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Abstract—The multiple description (MD) problem has received
considerable attention as a model of information transmission
over unreliable channels. A general framework for designing
efficient MD quantization schemes is proposed in this paper. We
provide a systematic treatment of the El Gamal–Cover (EGC)
achievable MD rate–distortion region, and show it can be decom-
posed into a simplified-EGC (SEGC) region and a superimposed
refinement operation. Furthermore, any point in the SEGC region
can be achieved via a successive quantization scheme along with
quantization splitting. For the quadratic Gaussian case, the pro-
posed scheme has an intrinsic connection with the Gram–Schmidt
orthogonalization, which implies that the whole Gaussian MD
rate–distortion region is achievable with a sequential dithered lat-
tice-based quantization scheme as the dimension of the (optimal)
lattice quantizers becomes large. Moreover, this scheme is shown
to be universal for all independent and identically distributed
(i.i.d.) smooth sources with performance no worse than that for an
i.i.d. Gaussian source with the same variance and asymptotically
optimal at high resolution. A class of MD scalar quantizers in the
proposed general framework is also constructed and is illustrated
geometrically; the performance is analyzed in the high-resolution
regime, which exhibits a noticeable improvement over the existing
MD scalar quantization schemes.

Index Terms—Gram–Schmidt orthogonalization, lattice quanti-
zation, minimum mean-square error (MMSE), multiple descrip-
tions (MDs), quantization splitting.

I. INTRODUCTION

I N the multiple description (MD) problem, the total available
bit rate is split between two channels and either channel may

be subject to failure. It is desired to allocate rate and coded rep-

Manuscript received April 1, 2005; revised November 16, 2005. The work of
J. Chen and T. Berger was supported in part by the National Science Founda-
tion under Grant CCR-033 0059 and under a grant from the National Acade-
mies Keck Futures Initiative (NAKFI). The material in this work was presented
in part at the 39th Annual Conference on Information Sciences and Systems,
Princeton, NJ, March 2005 and at the IEEE International Symposium on Infor-
mation Theory, Adelaide, Australia, September 2005.

J. Chen was with the School of Electrical and Computer Engineering, Cor-
nell University, Ithaca, NY 14853. He is now with the IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (e-mail: junchen@us.ibm.
com).

C. Tian was with the School of Electrical and Computer Engineering, Cornell
University, Ithaca, NY 14853. He is now with Laboratory of Information and
Communication Systems, Swiss Federal Institute of Technology at Lausanne
(EPFL), Lausanne, CH-1015 Switzerland (e-mail: chao.tian@epfl.ch).

T. Berger was with the School of Electrical and Computer Engineering, Cor-
nell University, Ithaca, NY 14853. He is now with the Department of Electrical
and Computer Engineering, University of Virginia, Charlottesville, VA 22904
USA (e-mail: tb6n@virginia.edu).

S. S. Hemami is with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853 USA (e-mail: hemami@ece.cornell.edu).

Communicated by M. Effros, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2006.885498

Fig. 1. Encoder and decoder diagram for MDs.

resentations between the two channels, such that if one channel
fails, an adequate reconstruction of the source is possible, but
if both channels are available, an improved reconstruction over
the single-channel reception results. The formal definition of the
MD problem is as follows (also see Fig. 1).

Let be an independent and identically distributed
(i.i.d.} random process with for all . Let

be a distortion measure.

Definition 1.1: The quintuple is called
achievable if for all , there exist, for sufficiently large,
encoding functions

and decoding functions

such that for , and for

The MD rate-distortion region, denoted by , is the set of all
achievable quintuples.

In this paper, the encoding functions and are re-
ferred to as encoder 1 and encoder 2, respectively. Similarly,
decoding functions and are referred to as decoder
1, decoder 2, and decoder 3, respectively. It should be empha-
sized that in a real system, encoders 1 and 2 are just two dif-
ferent encoding functions of a single encoder while decoders 1,
2, and 3 are different decoding functions of a single decoder.
Alternatively, in the MD literature decoders 1 and 2 are some-
times referred to as the side decoders because of their positions
in Fig. 1, while decoder 3 is referred to as the central decoder.

Early contributions to the MD problem can be found in
[1]–[4]. The first general result was El Gamal and Cover’s
achievable region.

0018-9448/$20.00 © 2006 IEEE
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Definition 1.2 (El Gamal–Cover (EGC) Region): For random
variables and jointly distributed with the generic
source variable via conditional distribution ,
let

Let

The EGC region1 is then defined as

where denotes the convex hull of for any set in the
Euclidean space.

It was proved in [5] that . Ozarow [3] showed that
for the quadratic Gaussian source. Ahlswede [6]

showed that the EGC region is also tight for the “no excess sum-
rate” case. Zhang and Berger [7] constructed a counterexample
for which . Further results can be found in [8]–[14].
The MD problem has also been generalized to the -channel
case [15], [16], but even the quadratic Gaussian case is far from
being completely understood. The extension of the MD problem
to the distributed source coding scenario has been considered in
[17], [18], where the problem is again widely open.

Many practical methods exist for constructing MDs (see [19]
for an excellent review). Among them, the MD scalar quanti-
zation (MDSQ) proposed by Vaishampayan [20], [21] explic-
itly takes the quantization approach. The optimization of the
key component of this method, namely the index assignment,
turns out to be a difficult problem. Several heuristic methods
are provided in [20] to construct balanced index assignments,
which achieve a central and side distortion product 3.07 dB
away from the rate–distortion bound at high resolution [22]; this
granular distortion gap can be further reduced [23]. The problem
of design good index assignment was also tackled by other re-
searchers [24]–[27]. The MDSQ framework was later extended
to MD lattice vector quantization (MDLVQ) for balanced de-
scriptions in [28] and for the asymmetric case in [29]. The de-
sign relies heavily on the lattice/sublattice structure to facilitate
the construction of index assignments. The analysis on these
quantizers shows that the constructions are high-resolution op-
timal in asymptotically high dimensions.

More relevant to our work is [32], where Frank-Dayan and
Zamir proposed a class of MD schemes based on entropy-coded
dithered lattice quantizers (ECDQs). The system consists of two
independently dithered lattice quantizers as the two side quan-
tizers, with a possible third dithered lattice quantizer to provide
refinement information for the central decoder. It was found that
even with the quadratic Gaussian source, this system is only

1The form of the EGC region here is slightly different from the one given in
[5], but it is straightforward to show that they are equivalent.

optimal in asymptotically high dimensions for the degenerate
cases such as successive refinement and the “no excess mar-
ginal-rate” case, but not optimal in general. The difficulty lies in
generating dependent quantization errors of two side quantizers
to simulate the Gaussian MD test channel. Several possible im-
provements were provided in [32], but the problem remains un-
solved.

