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Multiple Description Coding for Stationary Gaussian
Sources

Jun Chen, Member, IEEE, Chao Tian, Member, IEEE, and Suhas Diggavi, Member, IEEE

Abstract—We consider the problem of multiple description
coding for stationary Gaussian sources under the squared error
distortion measure. The rate region is characterized for the �-de-
scription case. It is shown that each supporting line of the rate
region is achievable with a transform lattice quantization scheme.
We show the optimal coding scheme has a natural spectral domain
coding interpretation, which yields a reverse water-filling solution
with a frequency-dependent water level instead of the flat water
level as in the conventional single description case.

Index Terms—Gaussian source, lattice quantization, multiple
description coding, power spectrum.

I. INTRODUCTION

T HE multiple description problem has received consid-
erable attention as a model of information transmission

over unreliable channels. The results on this problem are abun-
dant. Notable work includes a general achievable rate region
for the -description case by El Gamal and Cover (EGC) [1],
the complete solution for the no-excess rate case by Ahlswede
[2], and some conclusive results on binary multiple descrip-
tions by Zhang and Berger [3]. However, the understanding of
the multiple description problem for discrete sources is still
very limited. More progress has been made on the quadratic
Gaussian case. Arguably the most important work in this direc-
tion is the exact characterization of the -description rate region
by Ozarow [4]. This result has been partially extended to the

-description case (with ) and the vector case in [5]–[8].
In contrast to the aforementioned results which are ex-

clusively derived for independent and identically distributed
(i.i.d.) sources, we shall consider multiple description coding
for sources with memory, or more precisely, the discrete-time
stationary Gaussian sources. The problem has been previously
studied in [9]–[11], however, the complete characterization of
the multiple description rate region for stationary Gaussian
sources is still unknown. The main contribution of this work
is an exact spectral domain characterization of the rate region
for the -description case. Note that the -description problem
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for general stationary sources has been studied by Fleming and
Effros [12]; however, the results in [12] are of multiletter type,
which are in general not computable. In contrast, our spectral
domain characterization allows one to perform numerical
evaluation of the -description rate region for the stationary
Gaussian sources.

The remainder of this paper is divided into four sections.
In Section II, we introduce the definition of the -description
problem for the stationary Gaussian sources. In Section III, we
derive a lower bound on each supporting line of the -descrip-
tion rate region. In Section IV, this lower bound is shown to
be achievable with a transform lattice quantization scheme. A
spectral domain characterization of the rate region is given in
Section V. We conclude the paper in Section VI.

Throughout this paper, we use operators ,
and to denote expectation, conditional expectation, deter-
minant, and trace, respectively; we use to denote the
norm and to denote positive semidefinite ordering.

II. PROBLEM DEFINITION

Let be a zero-mean discrete-time sta-
tionary Gaussian process with autocorrelation function

. It is well
known that there exists a positive measure on , re-
ferred to as the power spectral distribution of , such
that

for all . By a refined form of the Lebesgue decomposition the-
orem [13], we can write

where is absolutely continuous with respect to Lebesgue
measure , is singular continuous, and is a discrete mea-
sure. The power spectral density of , denoted as ,
is the Radon–Nikodym derivative of with respect to Lebesgue
measure .

Mixing, weakly mixing, and ergodic processes are important
classes of stationary processes (see [14], [15] for their defini-
tions). Specifically, mixing implies weakly mixing, and weakly
mixing implies ergodicity. For a zero-mean stationary Gaussian
process , the following three conditions are equiva-
lent:

• is weakly mixing,
• is ergodic,
• is continuous (i.e., ).
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Fig. 1. Encoder and decoder diagram for multiple description coding.

Moreover, is mixing if and only if
In particular, if is absolutely continuous (i.e., ), then

is mixing. Intuitively, and correspond to the
perfectly predictable part of (cf. the Szegö–Kol-
mogorov–Krein theorem [16]), which in practice can usually be
filtered out at the encoder end and reconstructed at the decoder
end; therefore, we shall assume that . Under this as-
sumption, the process is mixing, and the covariance
matrix of is positive definite
for any positive integer .

The formal definition of the -description problem is as fol-
lows (also see Fig. 1).

Definition 1: For a stationary Gaussian source , a
rate pair is called achievable with respect to the distor-
tion constraints if for all sufficiently large , there
exist encoding functions on with

, such that

where , , and
are the reconstruction for

each decoder (see Fig. 1). The -description rate region
for the process is the convex

closure of the set of all achievable rate pairs with
respect to the distortion constraints . Without loss
of generality, we shall assume ,
where .

