
3660 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010

Tighter Bounds on the Capacity of Finite-State
Channels Via Markov Set-Chains

Jun Chen, Member, IEEE, Haim Permuter, Member, IEEE, and Tsachy Weissman, Senior Member, IEEE

Abstract—The theory of Markov set-chains is applied to derive
upper and lower bounds on the capacity of finite-state channels
that are tighter than the classic bounds by Gallager. The new
bounds coincide and yield single-letter capacity characterizations
for a class of channels with the state process known at the receiver,
including channels whose long-term marginal state distribution
is independent of the input process. Analogous results are estab-
lished for finite-state multiple access channels.

Index Terms—Channel capacity, finite-state channel, Markov
set-chains, multiple access channels.

I. INTRODUCTION

C ONSIDER a finite-state channel with transition proba-
bility , where , , and

are respectively the channel input, the channel output, and the
channel state at time . We assume that the channel is time-in-
variant, i.e., the transition probability does not de-
pend on . Moreover, , , are assumed to be finite,
where denotes the cardinality of for any set .

The capacity analysis of this channel model has received
considerable attention due to its theoretical significance and
practical implications [1]–[11]. A nice review of prior work
on this subject, particularly regarding the simulation-based
methods and related analytical results, can be found in [10] (see
also [11]). In this work, we shall develop a new technique, based
on the theory of Markov set-chains, to tackle this long-standing
problem.

Denote the channel capacity as . The capacity of finite-state
channels can be characterized using the information spectrum
method [12]; however, the resulting capacity formula is in gen-
eral not computable. Moreover, the exact value of may depend
on the specific assumptions adopted in the definition of channel
capacity, which include the realization of the initial state as well
as the transmitter and receiver’s knowledge of the initial state.
To circumvent these subtle technical issues, we shall focus on
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the computable capacity bounds that are robust to such small
variations in the definition of channel capacity. Define

It was shown in [3] that

(1)

and the inequalities in (1) become equalities for indecomposable
channels. It is worth noting that (1) is valid for any initial state

; moreover, (1) is also valid whether or not the transmitter and
the receiver know the initial state. Define

(2)

(3)

It was shown in [3] that

Therefore, we have

(4)

for all . Note that (4) provides computable finite-letter
upper and lower bounds on the channel capacity, and for in-
decomposable channels, the bounds are asymptotically tight as

. However, the complexity of computing and
increases rapidly as gets larger. Therefore, it is desirable if
the bounds given by and are tight enough even for small

(ideally, ). Unfortunately, and often give loose
bounds for small . First of all, the gap between and is at
least , which is not negligible for small (particularly if
the state space is large). Furthermore, and do not coin-
cide even when the second terms in (2) and (3) (i.e., )
are removed. Indeed, since the behavior of the channel can be
dramatically different in different states, the difference between
the first terms in (2) and (3) can be as large as when

.
To see a possible direction for improving the upper and lower

bounds, it is instructive to write (2) and (3) in a slightly different
form. Let denote the set of probability distributions on

for any finite set . Moreover, for any finite sets and ,
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let

. It is easy to verify that

(5)

(6)

where

and .

Note that any probability distribution on can be
thought of as a convex combination of probability distri-
butions that are degenerate on (i.e., assign probability one
to) a certain element of ; each of these degen-
erate distributions is trivially in . There-
fore, we have ,
where denotes the convex hull of

. We shall redefine as

to make its de-

pendency on explicit. More generally, for any nonempty
compact set , we define

(7)

(8)

A simple application of Carathéodory’s theorem shows that
each point in can be represented as a convex com-
bination of no more than points in , and each point in

can be represented as a convex combination
of no more than points in . Moreover,
since for any , there exist ,

, and , , such that
and

we have , which further implies
.

Although writing and in the form of (5) and (6) is more
cumbersome, once interpreted correctly, it offers an interesting

new perspective and suggests possible directions for further im-
provement. Note that in (2) and (3) can be naturally inter-
preted as the channel state at time , and the basic intuition
is that upper and lower bounds on the channel capacity can be
derived by choosing the best and the worst initial states. On the
other hand, in (5) and (6) is better interpreted as the channel
state at time with (due to a time-shifting argument
which will be clear later). Now to derive upper and lower bounds
on the channel capacity, one has to optimize over all possible
distributions of the channel state as . However, since the
state process can be affected by the channel input, the limiting
marginal distribution of the state process is hard to determine.
To circumvent this difficulty, one may simply allow to be
any probability distribution from . This is exactly the intu-
ition underlying (5) and (6). It will be seen that, to derive tighter
capacity bounds, one crucial idea is to find an effective estimate
of .

Note that and are allowed to have an arbitrary joint
distribution in (5) while they are assumed to be independent in
(6). This difference may seem artificial since is unaffected if
in (5) we replace with . The
purpose of choosing the current form is to motivate the fact that
the set of admissible probability distributions for is
exactly the convex hull of that for . Indeed, this relation will
be preserved in the tightened upper and lower bounds with
replaced by smaller compact sets.