In this paper we provide a systematic treatment of the
EGC achievable MD rate-distortion region and show it can
be decomposed into a simplified-EGC (SEGC) region and a
superimposed refinement operation. Furthermore, any point in
the SEGC region can be achieved via a successive quantization
scheme along with quantization splitting. For the quadratic
Gaussian case, the MD rate–distortion region is the same as
the SEGC region, and the proposed scheme has an intrinsic
connection with the Gram–Schmidt orthogonalization method.
Thus, we use single-description ECDQs with independent
subtractive dithers as building blocks for this MD coding
scheme, by which the difficulty of generating dependent quan-
tization errors is circumvented. Analytical expressions for the
rate–distortion performance of this system are then derived for
general sources, and compared to the optimal rate regions at
both high and low lattice dimensions. The proposed scheme is
conceptually different from those in [32], and it can achieve the
whole Gaussian MD rate–distortion region as the dimension
of the (optimal) lattice quantizers becomes large, unlike the
method proposed in [32]. The scheme is further illustrated in
Section VI using an undithered scalar quantization system,
whose high resolution analysis shows promising performance.

The remainder of this paper is divided into six sections.
In Section II, ECDQ and the Gram–Schmidt orthogonaliza-
tion method are briefly reviewed and a connection between
the successive quantization scheme and the Gram–Schmidt
orthogonalization method is established. In Section III, we
present a systematic treatment of the EGC region and show
the sufficiency of a successive quantization scheme along with
quantization splitting. In Section IV, the quadratic Gaussian
case is considered in more depth. In Section V, the proposed
scheme based on ECDQ is shown to be universal for all i.i.d.
smooth sources with performance no worse than that for an
i.i.d. Gaussian source with the same variance and asymptot-
ically optimal at high resolution. A scalar MD quantization
scheme in our framework is given in Section VI. Some further
extensions are suggested in Section VII, which also serves
as the conclusion. Throughout, we use boldfaced letters to
indicate ( -dimensional) vectors, capital letters for random
objects, and small letters for their realizations. For example, we
let and .

II. ENTROPY-CODED DITHERED QUANTIZATION AND

GRAM–SCHMIDT ORTHOGONALIZATION

In this section, we first give a brief review of ECDQ, and
then explain the difficulty of applying ECDQ directly to
the MD problem. As a method to resolve this difficulty, the
Gram–Schmidt orthogonalization is introduced and a connec-
tion between the sequential (dithered) quantization and the
Gram–Schmidt orthogonalization is established. The purpose
of this section is twofold: The first is to review related results
on ECDQ and the Gram–Schmidt orthogonalization and show
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Fig. 2. ECDQ and its equivalent additive-noise channel.

their connection, while the second is to explicate the intuition
that motivated this work.

A. Review of Entropy-Coded Dithered Quantization

Some basic definitions and properties of ECDQ from [32]
are quoted below. More detailed discussion and derivation can
be found in [37]–[40]. An -dimensional lattice quantizer is
formed from a lattice . The quantizer maps each
vector into the lattice point that is nearest to .
The region of all -vectors mapped into a lattice point
is the Voronoi region

The dither is an -dimensional random vector, independent
of the source, and uniformly distributed over the basic cell of
the lattice which is the Voronoi region of the lattice point . The
dither vector is assumed to be available to both the encoder and
the decoder. The normalized second moment of the lattice
characterizes the second moment of the dither vector

where denotes the volume of . Both the entropy encoder
and the decoder are conditioned on the dither sample ; further-
more, the entropy coder is assumed to be ideal. The lattice quan-
tizer with dither represents the source vector by the vector

. The resulting properties of the ECDQ
are as follows.

1) The quantization error vector is independent of
and is distributed as . In particular, the mean-squared
quantization error is given by the second moment of the
dither, independently of the source distribution, i.e.,

2) The coding rate of the ECDQ is equal to the mutual infor-
mation between the input and output of an additive noise
channel , where , the channel’s noise, has
the same probability density function as (see Fig. 2)

3) For optimal lattice quantizers, i.e., lattice quantizers with
the minimal normalized second moment , the autocorre-
lation of the quantizer noise is “white,” i.e.,
where is the identity matrix, is
the second moment of the lattice, and

is the minimal normalized second moment of an -dimen-
sional lattice.

Consider the following problem to motivate the general re-
sult. Suppose a quantization system is needed with input
and outputs such that the quantization errors

, are correlated with each other in a
certain predetermined way, but are uncorrelated with . Seem-
ingly, quantizers may be used, each with as the input
and as the output for some . By property 1)
of ECDQ, if dithers are introduced, the quantization errors are
independent of the input of the quantizer. However, it is difficult
to make the quantization errors of these quantizers cor-
related in the desired manner. One may expect it to be possible
to correlate the quantization errors by simply correlating the
dithers of different quantizers, but this turns out to be not true as
pointed out in [32]. Next, we present a solution to this problem
by exploiting the relationship between the Gram–Schmidt or-
thogonalization and sequential (dithered) quantization.

B. Gram–Schmidt Orthogonalization and Sequential Dithered
Quantization

In order to facilitate the treatment, the aforementioned
problem is reformulated in an equivalent form: Given with
an arbitrary covariance matrix, construct a quantization system
with as the input and as the outputs such
that the covariance matrices of and are the same.

Let denote the set of all finite-variance, zero-mean, real
scalar random variables. It is well known [41], [42] that
becomes a Hilbert space under the inner product mapping

; the norm induced by this
inner product is thus .

For with ,
the Gram–Schmidt orthogonalization can be used to construct
an orthogonal basis for . Let

denote the covariance matrix of and let
, then

(1)

(2)

Here is a row vector satisfying
. When is invertible, is uniquely given by

. The product is the linear minimum

mean-square error (MMSE) estimator of given , and
is its corresponding linear MMSE estimation error.
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is sometimes referred to as the innovation process [41]. In the
special case in which are jointly Gaussian

and are zero-mean, independent, and jointly Gaussian.
Moreover, since is a deterministic function of , it follows
that is independent of , for .