Our main contribution in this work is a complete charac-
terization of the rate region and its spec-
tral domain interpretation. Since is a closed
convex set, for the purpose of characterizing this set, it suf-
fices to characterize its supporting lines, which is equivalent to
solving the following optimization problem:

(1)

A few remarks are now in place. It can be shown1 that
is not affected if in Definition 1 the desired

1Suppose for a specific � there exist encoding functions � � � �, � � �� �,
that can meet the distortion constraints �� � � � � �. By concatenation we can
construct encoding functions � � � �, � � �� �, with the same rate–distortion
performance for all ��� � � �� �� � � �. Note that any sufficiently large integer
� can be written as � � ��� � with � � � 	 �. Given a source sequence of
length �, we apply � � � �� � � �� �� to the first �� symbols. The remaining
� symbols can be easily handled by some fixed-rate quantizers such that the
average reconstruction distortions of these � symbols meet the distortion con-
straints �� � � � � �. Since the contribution of these fixed-rate quantizers to the
overall rates is negligible when � is large, the proof is complete.

encoding functions are not required to exist for all sufficiently
large but only for some . Moreover, it can be shown through
a standard time-sharing argument that is a
convex function of and therefore is continuous in

.
III. OUTER BOUND

Now we proceed to derive a lower bound on
for each , which in turn yields an outer
bound on . To this end, we shall re-
late with a block-independent process that is
more amenable to analysis. Specifically, for each posi-
tive integer , we construct a process , where

and is
independent of if .
One can define the -description rate region for this constructed
process as follows.

Definition 2: For a block-independent Gaussian source
, a rate pair is called achievable with

respect to the distortion constraints if for all suf-
ficiently large , there exist encoding functions on

with such that

where

and

The -description rate region for the
process is the convex closure of the set of all
achievable rate pairs with respect to the distortion
constraints .

The above definition is closely related to the vector multiple
description problem defined in [8]. The difference is that we re-
quire overall norm distortion constraints as seen above, whereas
the vector multiple description problem needs to satisfy covari-
ance distortion constraints. Therefore, clearly we can relate our
problem to the vector multiple description characterization.

For symmetric positive definite matrices and
define

where the supremum is over all symmetric positive definite ma-
trices . It easily follows from the vector multiple description
characterization in [8] that

(2)
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where the union is over all symmetric positive definite matrices
satisfying

For the case , we shall denote by
. One can readily derive from (2) that

where is defined in the expressions at the
bottom of the page. Note that is exactly
Ozarow’s -description rate region for i.i.d. Gaussian sources
[4], and is as
shown in (4) also at the bottom of the page. When , the
union operation in (2) cannot be removed, and the calculation
becomes nontrivial. In view of the fact that
is a closed convex set, we shall characterize it by its supporting
lines. Define

(5)

Let be the eigenvalue decomposi-
tion of . Here is a unitary matrix, and

is a positive definite diagonal ma-
trix. Define a new process such that

. It is clear that
for all . Since and

are related by a unitary transform, it can be readily
shown that

Therefore, we have

(6)

The following lemma is of crucial importance for bounding
.

Lemma 1: For any symmetric positive definite ma-
trix and positive definite diagonal matrix

, we have

with equality if and only if is diagonal.
Proof: Let and be two independent, zero-mean

Gaussian -dimensional random vectors with covariance ma-
trices and , respectively. We have

The condition for equality clearly follows from the only in-
equality in the derivation.

Remark: This lemma has an appealing “worst additive noise”
interpretation, which is a specialization of the general problem
treated in [17]. It essentially states that for an additive vector
Gaussian channel, if the components of channel input signal

(3)

otherwise.

(4)
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are independent Gaussian, then the components of the worst
noise under power constraint on each component are also
independent.

Now we are ready to compute . First define
as shown at the bottom of the page, where the

minimization is over satisfying

Theorem 1: .
Proof: In view of (4), one can readily see

is achievable by decomposing into paral-
leled i.i.d. processes and then encoding them separately
with a suitable distortion allocation. Therefore, we have

.
Now we proceed to show that

. By symmetry, we shall only consider the case
. It follows from (2) and (6) that is

given by the solution to the min-max problem

(7)

where the minimization is over all symmetric positive definite
matrices satisfying

(8)

(9)

and the supremum is over all symmetric positive definite ma-
trices . By restricting in (7) to be diagonal matrices, we get

(10)

For any symmetric positive definite matrix , let be a di-
agonal matrix with the same diagonal entries as those of

. If is diagonal, then

where the first two inequalities follow from Hadamard’s in-
equality and the last one follows from Lemma 1. Therefore, for
any symmetric positive definite matrices and any
positive definite diagonal matrix , we have

which implies that

(11)

for any symmetric positive definite matrices .
Taking the minimization over all symmetric positive definite
matrices subject to the constraints (8) and (9)
on the both sides of “ ” in (11) and substituting the resulting
inequality into (10), we obtain
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Fig. 2. The rate region (above and to the right of the given curve) with respect to the distortion constraints �� � � � � � � ����� ���� ���� for the block-independent
Gaussian source with eigenvalues in Table I.