The main contribution of this paper is a set of new finite-letter
upper and lower bounds on the channel capacity. Specifically,
we derive new upper and lower bounds and satisfying

where

(9)

(10)

and the sets , to be specified later, are used to capture
the limiting marginal distribution of the state process. Similar
to (5) and (6), in (9) and (10) should be interpreted as the
channel state at time with rather than the channel state
at time .

Due to the channel memory, the channel capacity is inti-
mately related to the long-term behavior of the state process.
For the special case in which the state process is unaffected by
the channel input, i.e., does not depend
on for all and all , the state process is a
homogeneous Markov chain, and its long-term behavior is well
understood. However, for the general case, the state process
depends on the channel input, which makes the problem more
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intricate. Fortunately, the theory of Markov set-chains allows us
to obtain useful information1 regarding the long-term behavior
of the state process without knowing the channel input. The
new capacity bounds are derived by effectively exploiting this
information. In contrast, such information is not used in and

. By comparing (5) with (9) [as well as (6) with (10)], one
can see two improvements. The first improvement, a relative
minor one, results from the fact that the two terms in (5) [as
well as in (6)] are decoupled while the two terms in (9) [as well
as in (10)] are coupled. The second improvement is achieved by
replacing with . Indeed, the key conceptual difference
between the new bounds and the old bounds is succinctly
manifested in this second improvement.

The rest of this paper is organized as follows. In Section II,
we review some basic definitions and results from the theory of
Markov set-chains. Along the way, we also derive a few new
results, which will be useful for the later development. New fi-
nite-letter upper and lower bounds on the channel capacity are
derived in Section III. The capacity bounds are further tightened
for the case where the state process is known at the receiver.
It is shown that these bounds coincide for a class of channels,
yielding a single-letter capacity formula. Analogous results are
derived for finite-state multiple access channels in Section IV.
Several illustrative examples are given in Section V. We con-
clude the paper in Section VI. Throughout this paper, the loga-
rithm function is to the base two.

We summarize below a few basic definitions that are used
frequently in this paper. For two nonempty sets and
a scalar , define

Let be a sequence of nonempty sets in . Define
the equation shown at the bottom of the page, where is
the norm. If , we shall write

, and refer to as the sequential limiting

set of . For any two nonempty compact sets and
in , let

The function is called the Hausdorff metric. Note that
whenever , so while small

1This information is contained in � .

implies similarity between the sets and , small
does not.

II. MARKOV SET-CHAINS

A finite square matrix is called row-stochastic if all its entries
are non-negative and the sum of each row is 1. Without loss of
generality, we assume . For each ,
we shall view as an row-stochastic
matrix, the -entry of which is equal to ,

. Let . Define ,
,

, and so on. Let
for and . Define and

for . The properties of and are

summarized in the following lemma. The proof is straightfor-
ward and thus omitted.

Lemma 2.1:
1) ;
2) is a nonempty compact set;
3) ;

4) For any nonempty compact set satisfying
, we have ;

5) , where ;
6) If is a nonempty compact set, then

;
7) For any nonempty compact set satisfying

, we have .

Collecting all these properties, we obtain the following theorem.

Theorem 2.2:
1) if and only if there exists a nonempty compact

set such that ;

2) for any .
Remark: Part 1) of Theorem 2.2 is a special case of [13, The-
orem 1].

Additional constraints on are necessary in order to obtain
a finer characterization of . First of all, we need to introduce
a few definitions. A square row-stochastic matrix is
regular if exists and has rank one, in which case all its

rows are the same. Define
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It can be shown [15] that

(11)

where the maximization is taken over row vectors satisfying
and . We call a scrambling matrix

if . It is known [14] that scrambling matrices are
regular, but not all regular matrices are scrambling; moreover,
if one or more matrices in a product of square row-stochastic
matrices is scrambling, so is the product. Let be a
sequence of square row-stochastic matrices. Define

. We say that the sequence is
weakly ergodic if

for all , , , . We say the set-chain is uniformly
weakly ergodic if for any there is an such that any

with and satisfies

Theorem 2.3: The following conditions are equivalent:
1) All finite products of matrices from are regular;
2) There exists a finite such that for all all products

of matrices from are scrambling;
3) Every sequence of matrices from is weakly ergodic;
4) There exists a finite such that for all all prod-

ucts of matrices from have a column with all entries
nonzero;

5) The set-chain is uniformly weakly ergodic.
Proof: The equivalence of the first four conditions is

known [16]. Wolfowitz [17] proved that Condition 1) implies
Condition 5). It is clear that Condition 5) implies Condition 3).
Therefore, all these five conditions are equivalent.

