactory haze removal results for shaded regions. For exam-
ple, in the seventh row of Figure 7, the area behind the arch
should be dark; however, the restoration results produced
by most baseline methods show light color instead. This is
probably because of that the baselinemethods fail to correctly
estimate the depth information and consequently mislead by
the haze effect. GFN generates decent results, and removes
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TABLE 4. Average per-image (620 × 460) runtime (second) on SOTS-indoor.

FIGURE 9. Qualitative evaluation on Dense-Haze [47] and NH-Haze [48]
dataset.

the haze in this area reasonably well. A possible explana-
tion is that GFN does not rely on depth estimation for haze
removal; it can also be attributed to the multi-scale approach
adopted by GFN, which is an important ingredient of the
IDS framework as well. Exploiting the full strength of IDS
enables us to obtain better dehazing results. GridDehaze [21],
PFD [18] and MSBDN [23] are the methods that can produce
dehazed images comparable to ours. However, they still gen-
erates inconsistent color gradients on the venetian blinds in
the fourth row. On the other hand, it can be seen in Figure 7
that our dehazed images can hardly be distinguished from the
ground truth.

E. EVALUATION ON REAL-WORLD PHOTOGRAPHS
We further show the dehazing results on real-world images
in [43] to illustrate the generalization ability of IDS.
In Figure 8, Prior-based method [9] introduces color distor-
tion and over enhancement on images.

TABLE 5. The SSIM/PSNR performance of different methods on O-Haze
and Dense-Haze dataset. Our proposed methods outperform the others.

It is clear that DehazeNet [15], and AOD-Net [37] fail to
remove haze completely, especially in the last column where
heavy haze can still be seen around the haystack. Moreover,
they also tend to over-enhance the images (e.g. the mountains
in the fourth column). Although GridDehaze [21], PFD [18]
and MSBDN [23] work well on the synthetic dataset, its
generalization performance on real images is unsatisfactory.
The red boxes in Figure 8 locate their unsatisfactory regions.
Their weaknesses include color distortion, incomplete haze
removal and over enhancement. We also notice that the pro-
posed IDS is able to not only remove haze successfully,
regardless whether it is dense or light, but also restore the tex-
ture details faithfully, which further proves the effectiveness
of our method.

F. EVALUATION ON REAL-WORLD DATASETS
The evaluation is conducted on the O-Haze [49], and Dense-
Haze [47] datasets. The Two real-world datasets is chal-
lenging since they contain limited training images (45 and
55 respectively) and vivid haze patterns. Therefore, the per-
formance on the two dataset can be a good indication to
the effectiveness of the proposed methods. The training on
the two datasets adopts same strategies as introduced in
Section VI-B. For fair comparison, we omit to use pre-trained
weights or data augmentations that are not introduced in
Section VI-B. We demonstrate the evaluation quantitatively
and qualitatively in Table 5 and Figure 9.

1) RESULTS ON NTIRE2018 O-HAZE
We evaluate our proposed IDS on O-Haze dataset [49]
following the data split in official NTIRE2018-Dehazing
challenge [50]. It can be observed in Table 5 that our IDS
outperforms the other methods in terms of PSNR and SSIM.
Figure 9a shows that our approach reconstructs faithful and
sharp haze free images with good perceptual quality.

2) RESULTS ON NTIRE2019 DENSE-HAZE
In contrast to O-Haze that mostly contains light haze,
Dense-Haze [47] records images with denser and more
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homogeneous haze layer. We follows NTIRE-2019 chal-
lenge [51] to conduct evaluation. Qualitative results
in Figure 9b demonstrate that even if the background scene
is occluded by thick haze, our IDS is still able to restore
these region. In particular, since the second testing sample
in Figure 9b is covered by severe haze, the background scene
is almost invisible to human eyes. Nevertheless, our IDS
surprisingly removes dense haze and reconstructs identifiable
details. Quantitative comparisons in Table 5 illustrate that our
IDS is the top performing method.

G. RUNTIME
Table 4 shows runtime comparisons on the SOTS dataset.
Our method is ranked the third among DNN-based methods.
It is worth mentioning that in our implementation multi-scale
estimation is performed branch by branch. A significant
reduction in runtime is possible via a parallel implementation
of multi-scale estimation in two branches.

VII. CONCLUSION
In this paper, it is shown that the traditional direct map-
ping methods cannot provide accurate direct mapping for
image dehazing. To solve this problem, an indirect domain
shift (IDS) method is proposed by adding explicit loss func-
tions inside a deep CNNmodel to guide the dehazing process.
Multi-scale estimation, multi-branch diversity, and adversar-
ial loss play important roles in this method as shown by
the ablation studies. We also propose two training schemes,
which have their respective advantages. Specifically, hard
IDS is less demanding in terms of computational resources
and alleviates the gradient vanishing problem. Besides, hard
IDS is designed according to our theoretical formulation
and its success provides a strong empirical indication of the
correctness of our indirect domain shift mechanism. On the
other hand, soft IDS is easier to implement and in gen-
eral yields better performance. We show that IDS achieves
remarkable improvements compared with the state-of-the-art
on five dehazing datasets. Despite the success of our method,
the visual performance of IDS is not completely satisfactory
on Dense-Haze dataset. Since the deep learning methods
often require large-scale datasets for training, we believe the
performance of our method on Dense-Haze dataset can be
further improved by simply acquiring more training samples.
From another perspective, one interesting direction for our
future work is to enhance the IDS framework to enable good
generalization with limited training data.
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