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Rate Region of Gaussian Multiple Description Coding
With Individual and Central Distortion Constraints

Jun Chen, Member, IEEE

Abstract—The rate region of Gaussian multiple description
coding with individual and central distortion constraints is com-
pletely characterized. Specifically, a lower bound and an upper
bound are derived for each supporting hyperplane of the rate
region, where the lower bound is associated with a max-min
game while the upper bound is associated with a min-max game;
furthermore, it is shown that these two bounds coincide due to the
existence of a saddle point.

Index Terms—Contra-polymatroid, entropy power inequality,
min-max, multiple description coding, saddle point.

I. INTRODUCTION

M ULTIPLE description coding is a quantization tech-
nique developed for multimedia transmission through

unreliable links. In the standard setting of the multiple descrip-
tion problem, several coded representations are formed for the
target source such that any subset of these representations can
be used to reconstruct the source with certain fidelity. Each
representation is referred to as a description, and the goal
is to find the optimal tradeoff between the code rates of the
descriptions and the reconstruction distortions.

The first general result on the multiple description problem is
the 2-description achievable rate region by El Gamal and Cover
(EGC) [1], which is based on the idea of correlated quantization.
This result has been extended to the general -description case
in [2]. It is observed in [3] and [4] that the EGC achievable
rate region can be enlarged by coupling correlated quantization
with the binning technique. Further improvements can be found
in [5].

Although the general multiple description problem is still
widely open, several conclusive results have been obtained for
the quadratic Gaussian case. Notably, when only individual
and central distortion constraints1 are imposed, the minimum
achievable sum-rate has been derived by Ozarow for the 2-de-
scription case [6] and by Wang and Viswanath for the general

-description case [7] (see also [2] for the symmetric case).
Moreover, the minimum achievable sum-rate together with two
trivial bounds on the individual rates yields an exact characteri-
zation of the rate region for the 2-description case [6]. However,
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1That is to say, the distortion constraints are only imposed on the individual
descriptions and on the complete set of descriptions.

the rate region of Gaussian multiple description coding with
individual and central distortion constraints for the general

-description case is still unknown. The key contribution of the
present work is a complete solution to this open problem.

Throughout this paper, the logarithm function is to base .
We use to denote an identity matrix and use to
denote -dimensional random vector for any
positive integer . The operators and denote ex-
pectation and trace, respectively. For random vectors and

, the conditional expectation of given is denoted by
and the covariance matrix of is

denoted by ; with a slight abuse of notation, we
interpret as when . We
use the convention that , and .

II. PROBLEM SETTING AND MAIN RESULTS

Let be a stationary and memoryless Gaussian
process with mean zero and variance . Given individual
distortion constraints , and central distor-
tion constraint , we say a rate vector
is achievable if there exist, for all sufficiently large , en-
coding functions with

, such that

The rate region is the convex clo-
sure of the set of all achievable rate vectors with respect to indi-
vidual distortion constraints , and central dis-
tortion constraint . Without loss of generality, we shall
assume .

Since is a closed convex set, it
suffices to characterize its supporting hyperplanes, which boils
down to solving the following optimization problem:

(1)

where , are arbitrary nonnegative numbers. It is
clear that through suitable relabeling, we may assume, with no
loss of generality, that . Moreover, if ,
then we can allocate enough rate to description to meet the in-
dividual distortion constraint and the cental distortion con-
straint without affecting the weighted sum-rate while
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the other descriptions only need to meet their corresponding in-
dividual distortion constraints; as a consequence, it follows from
the classic rate-distortion theory that

Therefore, we shall assume in the rest of
this paper.

Note that when , the optimization problem (1)
yields the minimum sum-rate (up to a scalar) of the rate region

. Specifically, it is known [6], [7]
that

(2)

However, the technique used to derive (2) is not sufficient for
characterizing other supporting hyperplanes. The main reason
is as follows. To minimize the achievable sum-rate of the EGC
scheme, the covariance matrix of the quantization errors asso-
ciated with different descriptions has the property that all the
off-diagonal entries are identical and nonpositive. As shown by
the ingenious converse argument devised by Ozarow [6] (see
also [7]), this property can be effectively exploited to create
a conditional independence structure by introducing a hidden
auxiliary random vector. Remarkably, the resulting lower bound
coincides with the minimum EGC achievable sum-rate. Unfor-
tunately, when optimizing the EGC achievable scheme for other
hyperplanes, the corresponding covariance matrix of the quan-
tization errors in general does not have this simple structure.
As a consequence, a direct application of Ozarow’s argument
does not lead to a matching lower bound, and more sophisti-
cated techniques are needed.