(12)

where the minimizations in (12) is over all positive definite di-
agonal matrices satisfying

Using (3), it can be readily verified that (12) is equal to

where the minimization is over
satisfying

(13)

TABLE I
OPTIMAL DISTORTION ALLOCATION WITH � � ���

In view of the fact that

if , the constraint in
(13) can be safely dropped. Furthermore, we allow

by using the convention that
for . The proof is complete.

Now the problem of computing reduces to
finding the optimal distortion allocation, which is a convex opti-
mization problem. By varying within , the complete rate
region can be traced out. One such example
is shown in Fig. 2 for the case with eigenvalues shown
in Table I, where the optimal distortion allocation for a specific
value of is also given. In contrast to the case of i.i.d.
Gaussian sources, the rate region cannot be completely char-
acterized by three bounding lines. Instead, the region has two
rounded corners and a straight line connecting them. Further-
more, it is worth noting that though , the optimal
distortion allocation actually gives .

One fundamental property of is given by the
following lemma.

Lemma 2:
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Proof: We shall show that the sequence
, is subadditive, i.e.,

(14)

for all positive integers and . The desired result then follows
from Fekete’s lemma.

Note that we can decompose into
two block-independent processes with one equivalent to

and the other equivalent to . Encode
these two processes separately, both with distortion con-
straints . This procedure effectively yields a coding
scheme for that meets the distortion constraints

. Now one can readily derive (14) by combining this
observation with Definition 2. The proof is complete.

Now we shall return to the original problem to derive a lower
bound on defined in (1).

Theorem 2: .
Proof: Let and be two arbitrary encoding

functions such that

where and
. Since we can construct

by concatenating copies of and apply them
to to meet the distortion constraints , it
follows from Definition 2 and (5) that

Since does not depend on , it follows
that . The proof is
complete by invoking Lemma 2.

IV. INNER BOUND

The main result of this section is the following theorem.

Theorem 3: .

It is clear that the upper bound in Theorem 3 matches the
lower bound in Theorem 2, yielding a complete characterization
of . To prove Theorem 3, one may use the con-
ventional approach based on the random coding argument. Such
an approach, although conceptually straightforward, is techni-
cally nontrivial. Instead, we adopt a more constructive approach
by showing that the lower bound is achievable using transform
lattice quantization schemes. Two schemes are proposed: the
first one is conceptually simpler while the second one is more
efficient.

The first scheme, which is outlined below, adopts the conven-
tional subband coding idea. We first break the source sequence
into blocks of length . Let be the covariance matrix of
each block and be the eigenvalue decomposition of

. Multiply each block by the unitary matrix to get in-
dependent random variables with variances , re-
spectively. Note that the random variables are only independent
within each block, but can be correlated across blocks. Now
take such blocks and group the th symbol in each block to
form a vector of length . The random variables in the same
vector are of the same variance , but they can be corre-
lated. Next apply the multiple description lattice quantization
scheme for i.i.d. scalar Gaussian sources [18] to each of these
vectors. Although the random variables in each vector may not
be independent, it can be shown that the required rates can be
upper-bounded by those for the i.i.d. case in the limit of large .
The desired result can now be obtained by sending to infinity.

The major drawback of the first approach is that different
vectors are coded separately, which causes loss of space-filling
gain. Now let be a source sequence
of length , and let with the covariance matrix

. The second approach directly
works on , therefore avoids the drawback of the first ap-
proach. Note the components of have different variances,
which renders the scheme in [18] not directly applicable. Fortu-
nately, this problem can be circumvented by incorporating ap-
propriate pre-filters and post-filters in the multiple description
lattice quantization system proposed in [18].

Now we proceed to give a detailed analysis of the second
approach. By symmetry, only the case will be treated.