We now show that one can construct a sequential quantization
system with as the input to generate a zero-mean random
vector whose covariance matrix is
also . Let be a zero-mean random vector with covari-
ance matrix . By (1) and (2), it is true that

(3)

(4)

Assume that for . Let be a scalar
lattice quantizer with step size

Let the dither be a random variable uni-
formly distributed over the basic cell of

. Note: the second subscript of denotes the dimension
of the lattice quantizer; in this case , so it is a scalar quan-
tizer.

Let be independent. By the property of
ECDQ, we can construct as

(5)

(6)

where with
, and are independent. By

comparing (3), (4) and (5), (6), it is straightforward to verify
that and have the same covariance matrix. Note that
if for some , then and therefore no
quantization operation is needed to generate from .

The generalization of the correspondence between the Gram–
Schmidt orthogonalization and the sequential (dithered) quanti-
zation to the vector case is straightforward; see Appendix I.

III. SUCCESSIVE QUANTIZATION AND

QUANTIZATION SPLITTING

In the last section, it has been shown that Gram–Schmidt or-
thogonalization can be used to form any quantization noise cor-
relation structure. However, the rate constraints do not come into
the picture, and the quantization order is chosen in an arbitrary
fashion. These factors have to be determined in the specific con-
text. In this section, we provide an information-theoretic anal-
ysis of the EGC region and show it can be decomposed into a
simplified-EGC (SEGC) region and a superimposed refinement
operation. Furthermore, any rate pair in the SEGC region can
be achieved via a successive quantization scheme along with

quantization splitting. In this way, we associate each rate pair in
the SEGC region with a natural quantization order. We will see
in Section IV that in the Gaussian MD case, the Gram–Schmidt
orthogonalization procedure generates sufficient statistics along
this quantization order and therefore has the property of rate
preservation.

We focus on discrete memoryless source and bounded dis-
tortion measure. The results can be generalized to the quadratic
Gaussian case, using the technique in [61].

A. An Information-Theoretic Analysis of the EGC Region

Rewrite in the following form:

Without loss of generality, assume that
form a Markov chain since otherwise can be replaced by

without affecting the rate and distortion
constraints. Therefore, can be viewed as a fine description
of and as coarse descriptions of . The term

is the rate used for the superimposed refine-
ment from the pair of coarse descriptions to the fine
description ; in general, this refinement rate is split between
the two channels. Since description refinement schemes have
been studied extensively in the multiresolution or layered
source coding scenario and are well understood, this operation
can be separated from other parts of the EGC scheme.

Definition 3.1 (SEGC Region): For random variables and
jointly distributed with the generic source variable via

conditional distribution , let

Let

with

The SEGC region is defined as

The SEGC region first appeared in [1] and was attributed to
El Gamal and Cover. It was shown in [7] that .

Using the identity

can be written as

The typical shape of is shown in Fig. 3.
It is noteworthy that resembles Marton’s achiev-

able region [43] for a two-user broadcast channel. This is not
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Fig. 3. The shape of R(U ;U ).

surprising since the proof of the EGC theorem relies heavily
on the results in [44] which were originally for a simplified
proof of Marton’s coding theorem for the discrete memoryless
broadcast channel.2 Since the corner points of Marton’s region
can be achieved via a relatively simple coding scheme due to
Gel’fand and Pinsker [46], which for the Gaussian case becomes
Costa’s dirty paper coding [47], it is natural to conjecture that
simple quantization schemes may exist for the corner points of

. This conjecture turns out to be correct as will be
shown later.

Since , the sum-rate constraint in
is always effective. Thus

will be called the dominant face of . Any rate pair
inside is inferior to some rate pair on the dominant
face in terms of compression efficiency. Hence, in searching for
the optimal scheme, attention can be restricted to rate pairs on
the dominant face without loss of generality. The dominant face
of has two vertices and . Let
denote the coordinates of vertex , then

The expressions of these two vertices directly lead to the fol-
lowing successive quantization scheme. By symmetry, we shall
only consider .

B. Successive Quantization Scheme

For vertex , the successive quantization coding scheme suf-
fices, which can also be understood as a special case of the

2The resemblance between R(U ;U ) and Marton’s region has a deeper
reason. See [45] for a detailed discussion.

coding scheme in [5]. It is outlined below because the quan-
tization splitting scheme in the next subsection will utilize this
idea.

1) Codebook Generation: Encoder 1 independently generates
codewords . Encoder

2 independently generates codewords
.

2) Encoding Procedure: Given , encoder 1 finds the code-
word which is strongly typical with . Then en-
coder 2 finds the codeword which is strongly typ-
ical with and . Index is transmitted through
channel 1 and index is transmitted through channel 2.

3) Reconstruction: Decoder 1 reconstructs with
. Decoder 2 reconstructs with
. Decoder 3 reconstructs with

. Here, and are
the th entries of and , respectively,

.
For this scheme, encoder 1 does the encoding first and then en-
coder 2 follows. The main complexity of this scheme resides in
encoder 2, since it needs to construct a codebook that covers the

-space instead of just the -space. Observe that, if a
function can be found such that is a sufficient
statistic for estimation from , i.e.,

form a Markov chain,3 then

The importance of this observation is that encoder 2 then only
needs to construct a codebook that covers the -space instead
of the -space. This is because the Markov lemma [48]
implies that if is jointly typical with , then is jointly
typical with with high probability. This observation
turns out to be crucial for the quadratic Gaussian case.

We point out that the successive coding structure associated
with the corner points of is not a special case in
network information theory. Besides its resemblance to the
successive Gel’fand–Pinsker coding structure associated with
the corner points of the Marton’s region previously mentioned,
other noteworthy examples include the successive decoding
structure associated with the corner points of the Slepian–Wolf
region [49] (and more generally, the Berger–Tung region [48],
[50], [51]) and the corner points of the capacity region of the
memoryless multiaccess channel [52], [53].

C. Successive Quantization Scheme With Quantization
Splitting

To achieve an arbitrary rate pair on the dominant face of
, a straightforward method is to timeshare the coding

schemes that achieve the two vertices. However, such a scheme
generally requires four different quantizers, which is not desir-
able. Instead, the scheme based on quantization splitting intro-
duced below needs only three quantizers. Before presenting this
coding scheme, we shall first prove the following theorem.

3Such a function f(�; �) always exists provided jVj � jXkU j.
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Theorem 3.1: For any rate pair on the dominant
face of , there exists a random variable with

forming a Markov chain such that

The apparent symmetric claim by switching the role of and
also holds.

Before proceeding to prove this theorem, we make the fol-
lowing remarks.

• Since form a Markov chain, if
is independent of , then it must be independent of

altogether.4 Then in this case

which are the coordinates of .
• At the other extreme, letting be gives

which are the coordinates of .