To the end of solving the optimization problem (1), we shall
introduce several auxiliary distortion constraints in addition
to the individual and central distortion constraints. We say the
weighted sum-rate is achievable with respect to individual
distortion constraints , auxiliary distortion
constraints , and central distortion
constraint , if there exist, for all sufficiently large ,

encoding functions , with
such that

Let be the
infimum of all achievable weighted sum-rate with respect to
individual distortion constraints , auxiliary
distortion constraints , and central
distortion constraint . Without loss of generality, we
shall assume . Note that the
auxiliary distortion constraints are void if .

We define shown at the bottom of the page. The impor-
tance of this function is evident from the following theorems.

Theorem 1: We have

(3)

Therefore,
can be lower-bounded using a max-min game. Interestingly,
the corresponding min-max game yields an upper bound on

.

Theorem 2: We have (4) shown at the bottom of the page.

(4)
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It turns out that max-min (cf. (3)) and min-max (cf.
(4)) coincide, yielding a complete characterization of

.

Theorem 3: We have the first set of equations shown at the
bottom of the following page.

One can immediately obtain the following result by setting
, to make the auxiliary distor-

tion constraints redundant.

Theorem 4: We have the second set of equations shown at the
bottom of the page.

As a side note, the rate region is
achievable using the lattice quantization scheme (possibly with
timesharing) developed in [8] and [9].

It will be seen that besides Ozarow’s method of creating
conditional independence structure, several new ingredients are
needed to prove these theorems, which include

• an application of Costa’s entropy power inequality [10],
• multiple auxiliary random vectors,
• saddle point analysis of a max-min/min-max game,
• a delicate construction of the covariance matrix of the

quantization errors for the EGC achievable scheme.
The remainder of this paper is divided into four sections. The

proofs of Theorem 1, Theorem 2, and Theorem 3 are given in
Sections III, IV, and V, respectively. We conclude the paper in
Section VI.

III. LOWER BOUND: PROOF OF THEOREM 1

The following lemma is of crucial importance for establishing
the desired lower bound.

Lemma 1: Let and be two -dimensional Gaussian
random vectors with positive definite covariance matrices

and , respectively. Let be two
real numbers. For any -dimensional random vector and
random variable , both independent of and , such that

, we have

(5)

where is the differential entropy function.

Remark: It is worth noting that the maximum in (5) is not
necessarily attained at .

Proof: See Appendix A.

Now we proceed to derive a lower bound on
. Let

, be arbitrary encoding functions
satisfying

Define . Note that

(6)

where . It is easy to verify that

(7)
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Substituting (7) into (6), we obtain

(8)

Let be zero-mean -dimensional Gaussian
random vectors with covariance matrices ,
respectively. We have

which, together with (8), yields

(9)

Note that

By the rate-distortion theorem

(10)

(11)

(12)

Moreover, we have

(13)

Since , it follows from
Lemma 1 that

(14)

Plugging (14) into (13), we obtain

Authorized licensed use limited to: McMaster University. Downloaded on September 2, 2009 at 13:06 from IEEE Xplore.  Restrictions apply. 



CHEN: RATE REGION OF GAUSSIAN MULTIPLE DESCRIPTION CODING 3995

(15)

Similarly, since , it fol-
lows from Lemma 1 that

Therefore, we have

(16)

Substituting (10), (11), (12), (15), and (16) into (9), we get

where

Since , can be arbitrary positive numbers,
it follows that

Define a new function via the following equation:

where . In view of the fact

that there exists a one-to-one map between and
, we have

Note that the right-hand side of the above inequality is not af-
fected if we extend the domain of from to .
The proof is complete.

IV. UPPER BOUND: PROOF OF THEOREM 2

We shall show that for any with
,

(17)

from which Theorem 2 follows immediately. We assume
for all since otherwise the

right-hand side of the inequality is equal to infinity and (17) is
trivially true.

Note that the maximization problem

can be decomposed into (18) shown at the top of the following
page.