Remark: Condition 4) is equivalent to Gallager’s definition
of indecomposable channels [3]. Thomasian [18] proposed an
algorithm that can determine, in finite number of steps, whether
Condition 1) is satisfied.

For any square row-stochastic matrix with a stationary dis-
tribution , let be a square matrix with rows equal to .

Theorem 2.4: If all finite products of matrices from are reg-
ular, then converges to in the Hausdorff metric,
where (i.e., the closure of

).
Remark: This theorem is a special case of [13, Theorem 2].
The following corollary is a direct consequence of Theorem

2.2 and Theorem 2.4.

Corollary 2.5: If all finite products of matrices from are
regular, then

and does not depend on .

Theorem 2.6: If all finite products of matrices from are
regular, then:

1) is the unique nonempty compact subset of satis-
fying ;

2) converges to in the Hausdorff metric with a geo-
metric rate independent of for any nonempty compact
set .

Remark: This result is a special case of [19, Theorem 1]. Part 1)
of Theorem 2.6 is particularly useful for obtaining an explicit
characterization of if there exists a natural candidate for
since one just needs to verify whether it is invariant under trans-
formation . However, in general does not possess a simple
characterization; in this case one may use Part 2) of Theorem
2.6 to compute numerically.

The following result, which is a direct consequence of The-
orem 2.6, provides a way to find inner and outer bounds on .

Corollary 2.7: If all finite products of matrices from are
regular, then:

1) if ;
2) for any nonempty compact set satis-

fying ;
3) for any compact set satisfying

.
Proof: See Appendix A.

Remark: Let and . If all fi-
nite products of matrices from are regular, then by Corollary
2.7 we have for any non-negative integer

, where , . Moreover, it follows from
Part 2) of Theorem 2.6 that and provide asymptot-
ically tight inner and outer bounds on as goes to infinity.

We have a complete characterization of for the following
special case.

Corollary 2.8: Let be a probability distribution in .
We have for all if and only if all finite products
of matrices from are regular, and for all .

Proof: In view of the fact that , the “if” part
follows directly from Theorem 2.6.

Now we proceed to prove the “only if” part. Let
be an arbitrary finite product of matrices

from . Since for all , it follows that

exists and all its rows are equal to . The proof is complete.

Intuitively, if the stationary distributions are
close to each other, then should be small. This intuition is
formalized in the following corollary.

Corollary 2.9: Assume . Let
be a set of non-negative numbers satisfying

for all . Then
we have , where

.
Proof: For any and
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where the second inequality follows from (11). Therefore, we
have , which further implies . Now the desired
result follows from Corollary 2.7.

Remark: Specifically, we can choose for all
, where .

It will be clear that for the purpose of this paper, it suffices
to characterize (i.e., the convex hull of ). This
problem turns out to be simpler.

Theorem 2.10: If all finite products of matrices from are
regular, then is the unique nonempty compact convex
set satisfying .

Proof: This result can be proved by leveraging Theorem
2.6 and some basic properties of convex sets. The details can be
found in Appendix B.

Remark: Note that for , any nonempty compact
convex set must be a line segment. In this case, one can charac-
terize explicitly by solving a set of necessary and sufficient
algebraic conditions implied by Theorem 2.10. A concrete
example is given in Section V (see Example 5.1).

III. CAPACITY BOUNDS

Now we proceed to derive new finite-letter bounds on the
capacity of finite-state channels. For the ease of reference we
reproduce (9) and (10) below

where and are defined in (7) and

(8), respectively. It is easy to verify that and
for all .

Theorem 3.1: for all .
Proof: See Appendix C.

Corollary 3.2: .

Proof: This result follows directly from the fact that
and for all .

Lemma 3.3: For any positive integers , , and
, if for

some , then and

, where is the channel
state at time induced by the initial state and channel input

.
Proof: See Appendix D.

Theorem 3.4: for any positive inte-
gers , , and .

Proof: See Appendix E.

Remark: Theorem 3.4 implies that ,

which is consistent with Corollary 3.2.
Now we proceed to derive lower bounds on the channel ca-

pacity.

Theorem 3.5: for all .
Proof: See Appendix F.

Corollary 3.6: .

Proof: This result follows directly from the fact that
and for all .

Lemma 3.7: For any positive integer , if
for some , then , where is

the channel state at time induced by the initial state and
channel input .

Proof: See Appendix G.

Theorem 3.8: for any positive inte-
gers , , and .

Proof: See Appendix H.

It is obvious that we can get other upper and lower capacity
bounds by replacing with larger compact sets. This
fact is summarized in the following corollary.

Corollary 3.9: For any collection of nonempty compact sets
satisfying , , see the equa-

tion shown at the bottom of the next page, where .

We have and
for all .

The capacity bounds take a particularly simple form in the
following case.