Proof: Since the desired has the property that
form a Markov chain, we only need to

specify the distribution of conditioned on .
Construct a class of transition probabilities5 pa-

rameterized by such that varies continuously from
to as changes from to . It remains to show that

This is indeed true since

where follows from the fact that form
a Markov chain, and this completes the proof.

The successive quantization scheme with quantization split-
ting is outlined as follows.

1) Codebook Generation: Encoder 1 independently generates
about codewords .
Encoder 2 independently generates about
codewords . For each codeword ,
encoder 2 independently generates
codewords . Here
is the th entry of

2) Encoding Procedure: Given , encoder 2 finds the code-
word such that is strongly typical with

. Then encoder 1 finds the codeword such

4This is because I(X;U ; U ;U ) = I(U ;U ) = 0.
5There are many ways to construct such a class of transition probabilities.

For example, we can let p (u ju ) = p(u ); p (u ju ) = �(u ; u ), and
set p (u ju ) = (1� �)p (u ju ) + �p (u ju ). Here �(u ; u ) = 1 if
u = u and = 0 otherwise.

that is strongly typical with and . Fi-
nally, encoder 2 finds the codeword such that

is strongly typical with and .
Index is transmitted through channel 1. Indices and

are transmitted through channel 2.
3) Reconstruction: Decoder 1 reconstructs with

. Decoder 2 reconstructs with
. Decoder 3 reconstructs

with . Here
is the th entry of and is the th entry
of .

This approach is a natural generalization of the successive quan-
tization scheme for the vertices of . can be viewed
as a coarse description of and as a fine description of

. The idea of introducing an auxiliary coarse description to
convert a joint coding scheme to a successive coding scheme
has been widely used in the distributed source coding problems
[54]–[56]. Similar ideas have also found application in multiac-
cess communications [57]–[60].

IV. THE GAUSSIAN MD REGION

In this section, we apply the general results in the pre-
ceding section to the quadratic Gaussian case. The Gaussian
MD rate–distortion region is first analyzed to show that

in this case. Then, by incorporating the
Gram–Schmidt orthogonalization with successive quantization
and quantization splitting, a coding scheme that achieves the
whole Gaussian MD region is presented. The rates and distor-
tions are derived explicitly for the Gaussian source, and they
will be used to bound the corresponding rates and distortions
in the next section when ECDQs are utilized for more general
sources. To facilitate reading, the linear estimation coefficients
and statistics of the innovation process are collected in Ap-
pendix II.

A. An Analysis of the Gaussian MD Region

Let be an i.i.d. Gaussian process with
for all . Let be the squared error distortion

measure. For the quadratic Gaussian case, the MD rate–dis-
tortion region was characterized in [3], [5], [62]. Namely,

if and only if

where the expression of is given at the top of
the following page.

The case and the case
are degenerate. It is easy

to verify that for any with
, there exist such

that and .
Similarly, for any with

, there exist
such that .

Hence, without loss of optimality, we shall only consider the
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o.w.

case , for
which and all are effective.

Following the approach in [5], let

(7)

(8)

where are zero-mean, jointly Gaussian
and independent, and . Let

, and
(see Appendix II for ). In this

case, the achievable rates and distortions can be computed
analytically.

Set ; then

(9)

(10)

After further computation, it can be verified that

(11)

Hence, for the quadratic Gaussian case

and there is no need to introduce (more precisely, can be
written as a deterministic function of and ).

We can see that for fixed
are uniquely determined by (9) and (10), and consequently

is given by (11). Since only the optimal MD coding

scheme is of interest, the sum-rate should be mini-
mized with respect to the distortion constraints ,
i.e., must be on the dominant face of .
Thus, for fixed

(12)

B. Successive Quantization for Gaussian Source

If we view as two different quantizations of and
let and be their corresponding quantization
errors, then (13) follows, as shown at the bottom of the page,
where the inequality is strict unless

. The existence of negative correlation between the
quantization errors is the main difficulty in designing optimal
MD quantization schemes. To circumvent it, and can be
represented in a different form by using the Gram–Schmidt or-
thogonalization. It yields that

and expressions for and are given in Ap-
pendix II.

Now consider the quantization scheme for vertex of
. is given by

(14)

Since , where is independent of
, it follows that

form a Markov chain. Clearly,
also form a Markov chain since is a deter-

ministic function of . These two Markov relationships
imply that , and thus

(15)

(13)
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Fig. 4. MD quantization scheme for V .

Although the preceding expressions are all of single-letter type,
it does not mean that symbol-by-symbol operations can achieve
the optimal bound. Instead, when interpreting these informa-
tion-theoretic results, one should think of a system that operates
on long blocks.

Intuitively speaking (see Fig. 4), (14) and (15) suggest the
following quantization scheme. Encoder 1 quantizes at rate

with input and output . The quantization error
is , which is a zero-mean Gaussian vector with
covariance matrix . Encoder 2 quantizes at rate
with input and output . The quantization
error is a zero-mean Gaussian
vector with covariance matrix .

Remarks:
1) (or ) is not a deterministic function of (or

), and for classical quantizers the quan-
tization noise is generally not Gaussian. Thus, strictly
speaking, the “noise-adding” components in Fig. 4 are not
quantizers in the traditional sense. We nevertheless refer
to them as quantizers6 in this section for simplicity.

2) From Fig. 4, it is obvious that the MD quantization for
is essentially the Gram–Schmidt orthogonalization

of . As previously shown in Section II, the
Gram–Schmidt orthogonalization can be simulated by
sequential (dithered) quantization. The formal description
and analysis of this quantization scheme in the context of
MDs for general sources will be given in Section V.

C. Successive Quantization With Quantization Splitting for
Gaussian Source

Now we study the quantization scheme for an arbitrary rate
pair on the dominant face of . Note that

6This slight abuse of the word “quantizer” can be justified in the context of
ECDQ (as we will show in the next section) since the quantization noise of the
optimal lattice quantizer is indeed asymptotically Gaussian; furthermore, the
quantization noise is indeed independent of the input for ECDQ [38].

since the rate sum is given by (12), only
has one degree of freedom.