Lemma 2: Define
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(18)

1) If , then
and the maximizers to (18) are given by

otherwise
(19)

where , given at the bottom of the page, is the unique
solution to the following equation:

for . The maximizers
, given in (19) are monotonically increasing continuous

functions of and monotonically decreasing con-
tinuous functions of ; furthermore, the mono-
tonicity is strict when .

2) If , then
and the maximizers

to (18) are given by (20) shown at the bottom of the page.
Proof: See Appendix B.

Lemma 3: There exist , and
, with

(21)

such that

(22)

Proof: See Appendix C.

In view of Lemma 3, to prove (17), it suffices to show that

where , are the maximizers to (22).
Now we shall associate

with a natural ex-
tension of the EGC achievable rate region. For any random
variables jointly distributed with the generic source
variable , define

Note that can be viewed as a generalization of
the well-known EGC rate region for the 2-description case.

It is observed in [7], [9] that has an interesting
contra-polymatroid structure; as a consequence, its vertices and
supporting hyperplanes can be easily characterized [11]. Specif-
ically, is a vertex of for
every permutation on , where

Moreover, for any nonnegative numbers

where is any permutation on such that
.

any number in otherwise
(20)
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Since it is assumed that , we have

(23)

where . Note that

(24)

Substituting (24) into (23), we obtain

(25)

It can be readily shown (cf. [2]) that

for with

(26)

(27)

Therefore, to complete the proof, it suffices to construct
satisfying (26) and (27) such that

(28)

It is easy to verify the following lemma, which will be served
as a building block for constructing the desired covariance ma-
trix of .

Lemma 4: For any satisfying

define

where , and
are independent. We have

Remark:
1) Given and , one can construct .
2) Write , where and

are independent, and

Note that and are independent conditioned on
since

Therefore, we have
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Now we proceed to give an explicit construction of
. First consider the case where for all
, which, by (21), further implies

for all . In view of (21) and Lemma 2, we have the
first equation shown at the bottom of the page.

By Lemma 4, we can construct

where , and

are mutually independent. Now we write

where and

are mutually independent. Again, by Lemma 4, we can construct

Now we can further write

where and

are mutually independent. By successively applying
this procedure, we obtain

with the property (29)–(32) shown at the bottom of the page.
It is easy to see that the distortion constraints (26) and (27) are
satisfied by the constructed . Moreover, one can
readily verify (28) by substituting (29)–(32) into (25).

Now consider the general scenario in which
, and , for some . In this

case, one can set for and apply the previous
construction to . The proof is complete.

V. SADDLE POINT ANALYSIS: PROOF OF THEOREM 3

In order to show that max-min [cf. (3)] and min-max (cf. (4))
coincide, it suffices to prove the existence of a saddle point.

Given , the minimization problem

(29)

(30)

(31)

(32)
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can be decomposed into

(33)

Lemma 5: If , then the minimizers to (33) are given
by (34) shown at the bottom of the page, where

If , then the minimizers to (33) are given by

any number in

(35)

Proof: See Appendix D.

First consider the case where individual distortion constraints
, auxiliary distortion constraints

, and central distortion constraint are all
less than .

Let be a so-
lution to the min-max game in (4). We shall show that

must satisfy the saddle
point conditions (19) and (34) [or (35)].

Note that (19) is automatically satisfied. Suppose (34) [or
(35)] is violated by some . We shall focus on

, and while assuming everything else is fixed. Since
and are determined by according to

(19), to stress this dependence, we denote and as
and , respectively. By Lemma

2, is a monotonically decreasing continuous
function of while is a monotonically
increasing continuous function of . Define

Note that is a monotonically increasing continuous
function of . Now consider the following cases.

1) Case 1: , and

. Increase from until
one of the following happens: or

. If we first have ,
then set . Now suppose we first have

. Denote the corresponding
by . It can be seen that only the following three
situations are possible:

a) ,
b) ,
c) and

.
For situation a), we set . For sit-
uation b), we further increase until one of the
following happens: or
becomes positive. If happens first,
then set . If first be-
comes positive, then we further increase until
it meets and then set
to be equal to the corresponding . For situation
c), is at the point of turning positive (cf.
Lemma 2). We can further increase until it
meets and then set to
be equal to the corresponding . Note that when

, the quantity is a monotoni-
cally increasing continuous function of
and a monotonically decreasing continuous function
of , thus, is a monotonically decreasing
continuous function of . Furthermore, we have

at the point where turns posi-
tive. Therefore, the above procedure is always possible.