Corollary 3.10: If there exists a probability distribution
such that for all , then

for all , where . Specifically,
this condition is satisfied if and only if all finite products of
matrices from are regular, and for all .

Remark: In this case for all
. Moreover, we have

To demonstrate the usefulness of the new capacity bounds,
two illustrative examples are given in Section V (see Examples
5.2 and 5.3).
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Now we proceed to study the case where the state process
is known at the receiver. Although and are

directly applicable here with replaced by , it turns
out that one can derive better upper and lower bounds for this
scenario. Let denote the channel capacity in this setting.
Define

In view of (1), it is clear that , where the
inequalities become equalities for indecomposable channels.

Theorem 3.11:
1) for all ;
2) for all .

Proof: See Appendix I.

Remark: For the case where the state process is not available
at the receiver, we have an additional term in the ca-
pacity bounds. This term can be interpreted as the information
regarding that the genie provides to the receiver. For
the case where the state process is known at the receiver, the
role of genie becomes superfluous, and consequently the term

can be dropped.
The results collected in the following theorem are easy to

verify. The proof is omitted.

Theorem 3.12:
1) , ,

, for any
positive integers , , and ;

2) ;

3) .

The new bounds yield a single-letter capacity formula for the
following case.

Theorem 3.13: If there exists a probability distribution
such that for all , then

for all .

Corollary 3.14: If all finite products of matrices from are
regular, and for all , then

(12)

Proof: It is a direct consequence of Theorem 3.13 and
Corollary 2.8.

Remark: An illustrative example is given in Section V (see
Example 5.4).

Note that the condition in Theorem 3.13 (as well as Corollary
3.14) is fulfilled if the state process is a regular homogeneous
Markov chain independent of the channel input. In this case, we
have

(13)

since for all . However, the re-
verse is not true, i.e., for all does not imply
that the state process is independent of the channel input. In-
deed, it is easy to construct finite-state channels for which the
channel input can affect the transition probability matrix of the
state process but not its limiting marginal distribution. For such
kind of channels, one cannot reduce (12) to (13) in general since
the state process can carry some information from the channel
input.
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IV. FINITE-STATE MULTIPLE ACCESS CHANNELS

Results analogous to those in the previous section can be es-
tablished for finite-state multiple access channels. Although the
derivations are conceptually similar, a few new technical issues
arise in the context of finite-state multiple access channels. Fur-
thermore, it is instructive to re-examine the concepts developed
for finite-state channels in a more general setting. A close com-
parison with the results in the previous section will be made, and
the subtle differences will be pointed out when they appear.

To simplify the notations, we shall only consider finite-state
multiple access channels with two transmitters and one re-
ceiver. All the results can be extended in a straightforward
manner to the case with an arbitrary number of transmit-
ters. Let be a finite-state multiple ac-
cess channel, where , , and

are, respectively, the channel input from transmitter
( ,2), the channel output, and the channel state at

time . We assume that the channel is time-invariant, i.e.,
that the transition probability does not
depend on . Moreover, , , , are assumed to
be finite; in particular, we let . We shall
reuse the notations , , and . It should be noted that

in the current
setting. The capacity region of finite-state multiple access
channel is denoted as .

For any nonempty compact set , see the equa-
tion shown at the bottom of the page. Moreover, given any

, define

Lemma 4.1:
1) For any , we have

.

2)

.

3) There is no loss of generality to assume and
in the definition of .

4) .
5) For any positive integers , , and , if

, then and

, where is the channel
state at time induced by the initial state and channel
inputs and .

6) For any positive integer , if , then
, where is the channel state at time

induced by the initial state and channel inputs and
.

Proof: See Appendix J.

Remark: It is easy to show that is compact (for any
nonempty compact set ) by leveraging Part 3) of
Lemma 4.1. It is worth noting that for ,

although and are independent, and given
are not independent in general. A detailed discussion of this

point will be given later in this section.
See the first equation at the bottom of the next page, where

in the definition of should be
interpreted as . See the second equation at
the bottom of the next page. It is easy to verify that for any

Therefore, we can write alternatively as the third equation
at the bottom of the next page. It follows from [20, Lemmas
26 and 27] that the limits in the definition of and exist;
furthermore [20, Theorems 9 and 11] imply that

(14)
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Note that (14) is valid for any initial state ; it is also valid
whether or not the transmitters and the receiver know the ini-
tial state. Moreover, for indecomposable finite-state multiple ac-
cess channels, we have [20, Theorem 12]. See
the fourth equation at the bottom of the page, where

. See the first equation shown at the bottom of the next
page. It is known [20] that

Therefore, we have

for all .
Define2

(15)

2Under certain definitions of capacity region (see, e.g., [20]), one can replace
��� ��� in (15) by ��� ��� and the resulting� is still an outer bound on�. We
choose this more conservative definition of� so that� � � holds regardless
how� is defined. Moreover, it can be shown that� is a compact set under the
current definition.
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where

It was shown in [20] that

(16)

Note that is in general not computable. However, we shall
show that it can be leveraged to derive computable outer bounds
on the capacity region.