Let , where is zero-mean,
Gaussian, and independent of . It is easy to
verify that form a Markov chain.
Applying the Gram–Schmidt orthogonalization algorithm to

, we have (with expressions for and
in Appendix II)

Since , where is independent
of , it follows that

form a Markov chain. Clearly

also form a Markov chain because is deter-
mined by . Thus, we have

and this gives

Hence, is uniquely determined by (16) at the bottom of the
page. can also be readily computed in terms of

and , and it can be shown straightforwardly that as
varies from to , all the rate pairs on the dominant face

of can be achieved.
For a specific rate pair , we have

(17)

To remove the conditioning term in , we
apply the Gram–Schmidt procedure to .
It yields (with expressions for and

in Appendix II)

(16)
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Now write

where the last step follows from the fact that is independent
of . The independence of and implies
that
form a Markov chain. This observation, along with the fact that

is a deterministic function of ,
yields

(18)

Now substitute and in (18) with corresponding linear
combinations of and , and define

, and
, it follows that

(19)

(20)

where the last step follows from the observation that
.

Intuitively speaking, (19) and (20) suggest the following op-
timal MD quantization system (also see Fig. 5): Encoder 1 quan-
tizes at rate with input and output . The
quantization error is Gaussian with co-
variance matrix . Encoder 2 consists of two quantizers.
The rate of the first quantizer is . Its input and output are
and , respectively. Its quantization error is
Gaussian with covariance matrix . The second quantizer
is of rate . It has input and output

. Its quantization error is Gaussian with covari-
ance matrix . The sum-rate of these two quantizers is the
rate of encoder 2, which is . Here , and

.

Remarks:
1) is revealed to decoder 1 and decoder 3. and

are revealed to decoder 2 and decoder 3. Decoder 1

constructs . Decoder 2 first constructs

using and , and then constructs .
Decoder 3 also first constructs , then constructs

. It is clear what decoders 2 and 3 want is
, not or . Furthermore, the construction

of can be moved to the encoder part. That is, encoder
2 can directly construct with and ; then,
only needs to be revealed to decoder 2 and decoder 3.

Fig. 5. MD quantization scheme for (R ;R ).

2) That is independent of and is
a deterministic function of implies that
is independent of .

3) The MD quantization scheme for essentially
consists of two Gram–Schmidt procedures, one operating
on and the other on . The
formal description and analysis of this scheme from the
perspective of dithered quantization is left to Section V.

D. Discussion of Special Cases

Next we consider three cases for which the MD quantizers
have some special properties.

1) The case : For this case,
we have

which is referred to as the case of no excess marginal rate. Since
the dominant face of degenerates to a single point,
the quantization splitting becomes unnecessary. Moreover, we
have , i.e., two quantization errors
are uncorrelated (and thus independent since
are jointly Gaussian) in this case. This further implies that

form a Markov chain. Due to this fact, the
Gram–Schmidt othogonalization for becomes
particularly simple

Thus, the successive quantization scheme degenerates into the
conventional separate quantization scheme [32], which in fact
suffices for this special case. See Fig. 6.

2) The case : For this case, we have

which corresponds to the case of no excess sum-rate. Since
implies and
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Fig. 6. Special case: D = (1=D + 1=D � 1=� ) .

, we get (21) at the bottom of the page.
Since and are jointly Gaussian, (21) implies and
are independent. This is consistent with the result in [6] although
only discrete memoryless sources were addressed there. The in-
terpretation of (21) is that the outputs of the two encoders (quan-
tizers) should be independent. This is intuitively clear because
otherwise these two outputs can be further compressed to reduce
the sum-rate but still achieve distortion for the joint descrip-
tion. But that would violate the rate distortion theorem, since

is the minimum -admissible rate for the quadratic
Gaussian case.

Now consider the following time-sharing scheme: Construct
an optimal rate–distortion codebook of rate that can
achieve distortion . Encoder 1 uses this codebook a fraction

of the time and encoder 2 uses this codebook
the remaining fraction of the time. For this scheme, the
resulting rates and distortions are given by

,
and . Conversely, for any fixed and with

, there exists a such that
. The associated rates

are and . So, this specific
time-sharing scheme can achieve any point on the dominant face
of the rate region for the special case (see
Fig. 7). Specifically, for the symmetric case where

, we have and .

Fig. 7. Special case: D = D +D � � .

3) The symmetric case : The symmetric
case is of particular practical importance. Moreover, many pre-
viously derived expressions take simpler forms if .
Specifically, we have

The coordinates of and become

The expressions for and can be simplified to the ex-
pression shown at the bottom of the following page. To keep the
rates equal, i.e., , it must be true that

If , then

(22)

(21)
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If , then

i.e., is not a function of .

V. OPTIMAL MD QUANTIZATION SYSTEM

In the MD quantization scheme for the quadratic Gaussian
case outlined in the preceding section, only the second-order sta-
tistics are needed and the resulting quantization system naturally
consists mainly of linear operations. In this section, we develop
this system in the context of the entropy coded dithered (lattice)
quantization (ECDQ) for general sources with the squared error
distortion measure. The proposed system may not be optimal
for general sources; however, if all the underlying second-order
statistics are kept identical with those of the quadratic Gaussian
case, then the resulting distortions will also be the same. Fur-
thermore, since among all the i.i.d. sources with the same vari-
ance, the Gaussian source has the highest differential entropy,
the rates of the quantizers can be upper-bounded by the rates
in the quadratic Gaussian case. At high resolution, we prove a
stronger result in Section V-C that the proposed MD quantiza-
tion system is asymptotically optimal for all i.i.d. sources that
have finite differential entropy.

In the sequel, we discuss the MD quantization schemes in
an order that parallels the development in the preceding section.
The source is assumed to be an i.i.d. random process
(not necessarily Gaussian) with and
for all .

A. Successive Quantization Using ECDQ

Consider the MD quantization system depicted in Fig. 8,
which corresponds to the Gaussian MD coding scheme for

. Let and denote optimal -dimensional
lattice quantizers. Let and be -dimensional random
vectors which are statistically independent and each is uni-
formly distributed over the basic cell of the associated lattice
quantizer. The lattices have a “white” quantization noise co-
variance matrix of the form , where is the
second moment of the lattice quantizer ; more
specifically, let , where and
are given by (38) and (39), respectively. Furthermore, let

where and are given by (28) and (29), respectively.

Theorem 5.1: The first- and second-order statistics of
are the same as the first- and second-order

statistics of in Section IV.

Fig. 8. Successive quantization.

Remark: The first-order statistics of and
are all zero, so we focus on the second-order

statistics. The same is true for the other random variables in
this section.

Proof: The theorem follows directly from the correspon-
dence between the Gram–Schmidt orthogonalization and the se-
quential (dithered) quantization established in Section II, and
it is straightforward by comparing Figs. 4 and 8. Essentially,

and serve as the innovations that generate the first-
and second-order statistics of the whole system.