Consider the successive multiple description quantiza-
tion system depicted in Fig. 3. This system is based on
entropy-coded dithered quantization (ECDQ). Here we quote
some basic properties of ECDQ from [19]. Let be an
optimal -dimensional lattice quantizer (i.e., a lattice quantizer
with the minimal normalized second moment ), and
be a dither vector that is independent of the source and is
uniformly distributed over the basic cell of the lattice. The
lattice quantizer with dither represents the source vector by
the vector .

1) The quantization error vector is independent
of and is distributed as . In particular, the mean-
squared quantization error is given by the second moment
of the dither, independently of the source distribution, i.e.,

where is the volume of the basic cell.
2) The coding rate of the ECDQ is equal to the mutual infor-

mation between the input and output of an additive noise
channel , where , the channel’s noise,
has the same probability density function as

3) The autocorrelation of the quantizer noise is “white,” i.e.,
, where is an identity matrix

and is the second moment of the lattice.
Now let be an optimal -dimensional lattice

quantizer with the second moment . Let and
be two independent -dimensional dither vectors uni-

formly distributed over the basic cell of the lattice. Let
be the minimizer that achieves
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Fig. 3. Successive quantization.

. Without loss of generality, it can be assumed
that (see [8], [18] for a discussion regarding this point)

Define

Let , with

Furthermore, let

It can be verified that

and

where and
are given by

Let be an -dimensional random vector distributed as
. We have

where the last inequality follows from the fact that for a given
covariance matrix, the joint Gaussian distribution maximizes the
differential entropy. Similarly
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Therefore, we have

If one interprets and as the rates of encoding functions
and , respectively, then the desired result follows from the

fact that as .
Although for the purpose of characterizing the multiple

description rate region it suffices to show
that each of its supporting lines is achievable by the proposed
scheme, it does not imply that this scheme can achieve an
arbitrary point in the rate region. Indeed, the interior points
of the minimum sum–rate line2 of is not
directly attainable through the current scheme. Nevertheless,
those points can be attained by either time-sharing of the given
successive quantization scheme or using the splitting method
proposed in [18].

In the analysis of the proposed scheme, we have implicitly
made the following two assumptions:

1) the dither vectors and are known at both the encoder
and the decoder;

2) the output of each quantizer is entropy-coded (conditioned
on the dither sample) using ideal lossless variable-rate
codes.

However, in Definition 1, only fixed-rate codes are allowed, and
no common randomness is permitted. There are two ways to
resolve this inconsistence. First, one can modify Definition 1
to allow variable-rate codes and common randomness. It can be
verified that the outer bound derived in Section III is not affected
by the modification of the definition. In particular, the converse
argument in [8] continues to hold even if variable-rate codes and
common randomness are allowed. Second, one may modify the

2The minimum sum–rate line of ������� � � � � � � is the set of points
in ������� � � � � � � that minimize the sum–rate, i.e., ��� � � � �
������� � � � � � � � � � � � ��� � � � �.

proposed scheme to meet the conditions of Definition 1. This ap-
proach is more technical, and an argument is outlined in the Ap-
pendix. It is worth noting that in contrast to variable-rate codes
for which no ergodicity assumption on the source is required,
such kind of assumption is needed for fixed-rate codes in order
to relate the entropy rate with the code rate.

V. A SPECTRAL DOMAIN CHARACTERIZATION

By Theorems 2 and 3, we have

(15)

In view of Theorem 1 and Szegö’s limit theorem, it is nat-
ural to conjecture that has a spectral domain
characterization. However, it is technically nontrivial to ob-
tain such a characterization via Szegö’s limit theorem since

is given in the form of a minimization
problem, which does not seem to have an explicit solution.
Nevertheless, the conjecture is indeed true, as we shall show
in the sequel. This essentially yields a generalization of the
conventional reverse water-filling solution for the single
description case; however, here the water level is frequency-de-
pendent instead of being flat across the spectrum.

It is worth emphasizing that although can
be evaluated by solving a convex optimization problem, it is in
general infeasible to compute via (15). In con-
trast, it will be seen that the spectral domain characterization of

not only provides an alternative expression but
also suggests a way for numerical evaluation.

Define as shown at the bottom of the page,
where the infimum is over
satisfying

Here we use the convention that and
for . The spectral domain characterization is formally
given in the following theorem.

Theorem 4: .

The following lemmas are needed for proving Theorem 4.

Lemma 3: is a continuous convex function
of .

Proof: This result follows from the fact that

and are convex func-
tions of .

Lemma 4: The set is
countable.
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Proof: Let . It
is clear that is a finite set for any positive integer . Since

, we can see that must be a countable set.

Lemma 5: .
Proof: A simple application of the monotone convergence

theorem yields the desired result.