See the second equation shown at the bottom of the page.
Define the third equation shown at the bottom of the page.

Theorem 4.2:
1) for all ;
2) for all .

Proof: See Appendix K.

Theorem 4.3:
1) for any positive integers , ,

and ;
2) for any positive integers , ,

and .
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Proof: See Appendix L.

In view of Theorems 4.2 and 4.3, the following corollary is a
direct consequence of [20, Lemmas 5 and 6].

Corollary 4.4:
1) ;

2) .

A few comparisons with the results in the previous section
are now in place. To emphasize their analogous roles, we can
form the following pairs: , , and .
In contrast, the situation for the outer bounds is more com-
plicated. It might be tempting to form the following pairs:

, , and . However, such pairings
are natural but not exact. A close look reveals that although

, it is unclear whether the second

equality in holds in general.

Actually it is also reasonable to relate with . Moreover, to
complement , one would naturally expect a finite-letter outer
bound on in a form analogous to in (2). However, a direct
generalization of in the form of (2) does not seem to yield a
valid outer bound. In contrast, in the form of (5) does have a
counterpart in the setting of multiple access channels, which is

. This leads to a puzzling phenomenon: in the form of (2)
does not permit a direct generalization while its equivalent form
in (5) does. The reason is somewhat subtle. In order to obtain an

outer bound on in a form analogous to in (2), one needs
the following assumption: the inputs of the two transmitters
from time on are independent conditioned on . Although
this assumption holds when , it is in general not true. The
crucial idea underlying the derivation of and is to go
beyond conditional independence. Indeed, it can be verified
from the definition of and that the inputs of the two
transmitters from time on are not necessarily independent
conditioned on although they are mutually independent. In
contrast, the requirement of conditional independence is void
in the point-to-point case since there is only one transmitter. In
this sense, in the form of (2) is less fundamental than its
equivalent form in (5) since the latter one is extendable to more
general scenarios.

Now consider the case where the state process is available at
the receiver. Let denote the capacity region in this setting.
See the first equation shown at the bottom of the page, where

in the definition of should be in-
terpreted as . See the second equation shown at
the bottom of the page. In view of (14) and (16), it is clear
that ; moreover, for indecomposable
finite-state multiple access channels, we have

.
See the equation shown at the bottom of the next page. The

following theorem is easy to verify. The proof is omitted.
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Theorem 4.5:
1) , for all ;
2) , ,

, for any
positive integers , , and ;

3)

;
4)

.
The finite-letter inner and outer bounds coincide for the fol-

lowing case, yielding a single-letter characterization of the ca-
pacity region.

Theorem 4.6: If there exists a probability distribution
such that for all , then

for all . Specifically, the condition is satisfied if and only
if all finite products of matrices from are regular, and
for all .

Remark: An illustrative example is given in Section V (see
Example 5.5).

V. EXAMPLES

Example 5.1: Let , where

It is easy to verify that all finite products of matrices from are
regular if and only if ,

, and . We assume these conditions
are satisfied.

Assume is a line segment joining and
with . Note that is a line segment

with two endpoints and , where

Similarly, is a line segment with two endpoints
and , where

We have the following 8 cases.
1) and .

This implies

Moreover, we must have
, i.e.,

Note that if we further have , then
. For example, the above inequalities are satis-

fied when , , , .
2) and .

This follows from Case 1) by exchanging with and
with .
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3) and .
This implies

Moreover, we must have
, i.e., see the first equation shown at

the bottom of the page. Note that if we further have
, then . For example, the above

inequalities are satisfied when , ,
, .

4) and .
This follows from Case 3) by exchanging with and
with .

5) and .
This implies

Moreover, we must have
, i.e., see the second equation shown

at the bottom of the page. Note that if we further have

, then . For example, the
above inequalities are satisfied when , ,

, .
6) and .

This follows from Case 5) by exchanging with and
with .

7) and .
This implies

Moreover, we must have
, i.e., see the third equation shown

at the bottom of the page. Note that if we further have
, then . For example, the above

inequalities are satisfied when , ,
, .

8) and .
This follows from Case 7) by exchanging with and
with .

It is worth noting that itself might not be a line seg-
ment. For example, assume and . It is
easy to verify that , where

and . Clearly,
is not a line segment.
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Example 5.2: Let . Denote
the transition probability matrices and

by and , respectively, where

We assume ,
, , and

Note that we allow or . By Corollary 2.8, we have
for all , where

Now it follows from Corollary 3.10 that

Note that the gap between and is , which con-
verges to 0 as or .