2) Case 2:
, and .

We can increase from until it hits
and then set to be

equal to the corresponding .
3) Case 3: ,

and . Decrease from
until one of the following happens:
or . If we first have ,
then set . Now suppose that

happens first. Denote the corre-
sponding by . Note that that both

and

any number in

(34)
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and must be equal to
zero.

4) Case 4: ,

and . Increase
from until one of the following

happens: or
. Set to be equal to the corre-

sponding .
5) Case 5: , and

. Decrease
from until
and then set to be equal to the corresponding

.
Through the above construction, the resulting

, and must satisfy (34) (or
(35)). Note that

(36)

(37)

Since is a solution to
the min-max game in (4), the inequalities in (36) and (37) must
be equalities. Note that the equality holds in (36) if and only if

and while the
equality holds in (37) if and only if one of the following three
conditions is satisfied:

1) ;
2) ;
3) and .

Therefore, , and satisfy (34) [or
(35)], which leads a contradiction with the assump-
tion that (34) [or (35)] is violated. As a consequence,

must be a saddle
point.

Now we proceed to treat the case where some of the distor-
tion constraints are equal to using a limiting argument. We
subtract each distortion constraint by . It is clear that the re-
sulting distortion constraints are all less than ; therefore, the
aforedescribed argument can be used to prove the existence of
a saddle point. By sending to zero, one can find a converging
subsequence of saddle points. It can be readily verified that the
limiting value is a saddle point of the original max-min/min-max
game. This completes the proof of Theorem 3.

A detailed characterization of the saddle point can be found
in Appendix E.

VI. CONCLUSION

We have characterized the rate region of Gaussian multiple
description coding with individual and central distortion con-
straints. Different from the 2-description case and the minimum
sum-rate case where a single auxiliary random vector suffices
to yield a matching converse, multiple auxiliary random vec-
tors are needed in the current setting. Note that
although it is not necessary to specify the joint distribution of

in our proof, one may put them into the same
probability space and create a certain structure. In particular, if
only individual and central distortion constraints are imposed,
the auxiliary random vectors can be arranged to
form a Markov chain with an order determined by ;
however, this order can be affected if additional distortion con-
straints are introduced. It is worth noting that Markov structured
auxiliary random vectors have also been used in a recent work
[12] to derive an outer bound of the Gaussian multiple descrip-
tion problem with symmetric distortion constraints that is within
a constant gap from the inner bounds. Our result indicates that in
the case where only individual and central distortion constraints
are imposed, one can in fact obtain the true rate region by sys-
tematically optimizing the auxiliary random vectors.

APPENDIX A
PROOF OF LEMMA 1

Consider the following two cases.
1) Case 1: . We can write , where

is an -dimensional Gaussian random vector with co-
variance matrix , and is independent of

. Note that
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Define . We have

(38)

(39)

where (38) follows from the worst additive noise lemma
[13, Lemma II.2], and (39) follows from the convexity and
monotonicity of in (when and )
as well as the fact that . Similarly, it
can be shown that

(40)

In view of the fact that both and are nonnegative,
we have

2) Case 2: . By the conditional version of Costa’s
entropy power inequality [10] (cf. [14]), we have

Therefore

Now it follows from (40) that

The proof is complete.

APPENDIX B
PROOF OF LEMMA 2

We shall only treat the case
since the other one is straightforward to verify. Consider the
objective function shown in the equation at the bottom
of the page. It is easy to verify that
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For any such that , we have

Therefore, is a local maximum for any

satisfying , and there is no local minimum

in .
Note that

It is easy to show that

with inequality if and only if .
Therefore, we have

(41)

(42)

In both (41) and (42), if the first inequality is strict, then the

second inequality is also strict. Furthermore,

and hold simultaneously if and only if one

of and is equal to and the other is
equal to (in which case does not depend on ).
Since both and are less than under our as-
sumption, only the following three cases need to be considered.

1) Case 1: and .

We have for . Otherwise, if

for some , then is a

local maximum, and there must exist a local minimum in
, which leads to a contradiction with the fact that no

local minimum exists in . Therefore, is a
strictly decreasing function of from 0 to .

2) Case 2: and .

We have for . Otherwise, if

for some , then is

a local maximum, and there must exist a local minimum
in , which leads to a contradiction. Therefore,

is a strictly increasing function of from 0 to
.