By Theorem 5.1,

Let be an -dimensional random vector distributed as
. By property 2) of the ECDQ, the rate of the

quantizer can be computed and bounded as follows:

where the inequality follows from Theorem 5.1 and the fact that
for a given covariance matrix, the joint Gaussian distribution
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maximizes the differential entropy. Similarly, the rate of the
quantizer can be computed and bounded as follows:

Since as , we have and
as .

Remark: As suggested by Zamir [64] and an anonymous re-
viewer, since , we can view the
input of as a linear combination of source and the
quantization error of ECDQ1. Now it becomes transparent that

and are negatively correlated since

and by (13) and (29).

B. Successive Quantization With Quantization Splitting Using
ECDQ

Now we proceed to construct the MD quantization system
using ECDQ in a manner which corresponds to that for the
Gaussian MD quantization scheme for an arbitrary rate pair

.
Let , and denote optimal -dimen-

sional lattice quantizers. Let , and be -dimensional
random vectors which are statistically independent and each is
uniformly distributed over the basic cell of the associated lat-
tice quantizer. The lattices have a “white” quantization noise
covariance matrix of the form , where is
the second moment of the lattice quantizer ;
more specifically, let and

, where and are given by (40), (41), and
(42), respectively. Define

The system diagram is shown in Fig. 9.

Theorem 5.2: The first- and second-order statistics of
equal the first- and second-order statis-

tics of in Section IV.
Proof: By comparing Figs. 5 and 9, it is clear that

the theorem follows from the correspondence between the
Gram–Schmidt orthogonalization and the sequential (dithered)
quantization. The following one-to-one correspondences

Fig. 9. Successive quantization with quantization splitting.

should be emphasized: and and and
. and are the innovations that generate the

first- and second-order statistics of the whole system.

It follows from Theorem 5.2 that

Let be an -dimensional random vector distributed as
. By property 2) of the ECDQ, we bound the

rate of (conditioned on ) as follows:

(23)

where the inequality follows from Theorem 5.2 and the fact that
for a given covariance matrix, the joint Gaussian distribution
maximizes the differential entropy.

Similarly, the sum-rate of (conditioned on ) and
(conditioned on ) can be upper-bounded as follows:
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(24)

where follows from the Gram–Schmidt orthogonalization of
, and .

Remark: Since the decoders only need to know
instead of and separately, we can actually fur-

ther reduce to . Since as
, it follows from (23) and (24) that

as .

The preceding results imply that for general i.i.d. sources,
under the same distortion constraints, the rates required by
our scheme are upper-bounded by the rates required for the
quadratic Gaussian case. This further implies our scheme can
achieve the whole Gaussian MD rate–distortion region as the
dimension of the (optimal) lattice quantizers becomes large.

C. Optimality and an Upper Bound on the Coding Rates

Define such that if and
only if

where we have the expression of at the bottom
of the page, and is the entropy power of .
It was shown by Zamir [11] that for i.i.d. sources with finite dif-
ferential entropy, is an outer bound of the MD rate–distor-
tion region and is asymptotically tight at high resolution (i.e.,

along a straight line). Again, we only need
consider the case .
At high resolution, we can write

where as .
The following theorem says our scheme is asymptotically op-

timal at high resolution for general smooth i.i.d. sources.

Theorem 5.3: As and approach zero along a
straight line, the region

is achievable using optimal -dimensional lattice quantizers via
successive quantization with quantization splitting.

Proof: See Appendix III.

Remark:
1) As and , the above region con-

verges to the outer bound and thus is asymptotically tight.
2) The sum-rate redundancy of our MD quantization scheme

(i.e., successive quantization with quantization splitting) is
at most three times the redundancy of an optimal -dimen-
sional lattice quantizer in the high-resolution regime. It is
easy to see from (23) and (24) that for the Gaussian source,
this is true at all resolutions. Specifically, for scalar quan-
tizers, we have , and thus the redundancy is

. This actually overestimates the sum-rate redun-
dancy of our scheme in certain cases. It will be shown in
the next section that for the scalar case, the redundancy is
approximately twice the redundancy of a scalar quantizer
at high resolution.

3) If the successive quantization with quantization splitting is
replaced by time-sharing the quantization schemes for two
vertices, then since vertex only requires two quantization
operations, it can be shown that the redundancy of the time-
sharing approach is at most twice the redundancy of an
optimal -dimensional lattice quantizer.

The following theorem gives a single-letter upper bound on
the rates of our scheme at all resolutions as the dimension of the
optimal lattices becomes large.

Theorem 5.4: There exists a sequence of lattice dimensions
( as ) such that

o.w.
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and

where

and the generic source variable are all independent.

Remark: This theorem implies that as the dimension of the
optimal lattices goes to infinity, the rates required by our scheme
can be upper-bounded as

By comparing the above two expressions with (19) and (20), we
can see that if is not Gaussian, then .

Proof: See Appendix IV.

VI. A SCALAR QUANTIZATION SCHEME

In this section, we give a geometric interpretation of our MD
quantization scheme when undithered scalar quantization is
used in the proposed framework. This interpretation serves as
a bridge between the information-theoretic description of the
coding scheme 7 and the practical quantization operation. Fur-
thermore, it facilitates a high-resolution analysis, which offers
a performance comparison between the proposed quantization
scheme and existing MD quantization techniques.

A. The Geometric Interpretation

A classical scalar quantizer can be modeled to be composed
of three components [63].

1) The lossy encoder is a mapping , where the
index set is usually taken as a collection of consecu-
tive integers. Commonly, this lossy encoder is alternatively
specified by a partition of , i.e., the boundary points of
the partition segments.

2) The lossy decoder is a mapping , where
is the reproduction codebook.

3) The lossless encoder is an invertible mapping
into a collection of variable-length binary vectors. This is
essentially the entropy coding of the quantization indices.

The successive quantization coding scheme in Fig. 8 is re-
drawn in terms of quantization encoder and decoder in Fig. 10.
The lossless encoder is not essential in this interpretation and
is thus omitted. The lossy decoders in the receiver are mappings

, and ,
respectively.

7Although the ECDQ-based MD scheme considered in the preceding section
is certainly of practical value, we mainly use it as an analytical tool to establish
the optimality of our scheme. In practice, it is more desirable to have an MD
scheme based on undithered quantization.

Fig. 10. Coding scheme using successive quantization in terms of quantization
encoder and decoder.