Consider the following two cases:
1) The channel transition probability is of the form

for any , , and ; more-
over, is a (i.e., a binary
symmetric channel with crossover probability ) while

is a .
For this channel, it is clear that the maximizer is given by

with . Therefore, we have

where is the binary entropy function. In contrast, we
have

yielding trivial capacity bounds for this channel.
2) The channel transition probability is of the form

for any , , and ; moreover,
is a while is a

. Note that form a Markov
chain in Case 1) while form a Markov
chain in Case 2).
Let . The conditional probability distribution

is given by

Therefore, we have the equation shown at the bottom of the
page. Now it can be computed that
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where [see (17), shown at the bottom of the page]. There-
fore, we have

If , then form a Markov
chain, which is subsumed by Case 1). So the maximizer
is equal to , and consequently

Example 5.3: Let . Denote
the transition probability matrices and

by and , respectively, where

We assume ,
, and . The condition in Theorem 2.10

holds under this assumption, which implies that is a
line segment joining and with , where
the expressions of and can be found in Example 5.1. Denote

, , , and by ,
, , and , respectively. It can be verified that

if and only if , where

(see Fig. 1).
Consider the following two cases:

Fig. 1. Plot of �������� ��� �. Note that � � �� � � � � � .

1) The channel transition probability is of the form

for any , , and ; moreover,
is a while is

a .
Let . It can be computed that

(18)

where the second equality follows from the fact that the
maximization in (18) is achieved when is independent
of and . Therefore, we have the
second equation shown at the bottom of the page, where

(17)
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To compute , the joint probability distribution is
restricted in , and we have

which yields the first equation shown at the bottom of the
page, where

2) The channel transition probability is of the form

for any , , and ; moreover,
is a while is a

. We shall first compute . Note that the joint
probability distribution is given by

Therefore, we have the second equation shown at the
bottom of the page.
To compute , the joint probability distribution
is restricted in . Let and

. We have
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Fig. 2. Plots of � and � with � � ������, � � ���, � � �������, � � ���, � � , � � , 	 � ���, and 	 � ��
 ��.

where is defined in (17). Note that (see the equation
shown at the bottom of the page), where

Therefore, we have

See Fig. 2 for plots of and .

Example 5.4: The setting is the same as that of Example 5.2
with the only difference that the state process is assumed to be
known at the receiver. Again, we shall consider the following
two cases:

1) The channel transition probability is of the form

for any , , and ; moreover,
is a while is

a .
Let . The conditional probability distribution

is given by

and the induced condition probability distributions
and are given by the tables shown at

the bottom of the next page. Now it can be computed that
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where

(19)

Therefore, by Corollary 3.14, we have

If and , then

(20)

Note that is a concave function of .
Moreover, it is easy to verify that

if . Therefore, the max-
imum in (20) is achieved at , which yields

It is interesting to further specialize to the case
. Now is given by

(21)

The following is easy to verify by direct evaluation of the
expression in (21):

a) . When , no informa-
tion can be conveyed via the state transitions, and the
channel is simply a .

b) . When , no informa-
tion can be conveyed via the relationship between the
channel input and the channel output. The only infor-
mation that can be conveyed is via the state transi-
tions, for which the effective channel is a .

c) More generally, we have the symmetry relation

(22)

Indeed, by simple operations at the receiver, one can
convert a channel with parameters to
one with parameters ( , ). To see this, we
define if and if ,

. It is easy to verify that in this special case,
the finite-state channel is equivalent to
the memoryless channel with the form

for any , , and ,
where is a and is a .
Moreover, the symmetry relation (22) follows from
the symmetric roles of and in the memoryless
channel . Fig. 3 presents a plot of .

2) The channel transition probability is of the form

for any , , and ; moreover,
is a while is a
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. Let . The conditional probability
distribution is computed in Example 5.2. The
induced conditional probability distributions and

are given by the tables at the bottom of the
page.
Now it can be computed that

where [see (23), shown at the bottom of the page]. There-
fore, by Corollary 3.14, we have

(24)

The maximization in (24) is easy to perform nu-
merically. In general, it is hard to find the maxi-
mizing explicitly. Even for , the maximizing
value of is, in general, not . For example, when

, the maximizing
value of is approximately 0.49218365 (and the associ-
ated capacity is approximately 0.36663024).

a) If , then form a
Markov chain, which is subsumed by Case 1).

b) Consider the special case where and .
We have

(25)
Note that is a concave function of .
Moreover, it is easy to verify that

. Therefore, the maximum
in (25) is achieved at , which yields

Example 5.5: Let . Define
if , and if . Sup-

pose the finite-state multiple access channel has the property
that form a Markov chain.