3) Case 3: and . There

exists a unique satisfying

. We have for , and

for . The existence of such a fol-
lows from the intermediate value theorem. To prove the
uniqueness, we assume that there exists a such

that . Since both and

are local maxima, there must exist a local minimum be-
tween and , which leads to a contradiction. There-
fore, is a strictly increasing function of from 0
to and a strictly decreasing function of from to

.
Now we proceed to show that the maximizers

, given in (19) are monotonically de-
creasing continuous functions of and mono-
tonically increasing continuous functions of ; fur-
thermore, the monotonicity is strict when .
We shall focus on the claim regarding since
the other one can be proved in a similar manner. Note
that for , we have

. To stress its dependence on ,
we denote as . It is easy to see that

where is a small positive number. Now by the analysis for case
3, we must have . There-
fore, is a strictly monotonically decreasing
function of .

We shall prove that is a continuous function
of by contradiction. Without loss of generality, we
assume
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for some . Note that

which is contradictory with the analysis for case 3.
By leveraging the analysis for case 1 and case 2, one can

use a similar argument to show that
as and as

(if ). The proof is
complete.

APPENDIX C
PROOF OF LEMMA 3

Consider the following procedure.
1) Initialization: and .
2) Let be a maximizer to the optimization problem shown

at the bottom of the page. If , then set
and ; if

, then set

and

otherwise set

and

3) If , then stop; otherwise increase by one and
go to 2).

It can be verified that the resulting , and
, have the desired property.

APPENDIX D
PROOF OF LEMMA 5

Consider the objective function

One can easily verify the second equation at the bottom of the
page.

1) Case 1: and

. We have for all
. Therefore, the minimum is at-

tained at .
2) Case 2: and

. We have for

and for

, where

Therefore, the minimum is attained at
.

3) Case 3:

and . We have for
. Therefore, the minimum is at-

tained at .
4) Case 4: . The objective function is a con-

stant.
5) Case 5: and . We have

for all . There-
fore, the minimum is attained at .

6) Case 6: and . We have

for all . There-
fore, the minimum is attained at .

7) Case 7: and . The objective function
is a constant.
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APPENDIX E
CHARACTERIZATION OF THE SADDLE POINT

We shall assume throughout this appendix that all the distor-
tion constraints are less than .

The saddle point is in general unique. To see this, consider
two saddle points and

. We must have
, since

and the first inequality becomes equality if and only if
. Furthermore, unless or

, we must have
. Note that if there exists an such that

, we can find an such that
, and (where

if ), which implies
or (cf. (19)). Therefore, it is possible to have

only when or
.

We also have the following results.

Proposition 1: Let
be a saddle point. We must have .

Proof: If , then we must have (cf.
(19)), which further implies (cf. (34) and (35)).
Moreover, in view of (19) and the fact that , one can
readily show that together with implies

. Now it follows by induction that ,
which results in a contradiction.

Remark: If for some , then we have

On the other hand, it follows by Theorem 3 that

which is clearly finite. This gives an alternative proof of Propo-
sition 1.

Proposition 2: Let
be a saddle point. If for some , then for
all .

Proof: If , then we have
and . It follows by (34) and

(35) that , which leads to a contradiction with
Proposition 1. Therefore, we must have . The proof is
complete by induction.

Now we proceed to give a more explicit characterization of
the saddle point for the
case where only individual and central distortion constraints
are imposed. We shall set

, to make the auxiliary distortion constraints redun-
dant.

First, one can make the following two observations by in-
specting (19), (34), and (35).

1) If for some , then either or
(which further

implies ); moreover, if
, then .

2) If for some , then .
These two observations, together with Proposition 2, lead to the
following classification.

1) Case 1: . We must have

which implies . Here

Conversely, if , then we must have
for some ,

which implies and further implies
.

2) Case 2: . The saddle point is
uniquely determined by

if

if

3) Case 3:
, where if

and if . Now , and
, are uniquely determined by

(43)

(44)

(45)

(46)
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while , must satisfy

(47)
Note that does not appear in (43), (44), (45), and
(46). Therefore, given , we can increase

without affecting , and
, until

Denote this critical by . If we further in-
crease , then the induced by (43), (44),
(45), and (46) cannot satisfy (47) anymore, and we enter
the regime covered by case 2. It is worth noting that

when .
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