Fig. 11. The geometric interpretation of the partitions using successive quan-
tization.

Fig. 12. Coding scheme using quantization splitting in terms of quantization
encoder and decoder.

For simplicity, assume the lossy encoders and generate
uniformpartitionsof , respectively,while the lossydecoder
takes the center points of the partition cells of as the reproduc-
tion codebook. Function is piecewise constant.
A linear combination of and is then formed as ,
which is mapped by to a quantization index . Consider a
partition cell , given by , in the lossy encoder .

In Fig. 11, this partition cell is represented on the plane.
For operating points on the dominant face of the SEGC region, it
is always true that , which implies [from
(29)], and thus theslopeof the line isalways posi-
tive. It isclear that,given canfallonly into theseveral
segments highlighted by the thicker lines in Fig. 11, i.e., into the
set . The infor-
mationregarding isthusrevealedtothelossydecoder . In the
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Fig. 13. Several special cases of the partition formed using successive quantization. (a) a = 2; a = �1, and the stepsize of q is the same as that of q . (b)
a = 2; a = �1, but the stepsize of q is much larger than that of q . (c) When the stepsize of q is much larger than that of q , by slightly varying a and a ,
the two side distortions can be made equal.

lossy encoder , the information is revealed to the lossy decoder
in the traditionalmanner that,whenindex isspecified, is in

the th cell, which is ; denote it as .
Jointly, the lossy decoder has the information that is in the
intersection of the two sets as .

The successive quantization with quantization splitting
scheme in Fig. 9 is redrawn in Fig. 12. It can be observed
that and play roles similar to those in Fig. 10. Let

and define

where is the th partition cell in the lossy encoder .
Notice the index has two components, one is the

output of , and the other is that of . The lossy encoder and
the lossy decoders and always have the exact output
from , which in effect confines the source to a finite range.
Thus, we need to consider only the case for a fixed value.
It is obvious that when is fixed, . Con-
sider the linear combination of ,
where . It is similar to the linear combination
of , but with the additional constant term ,
when is given. It can be shown that this constant term in fact
removes the conditional mean such that ,
and the lossy encoder is merely a partition of an interval near
zero. Thus, with given, and essentially
adopt the same roles as and , respectively, in Fig. 10.
This implies that a similar geometric interpretation again holds
for the additional components in Fig. 12, since and

. Define

where is the th partition cell in the lossy en-
coder and is the th partition cell in the lossy
encoder . Given the index pair , the joint
lossy decoder is provided with information that

.

B. High-Resolution Analysis of Several Special Cases

In what follows, the high-resolution performance of the
proposed coding scheme using scalar quantization is analyzed

under several special conditions. Of particular interest is the
balanced case, where and two side distortions
are equal, . For the sake of simplicity, we focus on the
zero-mean Gaussian source. For this case, it can be shown [22]
that the central and side distortion product remains bounded by
a constant at fixed rate, which is , indepen-
dent of the tradeoff between them. For the sake of simplicity,
we focus on the zero-mean Gaussian source.

1) High-Resolution Analysis for Successive Quantization:
Consider using the quantization method depicted in Fig. 10 to
construct two descriptions, such that with possibly
unbalanced rates. For the case and at high
rate, it is clear that . Thus, and

[from (28), (29)], which suggests that the slope of the
line should be approximately in this case.

Next we consider the three cases depicted in Fig. 13. In Fig.
13(a), are chosen. By properly choosing the
thresholds and the stepsize, a symmetric (between the two de-
scriptions) partition can be formed. Cells and cells
both are intervals, with bins staggered by half the stepsize. This
in effect gives the staggered index assignment of [66], [23]. By
using this partition, the central distortion is reduced to of
the side distortions. Though in this case the condition
does not hold, choosing indeed generates two
balanced descriptions. The high-resolution performance of the
partition in Fig. 13(a) is straightforward, being given by

where the second equality is true when entropy coding is as-
sumed, and (also see [65]).

In Fig. 13(b), the stepsize in , which is denoted by , is
chosen to be much smaller than that of , which is denoted as

; however, and are kept unchanged. In this
case, the partition by is still uniform, and the performance of

is given by
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This differs from the previous case in that most of the cells
are no longer intervals, but rather the union of two non-

contiguous intervals, when ; for a small portion of
the cells, each of them can consist of three noncontiguous
intervals, but when , this portion is negligible and
will be omitted in the discussion which follows. Furthermore,
cell approximately consists of two length- intervals
whose midpoints are apart. The distortion achieved by
using this partition in the lossy decoder is

. Intuitively, this says that the average distance of the points
in the cell from its reproduction codeword is approxi-
mately , which is obviously true given the geometric struc-
ture of the cell . Note that and are not of equal
value.

The rate of the second description is less straightforward, but
consider the joint partition revealed to . This partition is al-
most uniform, while the rate of the output of after entropy
coding is one bit less than that when the same partition is used
in a classical quantizer, because each cell consists of two
local intervals instead of one as in the classical quantizer. Thus,

(25)

It follows that an achievable high-resolution operating point
using scalar quantization is given by

.
In order to make when , the values

of can be varied slightly. First, let be fixed such that
and are then both fixed. It is

clear with stepsize fixed, as decreases from , the distor-
tion increases. A simple calculation shows that when

; thus, the desired value of is in ,
and we find this value to be . The detailed calcu-
lation is relegated to Appendix V. By using such a value, it can
be shown that an achievable high-resolution operating point is
by and .
The rates and are usually not equal.

2) Balanced Descriptions Using Quantization Splitting: As
previously pointed out, in the quantization splitting coding
scheme should be chosen to be when balanced
descriptions are required; then implies

. It follows that , and
. We make the following remarks assuming these values.

• The conditional expectation is ap-
proximately zero, which implies only the case in which

needs to be considered. This is obvious
from the geometric structure given in Fig. 13(b) and the
values of s.

• The partition formed by does not improve the distortion
over . This is because the slope of the line

on the plane is given in such a
way that it almost aligns with the function . In
such a case, the cell consists of segments from
almost every cell for which

. Intuitively, it is similar to letting the slope of
have a slope of in Fig. 13(b), such that

the distortion does not improve much over in the
successive quantization case.

With these two remarks, consider constructing balanced de-
scriptions using scalar quantization for as follows.
Chose and such that, without the
lossy encoder , the distortions and are made equal.
Denote the entropy rate of as and that of as . Let

but such that
is approximately zero. By doing this,
on the -plane aligns with the function , and
thus the remaining rate is used by to improve

, but and are not further improved. Since and
are both operating on high resolution, assuming is
also high, then partitions each into

uniform segments, thus improving by a factor of
.