(23)
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Fig. 3. Plots of � ��� ��, for the 3 values � � 0.1, 0.2, 0.5 (corresponding to the curves from top to bottom) and � � � � �. Note, for the upper two curves, that
the capacity is positive even when � � ���, since information is communicated through the state transitions. By (22), the curves shown also plot � ��� ��, for the
3 values � � 0.1, 0.2, 0.5, and � � � � �. Note that the bottom curve coincides with that of the capacity of the BSC (as a function of the crossover probability).
Remark: strictly speaking, Corollary 2.8 is not applicable if � � � or � � �; however, since in this extreme case the channel inputs can be reconstructed from the
state process, the capacity is clearly 1.

We denote the transition probability matrices
and by and , respectively, where

Assume ,
, , and

Due to the special structure of this multiple access channel, the
results derived in Example 5.4 are directly applicable. We shall
consider the following two cases:

1) The channel transition probability is of the form

for any , , and ;
moreover, is a while

is a . We have

where is defined in (19).

2) The channel transition probability is of the form

for any , , and ; moreover,
is a while is a

. We have

where is defined in (23).

VI. CONCLUSION

We have used the theory of Markov set-chains to derive new
finite-letter upper and lower bounds on the capacity of finite-
state channels. Compared with the existing capacity bounds,
the new bounds can more effectively capture the long term be-
havior of the state process. In particular, these bounds coincide
and yield single-letter capacity characterizations for a class of
channels with the state process known at the receiver, including
channels whose long-term marginal state distribution is inde-
pendent of the input process. Analogous results are derived for
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finite-state multiple access channels. A natural future direction
is to see whether the approach of the present work can be ap-
plied also to obtain bounds on the capacity of finite-state chan-
nels with feedback that would improve on those of [22].

APPENDIX A
PROOF OF COROLLARY 2.7

1) It is clear that if . By Theorem 2.6,
if all finite products of matrices from are regular, then

, which yields the desired result.
2) If , then for all . By Theorem 2.6,

converges to in the Hausdorff metric as goes to
infinity. Therefore, we must have .

3) If , then for all . It follows from
Theorem 2.6 that converges to in the Hausdorff

metric as goes to infinity. Therefore, we must have
.

APPENDIX B
PROOF OF THEOREM 2.10

Firstly, we shall show that .
Since , it follows that

. Now we proceed to show the other direc-
tion. Let be the set of extreme points of , i.e., the
set of points in which do not lie in any open line
segment joining two distinct points of . Clearly, we
have and . Furthermore, let be
the set of extreme points of . Note that

. By the definition of , it is easy to

(26)

(27)
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see that . Therefore, we have
.

Let be any nonempty compact convex set satisfying
. Let be the set of extreme points of . Since is

also the set of extreme points of , it follows that
, which further implies for all . Therefore,

we have for
all . On the other hand, it is easy to see that

. Therefore, we have
for all . Since converges to in the

Hausdorff metric, it implies that . The proof is
complete.

APPENDIX C
PROOF OF THEOREM 3.1

We shall compute an upper bound on the channel capacity by
considering a genie-aided system in which the state information

is provided to the receiver. Specifically, we have
(26)–(27), shown at the bottom of the previous page, where (26)
follows from the property of finite-state channels.

Note that for any , and ,
see the equation shown at the bottom of the page, where
the last equality follows from the fact that

form a Markov chain. It is clear

that and

. Therefore, we
have

(28)
In view of (27), (28), and the fact that

, the proof is complete.

APPENDIX D
PROOF OF LEMMA 3.3

Since , there exist ,

, , , , such that

and

Note that for any and , see (29) shown at
the bottom of the next page, where (29) follows from the fact
that form a Markov chain. See (30),
shown at the bottom of the next page. In light of the fact that
that and , we have

for any fixed . Furthermore, it is easy to see

that for any fixed . There-

fore, we have .

For any and

Therefore, we have . The proof
is complete.

APPENDIX E
PROOF OF THEOREM 3.4

Note that [see (31)–(32), shown at the bottom of the next
page], where (31) follows from the fact that
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form a Markov chain, and (32) follows from the prop-
erty of finite-state channels. Therefore, see (33), shown at the
bottom of the next page, where (33) follows from Lemma 3.3.

APPENDIX F
PROOF OF THEOREM 3.5

We shall compute a lower bound on the channel capacity
by coupling the problem with a genie-aided system in which
the state information is provided to the receiver.

Let be a stationary and memoryless vector

(29)

(30)

(31)

(32)
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process independent of the initial state . We have (34)–(36),
shown at the bottom of the page, where (34) is because

form a

Markov chain (which is further due to the fact that

is independent of ), and (35) follows
from the property of finite-state channels.

Note that for any , and

(33)

(34)

(35)

(36)
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which, together with the fact that
for any

fixed , implies

(37)
In view of (36), (37), and the fact that

, the proof is complete.

APPENDIX G
PROOF OF LEMMA 3.7

Since , there exist , ,
and , , such that and

, . For any

where is defined in (30). Since for

any fixed , we have .