Lemma 6: If , then

where is the indicator function.

Remark: See Section III for the definition of
. This lemma is a simple consequence of Szegö’s

limit theorem [20] (also see [21]). Note that by Lemma 4, the
condition in Lemma 6 is met by all except for countable
number of points.

Now we proceed to prove Theorem 4. Specifically, we shall
show that for any

when is sufficiently large, and then complete the proof
by invoking Lemma 3. The key idea is to approximate

and by convex optimization
problems for certain piecewise constant functions so that a
direct comparison becomes possible. By symmetry, we shall
only consider the case .

Proof: For any , one can find
for some positive integer such that

(16)

(17)

(18)

(19)

where (17) is guaranteed by Lemma 4, and (19) is guaranteed
by Lemma 5. Define

Let be a subset of such that is the largest

integer satisfying and
. Let be a measurable subset of

such that

Define

for some
otherwise

for some
otherwise

for some
otherwise

for some
otherwise

Let

and

It is easy to see that

(20)

(21)

where the minimization in (20) is over
subject to the constraints

and the minimization in (21) is over
subject to the constraints

The inequality in (20) is by the fact that , as
an implicit function of , is monotonically in-
creasing. The inequality in (21) follows from the fact that one
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can convert the minimization problem in (20) to the one in (21)
by imposing an additional constraint

By Jensen’s inequality, we have

Therefore, there is no loss of generality in assuming
in (21) if for some . Let and

. Define

(22)

where the minimization is over
subject to the constraints

Again by Jensen’s inequality, it can be shown that there is
no loss of generality in assuming in (22) if

for some . Therefore, one can readily see that
. Note that

(23)

(24)

where the infimum in (23) is over
, subject to the constraints

and (24) follows from (16). Therefore, we have

(25)

Similarly, we have

(26)

(27)

where the minimization in (26) is over
subject to the constraints

and the minimization in (27) is over
subject to the constraints
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It can be verified that

(28)

(29)

(30)

where the minimization in (28) is over
subject to the constraints

the infimum in (29) is over
subject to the constraints

and (30) follows from (16). Therefore

(31)

By the construction of and , it is clear that

In view of (17), one can readily show by invoking Lemma 6 that

which implies

Since and

for , it follows that

Furthermore, by Lemma 6,

Therefore, we have

(32)

and

(33)
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where (32) (as well as (33)) follows from (18) and (19). In view
of (25), (31), and the fact that is a continuous
function of (cf. Lemma 3), the proof is complete.

The method used to establish
in the Proof of Theorem 4 can be lever-

aged to show the following fact: if is a piecewise constant
function, then can be computed by solving
a convex optimization problem similar to the one associated
with . In general, we can approximate
from above and below with arbitrary accuracy by piece-
wise constant spectral density functions. Furthermore, it is
easy to see that for any spectral density functions
and with
we have

. Therefore, the spectral domain character-
ization effectively provides a way to compute .

VI. CONCLUSION

The -description rate region for stationary Gaussian sources
under the squared error distortion measure is characterized. In
view of the extremal properties of the Gaussian processes and
the standard high resolution analysis [10], the results in the
present work have clear implications on multiple description
coding for general stationary sources with finite differential en-
tropy rate under the squared error distortion measure.

APPENDIX

In this appendix, we provide an outline on how to construct
fixed-rate codes without common random dithers from the
randomized dithered quantization scheme using variable-rate
codes. By Carathéodory’s theorem, there exist dither pairs

and , with
such that

Therefore, for any , one can construct encoding functions
and for some by suitably concatenating

quantizers and dither sequences such that

Now construct functions and by repeating
and over blocks. Let

or

Define a pair of encoding functions and such
that

a special symbol
otherwise

Let be defined as shown at the bottom of
the page. It is clear that

when is sufficiently large. Moreover, we have

special symbol

otherwise
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where is the indicator function. Note that for any

(34)

By the monotone convergence theorem

Thus, by choosing a sufficiently large , we can make
the first term in (34) less than . Furthermore, since

is an ergodic vector
process,3 it follows from the Shannon–McMillan–Breiman
theorem that as . Hence, for
any fixed , the second term in (34) can also be bounded from
above by when is large enough. Therefore, we have

for all sufficiently large . Similarly, it can be shown that

when is sufficiently large. Since
and is arbitrary,

one can readily complete the proof by invoking the fact that
is a continuous function of .

3This follows from the fact that the vector process obtained by arranging a
weakly mixing process into blocks of length � is also weakly mixing [15].
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