Using this construction, we can achieve a balanced high-res-
olution operating point of without time-
sharing, where

and

Thus, when , the central and side dis-
tortion product is 2.596 dB away from the information-theoretic
distortion product; in fact, for any sources with a smooth prob-
ability density function (pdf), this quantizer can achieve a gran-
ular distortion away from the Shannon outer bound which
is tight at high resolution. This is a better upper bound than the
best known upper bound of the granular distortion using scalar
quantization, which is 2.67 dB away from the information-the-
oretic distortion product [23], which was previously derived in
[23] using MDSQ [20], [21] with systematic optimization of
quantization thresholds.

Though we only considered scalar quantizers in this section,
the extension of the coding schemes to undithered vector quan-
tization is straightforward. It can be seen that in Figs. 10 and 12,
the encoders do not need to introduce the index assignment com-
ponent, which is the key component in the MDSQ and MDLVQ
framework [20], [28], and thus, we circumvent the difficulty of
designing the optimal index assignment. It is also worth men-
tioning that even when the distortions and rates are balanced,
the proposed quantization system is not completely symmetric;
this is quite different from MDSQ, and the effect of such asym-
metry on practical image/video coding system is unknown.

VII. CONCLUSION

We proposed a lattice quantization scheme which can achieve
the whole Gaussian MD rate–distortion region. The proposed
scheme is universal in the sense that it only needs the informa-
tion of the first- and second-order statistics of the source; fur-
thermore, the scheme is asymptotically optimal for all smooth
sources at high resolution.

Our results, along with a recent work by Erez and Zamir
[68], consolidate the link between MMSE estimation and lat-
tice coding (quantization), or in a more general sense, the con-
nection between Wiener and Shannon theories as illuminated by
Forney [69], [70].



CHEN et al.: MULTIPLE DESCRIPTION QUANTIZATION VIA GRAM–SCHMIDT ORTHOGONALIZATION 5213

Although the linear MMSE structure is optimal in achieving
the Gaussian MD rate–distortion region as the dimension of the
(optimal) lattice quantizers goes to infinity, it is not optimal
for finite-dimensional lattice quantizers since the distribution of
quantization errors is no longer Gaussian. Using nonlinear struc-
ture to exploit the higher order statistics may result in better
performance. We also want to point out that many other stan-
dard quantizers can be easily incorporated in our framework, al-
though in this paper, to facilitate the theoretic analysis, we have
mainly focused on the lattice quantizers.

APPENDIX I
GRAM–SCHMIDT ORTHOGONALIZATION FOR

RANDOM VECTORS

Let denote the set of all -dimensional,8 finite-covari-
ance-matrix, zero-mean, real random (column) vectors. be-
comes a Hilbert space under the inner product mapping

For with ,
the Gram–Schmidt orthogonalization proceeds as follows:

where is a matrix satisfying

. When is invertible, we have

. Here is the covariance matrix of

and

Again, a sequential quantization system can be constructed
with as the input to generate a zero-mean random

vector whose covariance matrix
is also . Assume is nonsingular for

. Let be an -dimensional lattice quan-
tizer, . The dither is an -dimensional
random vector, uniformly distributed over the basic cell of

. Suppose are
independent, and . Define

(26)

(27)

It is easy to show that and have the same covariance
matrix.

Suppose is singular for some , say is of rank
with . For this type of degenerate case, the quan-

tization operation should be carried out in the nonsingular
subspace of . Let be the eigenvalue
decomposition of . Without loss of generality, assume

, where for all
. Define . Now re-

place the -dimensional quantizer in (27) by a
-dimensional quantizer and replace the dither

by a dither which is a -dimensional random

8This condition is introduced just for the purpose of simplifying the notations.

vector, uniformly distributed over the basic cell of with

. Let

and we have

where is a column vector containing the

first entries of and
is a column vector that contains the remaining entries of

.

APPENDIX II
LINEAR ESTIMATOR COEFFICIENTS AND STATISTICS OF THE

INNOVATION PROCESS

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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(42)

APPENDIX III
PROOF OF THEOREM 5.3

It is easy to verify that as along a straight

line, we have , and
. Let

where is a fixed large number. Clearly, as
.

For the MD quantization scheme shown in Fig. 9, we have

Since

and

as along a straight line, it follows that

So we have

When , there is no quantization splitting and the quan-
tizer can be removed. In this case, we have

When , we
have

where as . Therefore, the region

is achievable.
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By symmetry, the region

is achievable via the other form of quantization splitting. The
desired result follows by combining these two regions and
choosing large enough.

APPENDIX IV
PROOF OF THEOREM 5.4

We shall only give a heuristic argument here. The rigorous
proof is similar to that of Theorem 3 in [38] and thus is omitted.

It is well known that the distribution of the quantization noise
converges to a white Gaussian distribution in the divergence
sense as the dimension of the optimal lattice becomes large [38].
So we can approximate by , where is a zero-mean
Gaussian vector with the same covariance as that of

. Therefore, for large , we have

and

APPENDIX V
THE CALCULATION OF SCALAR OPERATING POINT USING

SUCCESSIVE QUANTIZATION

Observe in Fig. 13(c) that the value is slightly different
from , such that a portion of the cells consist of three
length- intervals which are approximately apart

(denote the set of this first class of cells as ), while the other
cells consist of only two length- intervals which are

also apart (denote the set of this second class of cells
as ); the ratio between the Lebesgue measure of these two
sets is a function of , which is approximately . Here
we again ignore the cells whose constituent segments are
at the border of partition cells, which is a negligible portion
when . The average distortion for each first class cell

is approximately , while the average distortion
for each second class cell is approximately .
Thus, the distortion can be approximated as

(43)

Notice that ; thus, is the
probability of a random cell being a first class cell. Letting

, we can solve for ; the only real so-
lution to this equation is . The distortion is
approximately , by using an almost uniform partition
of stepsize . To approximate the entropy rate for , con-
sider the rate contribution from the first class cells, namely

(44)

where is the pdf of the source. Similarly, the rate contribu-
tion from the second class cells is

(45)

Thus, the rate can be approximated as

(46)

When is high resolution, is approximately
equal to , for any , and thus equal to .
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Using this approximation and taking as , the last two
terms in (46) can be approximated by an integral, which is in
fact , the differential entropy of the source. It follows that

(47)

where for the Gaussian source. Thus,
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