APPENDIX H
PROOF OF THEOREM 3.8

Let and be the two input
distributions that achieve and , respectively. Let
and be two independent random vectors with

and . Assume both and are in-

dependent of . By this construction, if ,
then ; moreover, it follows

from Lemma 3.7 that . Note
that [see (38), shown at the bottom of the page], where (38)
is because form a Markov chain

(which is further due to the fact that is independent of

). Therefore, we have

The proof is complete.

(38)
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APPENDIX I
PROOF OF THEOREM 3.11

1) It is easy to verify that . Therefore, we only

need to prove .
Note that [see (39), shown at the bottom of the page],
where (39) follows from the property of finite-state chan-
nels. The rest of the proof is similar to that of Theorem 3.1,
and thus is omitted.

2) It is easy to see that . Therefore, we only need
to prove .

Let be a stationary and memoryless

vector process independent of the initial state . Note
that [see (40)–(41), shown at the bottom of the page],
where (40) is because

form a Markov chain (which is

further due to the fact that is independent of

), and (41) follows from the property

of finite-state channels. The rest of the proof is similar to
that of Theorem 3.5, and thus is omitted.

APPENDIX J
PROOF OF LEMMA 4.1

1) For any , there exist ,

, , ,

, , , such
that , and

for all , , . Therefore, we have
the equation shown at the bottom of the next page, which
implies .

2) By Part 1) of Lemma 4.1, it suffices to show

(39)

(40)

(41)
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. For any

with

where and are the indicator functions.

Note that

for any fixed ,
. Therefore, we have .

3) For any , there exist ,

, , ,

, , , such
that , and

for all , , .

Define

. It is
easy to see that

. Therefore,

by Carathéodory’s theorem, there exist ,

, , ,
, such that

for all , , .
Define

. Since

, by

Carathéodory’s theorem, there exist ,

, , ,
, such that

for all , , . Assuming
, we can write

where , and , can be arbitrary

probability distributions from and ,
. Therefore, there is no loss of generality

to assume and
in the definition of .

4) For any , there exist

, , ,

, , ,
, , such that

and
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for all , , . For ,
, let , ,
, and . We have

for all , , , which implies
.

5) Note that for any , , and
, see (42), shown at the bottom of the page, where

(42) follows from the fact that

form a Markov chain. For any

, , and , , define

In view of the fact that that and

, we have

for any fixed , . It is also

easy to see that ,

for any fixed ,

. Therefore, we have .

For any and

Therefore, we have .

6) Since , there exist , ,
and , , such that and

, . For any

(42)
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where we have defined the first equation shown at the
bottom of the page. Since

for any fixed and , we have .

APPENDIX K
PROOF OF THEOREM 4.2

1) Since is obvious, it suffices to show .
For , define the supporting lines

It is clear that

It can be shown that for any

and , is a polymatroid (see
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[21] for the definition of polymatroid); moreover, for
any , is also
a polymatroid. In view of the polymatroid structure of

and , we have, for

, see the second equation, shown at the bottom
of the previous page, and for , see the third
equation, shown at the bottom of the previous page.

By similar steps as in the proof of Theorem 3.1, one can
easily verify that [see the fourth equation, shown at the
bottom of the previous page].
Note that if ,

then for any , ,
and , see the first equation,
shown at the bottom of the page, where
the last equality follows from the fact that
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form a Markov chain. It is clear that for any
, , and , we

have

Therefore,

. In view of the fact that
, we have, for ,

see the second equation, shown at the bottom of the
previous page. By symmetry, also holds
for . Therefore, we have .

2) It is easy to verify that . So we only need to

show . Let be
a stationary and memoryless vector process independent
of the initial state . It can be verified that [see the first
equation shown at the bottom of the page]. The rest of the
proof is similar to that of Theorem 3.5, and thus is omitted.

APPENDIX L
PROOF OF THEOREM 4.3

1) Since both and are convex, it follows that
is also convex. Moreover, for ,

we have

(43)
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It can be verified that (cf. the proof of Theorem 3.4) (see
the second equation shown at the bottom of the previous
page). Therefore, for , see (43), shown at the
bottom of the previous page, where (43) follows from Part
5) of Lemma 4.1. By symmetry,

also holds for . Therefore, we have
.

2) Let and

be the two arbitrary input distributions. Con-

struct independent random vectors , , ,
and with and

. Assume , , , and are inde-
pendent of . By this construction, if ,
then ; moreover, it follows from

Part 6) of Lemma 4.1 that .
It suffices to show

which boils down to the following three inequalities (see
the first equation shown at the bottom of the page), where

, , and , are

induced by and , respec-
tively. It can be verified that (cf. the proof of Theorem 3.8)

Therefore, we have the second equation shown at the
bottom of the page, which, together with the fact that
(see the third equation shown at the bottom of the page),
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implies (see the equation at the top of the page). The
other two inequalities can be verified in a similar way. The
details are omitted.
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